Killing Spinors

Total Page:16

File Type:pdf, Size:1020Kb

Killing Spinors Universidad Consejo Superior de Aut´onomade Madrid Investigaciones Cient´ıficas Departamento de F´ısicaTe´orica Instituto de F´ısicaTe´orica Facultad de Ciencias KILLING SPINORS - BEYOND SUPERGRAVITY arXiv:1212.4111v2 [hep-th] 6 Mar 2013 Alberto R. Palomo Lozano Universidad Consejo Superior de Aut´onomade Madrid Investigaciones Cient´ıficas Departamento de F´ısicaTe´orica Instituto de F´ısicaTe´orica Facultad de Ciencias ESPINORES DE KILLING - MAS´ ALLA´ DE LA SUPERGRAVEDAD Memoria de Tesis Doctoral presentada ante el Departamento de F´ısicaTe´orica de la Universidad Aut´onomade Madrid para la obtenci´ondel t´ıtulode Doctor en Ciencias Tesis Doctoral dirigida por: Dr. D. Patrick A. A. Meessen Investigador Ram´ony Cajal, Universidad de Oviedo y tutelada por: Dr. D. Tom´asOrt´ınMiguel Cient´ıficoTitular, Consejo Superior de Investigaciones Cient´ıficas 2012 \For the things we have to learn before we can do, we learn by doing" `Aristotèlhc El trabajo de un f´ısicote´oricoes probablemente uno de los trabajos m´assolitarios que existen. La elaboraci´onde esta memoria es el resultado de numerosas horas en soledad dedicadas primero a entender/ reproducir literatura y c´alculosprevios, frutos del esfuerzo de otras personas, y sobre los que se cimentan los trabajos que forman el n´ucleode mis a~nos como doctorando, que han sido finalmente plasmados en estas p´aginas.Dicho esto, hubiera sido imposible llegar hasta aqu´ıde haber trabajado exclusivamente por mi cuenta, sin haber contado con la ayuda de varias personas. Quisiera por tanto agradecerles su apoyo durante estos a~nos. Un lugar privilegiado ocupan mis supervisores de tesis, Tom´asy Patrick, a quienes quiero agradecer primero el haberme ofrecido la oportunidad de cumplir uno de mis sue~nos,y tambi´enel haberme dedicado un tiempo y esfuerzo sin el que no podr´ıahaber culminado esta tesis. Patrick, con qui´enhe trabajado m´asdirectamente, ha sido mucho m´asque un director acad´emico;me ha instruido en aspectos t´ecnicosrelacionados con las construcciones matem´aticasque figuran en estas p´aginas,pero tambi´enhemos hablado de la vida en la Academia, y las implicaciones personales que conlleva esta profesi´on.Es una de las personas acad´emicamente m´ascapacitadas que jam´ashe conocido1, y tiene adem´asun sentido del humor y una capacidad de auto-desaprobaci´onque encuentro muy refrescante, y de lo que espero haberme empapado un poco. De Tom´ashe aprendido, o al menos as´ıcreo que lo ha intentado ´el,a ser m´aspr´actico,y no andarme por las nubes. Este trabajo representa el final de mi andadura como estudiante de posgrado, pero no quisiera olvidarme de tres buenos amigos que me orientaron en los comienzos en Inglaterra, y a quienes debo en gran parte la que ser´ıami futura vinculaci´oncon la Universidad Aut´onoma de Madrid, Daniel Cremades, Manuel Donaire y Javier Fdz. Alcazar. As´ımismo, debo dar las gracias a mis colaboradores, con quienes he compartido ideas y e-mails estos a~nos,y de los que he aprendido otra forma de trabajar. Estos son: Jai Grover, Jan