(Conformal) Killing Spinor Valued Forms on Riemannian Manifolds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Killing Spinor-Valued Forms and the Cone Construction
ARCHIVUM MATHEMATICUM (BRNO) Tomus 52 (2016), 341–355 KILLING SPINOR-VALUED FORMS AND THE CONE CONSTRUCTION Petr Somberg and Petr Zima Abstract. On a pseudo-Riemannian manifold M we introduce a system of partial differential Killing type equations for spinor-valued differential forms, and study their basic properties. We discuss the relationship between solutions of Killing equations on M and parallel fields on the metric cone over M for spinor-valued forms. 1. Introduction The subject of the present article are the systems of over-determined partial differential equations for spinor-valued differential forms, classified as atypeof Killing equations. The solution spaces of these systems of PDE’s are termed Killing spinor-valued differential forms. A central question in geometry asks for pseudo-Riemannian manifolds admitting non-trivial solutions of Killing type equa- tions, namely how the properties of Killing spinor-valued forms relate to the underlying geometric structure for which they can occur. Killing spinor-valued forms are closely related to Killing spinors and Killing forms with Killing vectors as a special example. Killing spinors are both twistor spinors and eigenspinors for the Dirac operator, and real Killing spinors realize the limit case in the eigenvalue estimates for the Dirac operator on compact Riemannian spin manifolds of positive scalar curvature. There is a classification of complete simply connected Riemannian manifolds equipped with real Killing spinors, leading to the construction of manifolds with the exceptional holonomy groups G2 and Spin(7), see [8], [1]. Killing vector fields on a pseudo-Riemannian manifold are the infinitesimal generators of isometries, hence they influence its geometrical properties. -
Gsm025-Endmatter.Pdf
http://dx.doi.org/10.1090/gsm/025 Selected Titles in This Series 25 Thomas Friedrich, Dirac operators in Riemannian geometry, 2000 24 Helmut Koch, Number theory: Algebraic numbers and functions, 2000 23 Alberto Candel and Lawrence Conlon, Foliations I, 2000 22 Giinter R. Krause and Thomas H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, 2000 21 John B. Conway, A course in operator theory, 2000 20 Robert E. Gompf and Andras I. Stipsicz, 4-manifolds and Kirby calculus, 1999 19 Lawrence C. Evans, Partial differential equations, 1998 18 Winfried Just and Martin Weese, Discovering modern set theory. II: Set-theoretic tools for every mathematician, 1997 17 Henryk Iwaniec, Topics in classical automorphic forms, 1997 16 Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume II: Advanced theory, 1997 15 Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume I: Elementary theory, 1997 14 Elliott H. Lieb and Michael Loss, Analysis, 1997 13 Paul C. Shields, The ergodic theory of discrete sample paths, 1996 12 N. V. Krylov, Lectures on elliptic and parabolic equations in Holder spaces, 1996 11 Jacques Dixmier, Enveloping algebras, 1996 Printing 10 Barry Simon, Representations of finite and compact groups, 1996 9 Dino Lorenzini, An invitation to arithmetic geometry, 1996 8 Winfried Just and Martin Weese, Discovering modern set theory. I: The basics, 1996 7 Gerald J. Janusz, Algebraic number fields, second edition, 1996 6 Jens Carsten Jantzen, Lectures on quantum groups, 1996 5 Rick Miranda, Algebraic curves and Riemann surfaces, 1995 4 Russell A. -
Spinors of Real Type As Polyforms and the Generalized Killing Equation 11