Gutowski, Carlos Herdeiro y Wafic Sabra. No puedo tampoco olvidarme de Ulf Gran, bajo cuya direcci´one instrucci´onpas´eseis fant´asticosmeses en la Chalmers Tekniska H¨ogskola de Gotemburgo, Suecia, y que me instruy´oen el m´etodo espinorial de atacar la clasificaci´on de soluciones a teor´ıasde Supergravedad. Aunque he hecho poca vida social en el IFT durante estos a~nos,he llegado a entablar unos v´ınculosque sobrepasaban lo puramente acad´emicocon mis compa~nerosde doctorado, a los que quisiera dar las gracias por los buenos momentos pasados. Tambi´ena Paco, de Limcamar, con quien he compartido reflexiones sobre f´utbol y el devenir de la Liga 2011- 2012. As´ımismo, no podr´ıahaber llevado a buen culmen toda la parte log´ısticasin la ayuda de un fant´asticoequipo administrativo, encabezado por Isabel P´erez. <Muchas gracias a todos! Quisiera tambi´enagradecer al director del IFT, Alberto Casas, el haber sido siempre 1Hace algunos a~nosdije de organizar una fiesta cuando descubriera un fallo significativo en alguno de los articulos en que hemos trabajado juntos. Aunque logr´eencontrar uno, seguramente era de transcripcci´on,y no fundamental como yo hubiese querido. tan coagente con mis peticiones relacionadas con el nuevo edificio, y a Carlos Pena lo f´acilque resulta hablar con ´el,que aprend´ıcuando estaba organizando el minicurso sobre branas. Es un placer tambi´enmencionar la ayuda inform´aticarecibida por parte de Giovanni Ram´ırez, Andr´esD´ıaz-Gily Charo Villamariz, as´ıcomo de la familia Carton en los ´ultimosd´ıasantes de la entrega de esta tesis, porque prefiero tirarme por la ventana antes de que falle el ordenador. En este sentido, me gustar´ıahacer menci´onde las comunidades de open source GNU/ Linux/ LATEX, que se encargan de producir y mantener software de muy alta calidad, gracias al cual me ha resultado mucho m´asf´acildesarrollar mis tareas. Si todav´ıausas un sistema operativo propietario, realmente vale la pena hacer la transici´ona una distribuci´onLinux. Juan Jover me ayud´ocuando yo la hice a Ubuntu, all´apor la release 7.10 Gutsy Gibbon. Debo tambi´enagradecer el apoyo econ´omicorecibido durante estos a~nospor el Consejo Superior de Investigaciones Cient´ıficas, en el contexto de las ayudas para la investigaci´on `Junta para la Ampliaci´onde Estudios' JAE 2007. Probablemente la persona m´asfeliz por este trabajo sea mi padre, que lleva cuatro a~nos pregunt´andomesi todav´ıano hab´ıaacabado la tesis. \<Tesis, tesis, tesis!", ha repetido en numerosas ocasiones. Es pues que quiero dedicarle estas p´aginas,al igual que a mi madre y hermana, por proveeer el balance adecuado, y por soportar mi tendencia a estar despierto a altas horas de la noche, as´ıcomo a mi t´ıaLuz, por estar siempre ah´ı, y a mi re-t´ıoMat´ıas, que ahora D.E.P. junto a su Se~nor. Por ´ultimo,quisiera terminar recordando una peque~nafrase que se atribuye a Arist´oteles, pero que a mi me transmiti´oel que fuera mi profesor de M´etodos num´ericos, el Dr. Ventzeslav Valev, que dec´ıaque \aprendemos haciendo, no viendo". Es una m´aximaque en su momento no llegu´ea comprender del todo, pero que durante el proceso de este doctorado he llegado a asimilar y reconocer. Este´ ha sido para mi un viaje que me ha instruido m´asall´ade lo puramente acad´emico,tambi´enacerca de mis propias capacidades, mis l´ımites,e incluso mis mecanismos epistemol´ogicos,que espero me sirvan en el futuro. Madrid, junio 2012. Contents 1 Introduction 9 1.1 Killing spinors . 10 1.2 Beyond Supergravity . 12 2 Classification of supersymmetric SUGRA solutions 15 2.1 Bilinear formalism . 16 2.2 Spinorial geometry techniques . 25 3 N = 2 d = 4 gauged fakeSUGRA coupled to non-Abelian vectors 35 3.1 Fake N = 2 Einstein-Yang-Mills . 36 3.2 Analysis of the timelike case . 38 3.3 Analysis of the null case . 45 3.4 Non-BPS solutions to N = 2 SUGRA . 52 3.5 Summary of the chapter . 55 4 N = 1 d = 5 minimal fakeSUGRA 59 4.1 Fake KSE and first implications . 59 4.2 Differential constraints . 61 4.3 Solving the EOMs . 65 4.4 Dimensional reduction and link with the solution to d = 4 fakeSUGRA . 66 4.5 Summary of the chapter . 67 5 N = 1 d = 5 fakeSUGRA coupled to Abelian vectors 69 5.1 N = 1 d = 5 fSUGRA and Killing spinors . 69 5.2 Analysis of gravitino Killing spinor equation . 71 5.3 Some simple examples . 76 5.4 The Berger sphere provides a solution . 79 5.5 Solutions with a recurrent vector field . 83 5.6 Summary of the chapter . 85 6 Classification of `Supersymmetric' Einstein-Weyl spaces 87 6.1 Covariant rule and the Einstein-Weyl condition . 87 6.2 Timelike solutions . 89 6.3 Null N = 1 d = 4 solutions . 90 6.4 Null N = (1; 0) d = 6 solutions . 93 6.5 Remaining null cases . 97 6.6 Summary of the chapter . 98 ANNEXE I Introducci´on 99 II Resumen 101 APPENDICES A Conventions 105 A.1 Tensor conventions . 105 A.2 Spinorial structures . 109 A.3 Spinor bilinears and Fierz identities . 112 B Scalar manifolds 117 B.1 K¨ahlergeometry . 118 B.2 Special geometry . 125 B.3 Hyper-K¨ahlerand quaternionic-K¨ahlergeometry . 129 B.4 Real special geometry . 134 C Geometrical data for null case solutions 137 C.1 Spin connection and curvatures in d = 4 fSUGRA . 137 C.2 Spin connection and curvatures in minimal d = 5 fSUGRA . 138 C.3 Kundt metrics . 139 D Weyl geometry 141 D.1 Einstein-Weyl and Gauduchon-Tod spaces . 142 E Similitude group and holonomy 145 E.1 Sim and ISim as subgroups of the Caroll and Poincar´egroups . 145 E.2 Holonomy . 146 E.3 Recurrency . 147 F The Lorentz and the Spin groups 149 References 153 Chapter 1 Introduction These pages are the result of the research undertaken in the Grupo de Gravitaci´ony Cuerdas, led by Prof. Tom´asOrt´ınat the Instituto de F´ısicaTe´oricaUAM/ CSIC, during the tenure of my doctoral degree. They are intended to give an account of the kind of problems attacked during this time, as well as an illustration of why they can prove of interest, and the methods considered to solve them. In particular, it is a study of various constructions which arise in the context of supergravity theories, and along those lines we have made use of methods developed during the programme of classification of supersymmetric solutions to said theories, in order to obtain our results.