SPINORS OF REAL TYPE AS POLYFORMS AND THE GENERALIZED KILLING EQUATION VICENTE CORTÉS, CALIN LAZAROIU, AND C. S. SHAHBAZI Abstract. We develop a new framework for the study of generalized Killing spinors, where generalized Killing spinor equations, possibly with constraints, can be formulated equivalently as systems of partial differential equations for a polyform satisfying algebraic relations in the Kähler- Atiyah bundle constructed by quantizing the exterior algebra bundle of the underlying manifold. At the core of this framework lies the characterization, which we develop in detail, of the image of the spinor squaring map of an irreducible Clifford module Σ of real type as a real algebraic variety in the Kähler-Atiyah algebra, which gives necessary and sufficient conditions for a polyform to be the square of a real spinor. We apply these results to Lorentzian four-manifolds, obtaining a new description of a real spinor on such a manifold through a certain distribution of parabolic 2-planes in its cotangent bundle. We use this result to give global characterizations of real Killing spinors on Lorentzian four-manifolds and of four-dimensional supersymmetric configurations of heterotic supergravity. In particular, we find new families of Einstein and non-Einstein four-dimensional Lorentzian metrics admitting real Killing spinors, some of which are deformations of the metric of AdS4 space-time. Contents 1. Introduction 1 2. Representing real vectors as endomorphisms in a paired vectorspace 6 3. From real spinors to polyforms 14 4. Constrained Generalized Killing spinors of real type 28 5. Real Killing spinors on Lorentzian four-manifolds 39 6. Supersymmetric heterotic configurations 47 Appendix A. -
3. Introducing Riemannian Geometry
3. Introducing Riemannian Geometry We have yet to meet the star of the show. There is one object that we can place on a manifold whose importance dwarfs all others, at least when it comes to understanding gravity. This is the metric. The existence of a metric brings a whole host of new concepts to the table which, collectively, are called Riemannian geometry.Infact,strictlyspeakingwewillneeda slightly di↵erent kind of metric for our study of gravity, one which, like the Minkowski metric, has some strange minus signs. This is referred to as Lorentzian Geometry and a slightly better name for this section would be “Introducing Riemannian and Lorentzian Geometry”. However, for our immediate purposes the di↵erences are minor. The novelties of Lorentzian geometry will become more pronounced later in the course when we explore some of the physical consequences such as horizons. 3.1 The Metric In Section 1, we informally introduced the metric as a way to measure distances between points. It does, indeed, provide this service but it is not its initial purpose. Instead, the metric is an inner product on each vector space Tp(M). Definition:Ametric g is a (0, 2) tensor field that is: Symmetric: g(X, Y )=g(Y,X). • Non-Degenerate: If, for any p M, g(X, Y ) =0forallY T (M)thenX =0. • 2 p 2 p p With a choice of coordinates, we can write the metric as g = g (x) dxµ dx⌫ µ⌫ ⌦ The object g is often written as a line element ds2 and this expression is abbreviated as 2 µ ⌫ ds = gµ⌫(x) dx dx This is the form that we saw previously in (1.4). -
Clifford Algebras
A geometric construction of exceptional Lie algebras José Figueroa-O’Farrill Maxwell Institute & School of Mathematics Leeds, 13 February 2008 2007 will be known as the year where E8 (and Lie groups) went mainstream... Introduction Hamilton Cayley Lie Killing É. Cartan Hurwitz Hopf J.F. Adams This talk is about a relation between exceptional objects: • Hopf bundles • exceptional Lie algebras using a geometric construction familiar from supergravity: the Killing (super)algebra. Real division algebras R C H O ≥ ab = ba ab = ba ! (ab)c = a(bc) (ab)c = a(bc) ! These are all the euclidean normed real division algebras. [Hurwitz] Hopf fibrations S1 S3 S7 S15 S0 S1 S3 S7 S1 S2 S4 S8 " " " " S0 R S1 C S3 H S7 O ⊂ ⊂ ⊂ ⊂ 1 2 3 2 7 2 15 2 S R S C S H S O ⊂ ⊂ ⊂ ⊂ 1 2 4 8 S ∼= RP1 S ∼= CP1 S ∼= HP1 S ∼= OP1 These are the only examples of fibre bundles where all three spaces are spheres. [Adams] Simple Lie algebras (over C) 4 classical series: 5 exceptions: An 1 SU(n + 1) G2 14 ≥ F4 52 Bn 2 SO(2n + 1) ≥ E6 78 Cn 3 Sp(n) ≥ E7 133 Dn 4 SO(2n) E8 248 ≥ [Lie] [Killing, Cartan] Supergravity Supergravity is a nontrivial generalisation of Einstein’s theory of General Relativity. The supergravity universe consists of a lorentzian spin manifold with additional geometric data, together with a notion of Killing spinor. These spinors generate the Killing superalgebra. This is a useful invariant of the universe. Applying the Killing superalgebra construction to the exceptional Hopf fibration, oneS 15 obtains a triple of exceptional Lie algebras: S7 S8 " E8 “Killing superalgebra” B4 F4 Spinors Clifford Clifford algebras V n , real euclidean vector space !− −# V C!(V ) = filtered associative algebra v v + v 21 ! ⊗ ! | | # C!(V ) ∼= ΛV (as vector spaces) C!(V ) = C!(V ) C!(V ) 0 ⊕ 1 C!(V ) = ΛevenV odd 0 ∼ C!(V )1 ∼= Λ V orthonormal frame e1, . -
Symbol Table for Manifolds, Tensors, and Forms Paul Renteln
Symbol Table for Manifolds, Tensors, and Forms Paul Renteln Department of Physics California State University San Bernardino, CA 92407 and Department of Mathematics California Institute of Technology Pasadena, CA 91125 [email protected] August 30, 2015 1 List of Symbols 1.1 Rings, Fields, and Spaces Symbol Description Page N natural numbers 264 Z integers 265 F an arbitrary field 1 R real field or real line 1 n R (real) n space 1 n RP real projective n space 68 n H (real) upper half n-space 167 C complex plane 15 n C (complex) n space 15 1.2 Unary operations Symbol Description Page a¯ complex conjugate 14 X set complement 263 jxj absolute value 16 jXj cardinality of set 264 kxk length of vector 57 [x] equivalence class 264 2 List of Symbols f −1(y) inverse image of y under f 263 f −1 inverse map 264 (−1)σ sign of permutation σ 266 ? hodge dual 45 r (ordinary) gradient operator 73 rX covariant derivative in direction X 182 d exterior derivative 89 δ coboundary operator (on cohomology) 127 δ co-differential operator 222 ∆ Hodge-de Rham Laplacian 223 r2 Laplace-Beltrami operator 242 f ∗ pullback map 95 f∗ pushforward map 97 f∗ induced map on simplices 161 iX interior product 93 LX Lie derivative 102 ΣX suspension 119 @ partial derivative 59 @ boundary operator 143 @∗ coboundary operator (on cochains) 170 [S] simplex generated by set S 141 D vector bundle connection 182 ind(X; p) index of vector field X at p 260 I(f; p) index of f at p 250 1.3 More unary operations Symbol Description Page Ad (big) Ad 109 ad (little) ad 109 alt alternating map -
A Mathematica Package for Doing Tensor Calculations in Differential Geometry User's Manual
Ricci A Mathematica package for doing tensor calculations in differential geometry User’s Manual Version 1.32 By John M. Lee assisted by Dale Lear, John Roth, Jay Coskey, and Lee Nave 2 Ricci A Mathematica package for doing tensor calculations in differential geometry User’s Manual Version 1.32 By John M. Lee assisted by Dale Lear, John Roth, Jay Coskey, and Lee Nave Copyright c 1992–1998 John M. Lee All rights reserved Development of this software was supported in part by NSF grants DMS-9101832, DMS-9404107 Mathematica is a registered trademark of Wolfram Research, Inc. This software package and its accompanying documentation are provided as is, without guarantee of support or maintenance. The copyright holder makes no express or implied warranty of any kind with respect to this software, including implied warranties of merchantability or fitness for a particular purpose, and is not liable for any damages resulting in any way from its use. Everyone is granted permission to copy, modify and redistribute this software package and its accompanying documentation, provided that: 1. All copies contain this notice in the main program file and in the supporting documentation. 2. All modified copies carry a prominent notice stating who made the last modifi- cation and the date of such modification. 3. No charge is made for this software or works derived from it, with the exception of a distribution fee to cover the cost of materials and/or transmission. John M. Lee Department of Mathematics Box 354350 University of Washington Seattle, WA 98195-4350 E-mail: [email protected] Web: http://www.math.washington.edu/~lee/ CONTENTS 3 Contents 1 Introduction 6 1.1Overview.............................. -
Arxiv:1412.2393V4 [Gr-Qc] 27 Feb 2019 2.6 Geodesics and Normal Coordinates