Recommended publications
  • Killing Spinor-Valued Forms and the Cone Construction
    ARCHIVUM MATHEMATICUM (BRNO) Tomus 52 (2016), 341–355 KILLING SPINOR-VALUED FORMS AND THE CONE CONSTRUCTION Petr Somberg and Petr Zima Abstract. On a pseudo-Riemannian manifold M we introduce a system of partial differential Killing type equations for spinor-valued differential forms, and study their basic properties. We discuss the relationship between solutions of Killing equations on M and parallel fields on the metric cone over M for spinor-valued forms. 1. Introduction The subject of the present article are the systems of over-determined partial differential equations for spinor-valued differential forms, classified as atypeof Killing equations. The solution spaces of these systems of PDE’s are termed Killing spinor-valued differential forms. A central question in geometry asks for pseudo-Riemannian manifolds admitting non-trivial solutions of Killing type equa- tions, namely how the properties of Killing spinor-valued forms relate to the underlying geometric structure for which they can occur. Killing spinor-valued forms are closely related to Killing spinors and Killing forms with Killing vectors as a special example. Killing spinors are both twistor spinors and eigenspinors for the Dirac operator, and real Killing spinors realize the limit case in the eigenvalue estimates for the Dirac operator on compact Riemannian spin manifolds of positive scalar curvature. There is a classification of complete simply connected Riemannian manifolds equipped with real Killing spinors, leading to the construction of manifolds with the exceptional holonomy groups G2 and Spin(7), see [8], [1]. Killing vector fields on a pseudo-Riemannian manifold are the infinitesimal generators of isometries, hence they influence its geometrical properties.
    [Show full text]
  • Gsm025-Endmatter.Pdf
    http://dx.doi.org/10.1090/gsm/025 Selected Titles in This Series 25 Thomas Friedrich, Dirac operators in Riemannian geometry, 2000 24 Helmut Koch, Number theory: Algebraic numbers and functions, 2000 23 Alberto Candel and Lawrence Conlon, Foliations I, 2000 22 Giinter R. Krause and Thomas H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, 2000 21 John B. Conway, A course in operator theory, 2000 20 Robert E. Gompf and Andras I. Stipsicz, 4-manifolds and Kirby calculus, 1999 19 Lawrence C. Evans, Partial differential equations, 1998 18 Winfried Just and Martin Weese, Discovering modern set theory. II: Set-theoretic tools for every mathematician, 1997 17 Henryk Iwaniec, Topics in classical automorphic forms, 1997 16 Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume II: Advanced theory, 1997 15 Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume I: Elementary theory, 1997 14 Elliott H. Lieb and Michael Loss, Analysis, 1997 13 Paul C. Shields, The ergodic theory of discrete sample paths, 1996 12 N. V. Krylov, Lectures on elliptic and parabolic equations in Holder spaces, 1996 11 Jacques Dixmier, Enveloping algebras, 1996 Printing 10 Barry Simon, Representations of finite and compact groups, 1996 9 Dino Lorenzini, An invitation to arithmetic geometry, 1996 8 Winfried Just and Martin Weese, Discovering modern set theory. I: The basics, 1996 7 Gerald J. Janusz, Algebraic number fields, second edition, 1996 6 Jens Carsten Jantzen, Lectures on quantum groups, 1996 5 Rick Miranda, Algebraic curves and Riemann surfaces, 1995 4 Russell A.
    [Show full text]
  • Spinors of Real Type As Polyforms and the Generalized Killing Equation 11
    SPINORS OF REAL TYPE AS POLYFORMS AND THE GENERALIZED KILLING EQUATION VICENTE CORTÉS, CALIN LAZAROIU, AND C. S. SHAHBAZI Abstract. We develop a new framework for the study of generalized Killing spinors, where generalized Killing spinor equations, possibly with constraints, can be formulated equivalently as systems of partial differential equations for a polyform satisfying algebraic relations in the Kähler- Atiyah bundle constructed by quantizing the exterior algebra bundle of the underlying manifold. At the core of this framework lies the characterization, which we develop in detail, of the image of the spinor squaring map of an irreducible Clifford module Σ of real type as a real algebraic variety in the Kähler-Atiyah algebra, which gives necessary and sufficient conditions for a polyform to be the square of a real spinor. We apply these results to Lorentzian four-manifolds, obtaining a new description of a real spinor on such a manifold through a certain distribution of parabolic 2-planes in its cotangent bundle. We use this result to give global characterizations of real Killing spinors on Lorentzian four-manifolds and of four-dimensional supersymmetric configurations of heterotic supergravity. In particular, we find new families of Einstein and non-Einstein four-dimensional Lorentzian metrics admitting real Killing spinors, some of which are deformations of the metric of AdS4 space-time. Contents 1. Introduction 1 2. Representing real vectors as endomorphisms in a paired vectorspace 6 3. From real spinors to polyforms 14 4. Constrained Generalized Killing spinors of real type 28 5. Real Killing spinors on Lorentzian four-manifolds 39 6. Supersymmetric heterotic configurations 47 Appendix A.