Riemannian Geometry: Definitions, Pictures, and Results Adam Marsh February 27, 2019 Abstract A pedagogical but concise overview of Riemannian geometry is provided, in the context of usage in physics. The emphasis is on defining and visualizing concepts and relationships between them, as well as listing common confusions, alternative notations and jargon, and relevant facts and theorems. Special attention is given to detailed figures and geometric viewpoints, some of which would seem to be novel to the literature. Topics are avoided which are well covered in textbooks, such as historical motivations, proofs and derivations, and tools for practical calculations. As much material as possible is developed for manifolds with connection (omitting a metric) to make clear which aspects can be readily generalized to gauge theories. The presentation in most cases does not assume a coordinate frame or zero torsion, and the coordinate-free, tensor, and Cartan formalisms are developed in parallel. Contents 1 Introduction 2 2 Parallel transport 3 2.1 The parallel transporter . 3 2.2 The covariant derivative . 4 2.3 The connection . 5 2.4 The covariant derivative in terms of the connection . 6 2.5 The parallel transporter in terms of the connection . 9 arXiv:1412.2393v4 [gr-qc] 27 Feb 2019 2.6 Geodesics and normal coordinates . 9 2.7 Summary . 10 3 Manifolds with connection 11 3.1 The covariant derivative on the tensor algebra . 12 3.2 The exterior covariant derivative of vector-valued forms . 13 3.3 The exterior covariant derivative of algebra-valued forms . 15 3.4 Torsion . 16 3.5 Curvature . -
VISUALIZING EXTERIOR CALCULUS Contents Introduction 1 1. Exterior
VISUALIZING EXTERIOR CALCULUS GREGORY BIXLER Abstract. Exterior calculus, broadly, is the structure of differential forms. These are usually presented algebraically, or as computational tools to simplify Stokes' Theorem. But geometric objects like forms should be visualized! Here, I present visualizations of forms that attempt to capture their geometry. Contents Introduction 1 1. Exterior algebra 2 1.1. Vectors and dual vectors 2 1.2. The wedge of two vectors 3 1.3. Defining the exterior algebra 4 1.4. The wedge of two dual vectors 5 1.5. R3 has no mixed wedges 6 1.6. Interior multiplication 7 2. Integration 8 2.1. Differential forms 9 2.2. Visualizing differential forms 9 2.3. Integrating differential forms over manifolds 9 3. Differentiation 11 3.1. Exterior Derivative 11 3.2. Visualizing the exterior derivative 13 3.3. Closed and exact forms 14 3.4. Future work: Lie derivative 15 Acknowledgments 16 References 16 Introduction What's the natural way to integrate over a smooth manifold? Well, a k-dimensional manifold is (locally) parametrized by k coordinate functions. At each point we get k tangent vectors, which together form an infinitesimal k-dimensional volume ele- ment. And how should we measure this element? It seems reasonable to ask for a function f taking k vectors, so that • f is linear in each vector • f is zero for degenerate elements (i.e. when vectors are linearly dependent) • f is smooth These are the properties of a differential form. 1 2 GREGORY BIXLER Introducing structure to a manifold usually follows a certain pattern: • Create it in Rn. -
3.2. Differential Forms. the Line Integral of a 1-Form Over a Curve Is a Very Nice Kind of Integral in Several Respects
11 3.2. Differential forms. The line integral of a 1-form over a curve is a very nice kind of integral in several respects. In the spirit of differential geometry, it does not require any additional structure, such as a metric. In practice, it is relatively simple to compute. If two curves c and c! are very close together, then α α. c c! The line integral appears in a nice integral theorem. ≈ ! ! This contrasts with the integral c f ds of a function with respect to length. That is defined with a metric. The explicit formula involves a square root, which often leads to difficult integrals. Even! if two curves are extremely close together, the integrals can differ drastically. We are interested in other nice integrals and other integral theorems. The gener- alization of a smooth curve is a submanifold. A p-dimensional submanifold Σ M ⊆ is a subset which looks locally like Rp Rn. We would like to make sense of an expression⊆ like ω. "Σ What should ω be? It cannot be a scalar function. If we could integrate functions, then we could compute volumes, but without some additional structure, the con- cept of “the volume of Σ” is meaningless. In order to compute an integral like this, we should first use a coordinate system to chop Σ up into many tiny p-dimensional parallelepipeds (think cubes). Each of these is described by p vectors which give the edges touching one corner. So, from p vectors v1, . , vp at a point, ω should give a number ω(v1, . -
Parallel and Killing Spinors on Spin Manifolds 1 Introduction
Parallel and Killing Spinors on Spinc Manifolds Andrei Moroianu1 Institut fur¨ reine Mathematik, Ziegelstr. 13a, 10099 Berlin, Germany E-mail: [email protected] Abstract: We describe all simply connected Spinc manifolds carrying parallel and real Killing spinors. In particular we show that every Sasakian manifold (not necessarily Einstein) carries a canonical Spinc structure with Killing spinors. 1 Introduction The classification of irreducible simply connected spin manifolds with parallel spinors was obtained by M. Wang in 1989 [15] in the following way: the existence of a parallel spinor means that the spin representation of the holonomy group has a fixed point. Moreover, it requires the vanishing of the Ricci tensor, so the only symmetric spaces with parallel spinors are the flat ones. Then looking into Berger's list of possible holonomy groups for Riemannian manifolds and using some representation theory one finally obtains that the only suitable manifolds are those with holonomy 0, SU(n), Sp(n), Spin7 and G2. One can give the geometrical description of such a holonomy reduction in each of these cases [15]. For an earlier approach to this problem, see also [10]. The geometrical description of simply connected spin manifolds carrying real Killing spinors is considerably more complicated, and was obtained in 1993 by C. B¨ar [1] after a series of partial results of Th. Friedrich, R. Grunewald, I. Kath and O. Hijazi (cf. [4], [5], [6], [7], [9]). The main idea of C. B¨ar was to consider the cone over a manifold with Killing spinors and to show that the spin representation of the holonomy of the cone has a fixed point for a suitable scalar renormalisation of the metric on the base (actually this construction was already used in 1987 by R. -
Killing Spinors
Universidad Consejo Superior de Aut´onomade Madrid Investigaciones Cient´ıficas Departamento de F´ısicaTe´orica Instituto de F´ısicaTe´orica Facultad de Ciencias KILLING SPINORS - BEYOND SUPERGRAVITY arXiv:1212.4111v2 [hep-th] 6 Mar 2013 Alberto R. Palomo Lozano Universidad Consejo Superior de Aut´onomade Madrid Investigaciones Cient´ıficas Departamento de F´ısicaTe´orica Instituto de F´ısicaTe´orica Facultad de Ciencias ESPINORES DE KILLING - MAS´ ALLA´ DE LA SUPERGRAVEDAD Memoria de Tesis Doctoral presentada ante el Departamento de F´ısicaTe´orica de la Universidad Aut´onomade Madrid para la obtenci´ondel t´ıtulode Doctor en Ciencias Tesis Doctoral dirigida por: Dr. D. Patrick A. A. Meessen Investigador Ram´ony Cajal, Universidad de Oviedo y tutelada por: Dr. D. Tom´asOrt´ınMiguel Cient´ıficoTitular, Consejo Superior de Investigaciones Cient´ıficas 2012 \For the things we have to learn before we can do, we learn by doing" `Aristotèlhc El trabajo de un f´ısicote´oricoes probablemente uno de los trabajos m´assolitarios que existen. La elaboraci´onde esta memoria es el resultado de numerosas horas en soledad dedicadas primero a entender/ reproducir literatura y c´alculosprevios, frutos del esfuerzo de otras personas, y sobre los que se cimentan los trabajos que forman el n´ucleode mis a~nos como doctorando, que han sido finalmente plasmados en estas p´aginas.Dicho esto, hubiera sido imposible llegar hasta aqu´ıde haber trabajado exclusivamente por mi cuenta, sin haber contado con la ayuda de varias personas. Quisiera por tanto agradecerles su apoyo durante estos a~nos. Un lugar privilegiado ocupan mis supervisores de tesis, Tom´asy Patrick, a quienes quiero agradecer primero el haberme ofrecido la oportunidad de cumplir uno de mis sue~nos,y tambi´enel haberme dedicado un tiempo y esfuerzo sin el que no podr´ıahaber culminado esta tesis.