    [Show full text]
  • Clifford Algebras
    A geometric construction of exceptional Lie algebras José Figueroa-O’Farrill Maxwell Institute & School of Mathematics Leeds, 13 February 2008 2007 will be known as the year where E8 (and Lie groups) went mainstream... Introduction Hamilton Cayley Lie Killing É. Cartan Hurwitz Hopf J.F. Adams This talk is about a relation between exceptional objects: • Hopf bundles • exceptional Lie algebras using a geometric construction familiar from supergravity: the Killing (super)algebra. Real division algebras R C H O ≥ ab = ba ab = ba ! (ab)c = a(bc) (ab)c = a(bc) ! These are all the euclidean normed real division algebras. [Hurwitz] Hopf fibrations S1 S3 S7 S15 S0 S1 S3 S7 S1 S2 S4 S8 " " " " S0 R S1 C S3 H S7 O ⊂ ⊂ ⊂ ⊂ 1 2 3 2 7 2 15 2 S R S C S H S O ⊂ ⊂ ⊂ ⊂ 1 2 4 8 S ∼= RP1 S ∼= CP1 S ∼= HP1 S ∼= OP1 These are the only examples of fibre bundles where all three spaces are spheres. [Adams] Simple Lie algebras (over C) 4 classical series: 5 exceptions: An 1 SU(n + 1) G2 14 ≥ F4 52 Bn 2 SO(2n + 1) ≥ E6 78 Cn 3 Sp(n) ≥ E7 133 Dn 4 SO(2n) E8 248 ≥ [Lie] [Killing, Cartan] Supergravity Supergravity is a nontrivial generalisation of Einstein’s theory of General Relativity. The supergravity universe consists of a lorentzian spin manifold with additional geometric data, together with a notion of Killing spinor. These spinors generate the Killing superalgebra. This is a useful invariant of the universe. Applying the Killing superalgebra construction to the exceptional Hopf fibration, oneS 15 obtains a triple of exceptional Lie algebras: S7 S8 " E8 “Killing superalgebra” B4 F4 Spinors Clifford Clifford algebras V n , real euclidean vector space !− −# V C!(V ) = filtered associative algebra v v + v 21 ! ⊗ ! | | # C!(V ) ∼= ΛV (as vector spaces) C!(V ) = C!(V ) C!(V ) 0 ⊕ 1 C!(V ) = ΛevenV odd 0 ∼ C!(V )1 ∼= Λ V orthonormal frame e1, .
    [Show full text]
  • Parallel and Killing Spinors on Spin Manifolds 1 Introduction
    Parallel and Killing Spinors on Spinc Manifolds Andrei Moroianu1 Institut fur¨ reine Mathematik, Ziegelstr. 13a, 10099 Berlin, Germany E-mail: [email protected] Abstract: We describe all simply connected Spinc manifolds carrying parallel and real Killing spinors. In particular we show that every Sasakian manifold (not necessarily Einstein) carries a canonical Spinc structure with Killing spinors. 1 Introduction The classification of irreducible simply connected spin manifolds with parallel spinors was obtained by M. Wang in 1989 [15] in the following way: the existence of a parallel spinor means that the spin representation of the holonomy group has a fixed point. Moreover, it requires the vanishing of the Ricci tensor, so the only symmetric spaces with parallel spinors are the flat ones. Then looking into Berger's list of possible holonomy groups for Riemannian manifolds and using some representation theory one finally obtains that the only suitable manifolds are those with holonomy 0, SU(n), Sp(n), Spin7 and G2. One can give the geometrical description of such a holonomy reduction in each of these cases [15]. For an earlier approach to this problem, see also [10]. The geometrical description of simply connected spin manifolds carrying real Killing spinors is considerably more complicated, and was obtained in 1993 by C. B¨ar [1] after a series of partial results of Th. Friedrich, R. Grunewald, I. Kath and O. Hijazi (cf. [4], [5], [6], [7], [9]). The main idea of C. B¨ar was to consider the cone over a manifold with Killing spinors and to show that the spin representation of the holonomy of the cone has a fixed point for a suitable scalar renormalisation of the metric on the base (actually this construction was already used in 1987 by R.
    [Show full text]
  • Strings and Geometry
    Clay Mathematics Proceedings This volume is the proceedings of Volume 3 the 2002 Clay Mathematics Institute 3 School on Geometry and String Theory. This month-long program Strings and was held at the Isaac Newton Institute for Mathematical Sciences in Cambridge, England, and was organized by both mathematicians and physicists: A. Corti, R. Dijkgraaf, M. Douglas, J. Gauntlett, M. Gross, C. Hull, A. Jaffe and M. Reid. The early part of the school had many lectures that introduced various G STRINGS AND concepts of algebraic geometry eometry and string theory with a focus on improving communication between GEOMETRY these two fields. During the latter Proceedings of the part of the program there were also Clay Mathematics Institute a number of research level talks. 2002 Summer School This volume contains a selection of expository and research articles Isaac Newton Institute by lecturers at the school, and D Cambridge, United Kingdom highlights some of the current ouglas, interests of researchers working March 24–April 20, 2002 at the interface between string theory and algebraic geometry. The topics covered include manifolds G Michael Douglas of special holonomy, supergravity, auntlett and Jerome Gauntlett supersymmetry, D-branes, the McKay correspondence and the Mark Gross Fourier-Mukai transform. Editors G ross, Editors CMIP/3 www.ams.org American Mathematical Society AMS www.claymath.org CMI Clay Mathematics Institute 4-color process 392 pages • 3/4” spine STRINGS AND GEOMETRY Clay Mathematics Proceedings Volume 3 STRINGS AND GEOMETRY Proceedings of the Clay Mathematics Institute 2002 Summer School on Strings and Geometry Isaac Newton Institute Cambridge, United Kingdom March 24–April 20, 2002 Michael Douglas Jerome Gauntlett Mark Gross Editors American Mathematical Society Clay Mathematics Institute 2000 Mathematics Subject Classification.
    [Show full text]
  • A Geometric Construction of the Exceptional Lie Algebras F4 and E8
    Communications in Mathematical Physics (2011) DOI 10.1007/s00220-008-0581-7 Jose´ Figueroa-O’Farrill A Geometric Construction of the Exceptional Lie Algebras F4 and E8 Received: 6 September 2007 / Accepted: 28 March 2008 c Springer-Verlag 2008 Abstract We present a geometric construction of the exceptional Lie algebras F4 8 15 and E8 starting from the round spheres S and S , respectively, inspired by the construction of the Killing superalgebra of a supersymmetric supergravity back- ground. 1 Introduction The Killing–Cartan classification of simple Lie algebras over the complex num- bers is well known: there are four infinite families An≥1, Bn≥2, Cn≥3 and Dn≥4, with the range of ranks chosen to avoid any overlaps, and five exceptional cases G2, F4, E6, E7 and E8. Whereas the classical series (A-D) correspond to matrix Lie algebras, and indeed their compact real forms are the Lie algebras of the spe- cial unitary groups over C (A), H (B) and R (C and D), the exceptional series do not have such classical descriptions; although they can be understood in terms of more exotic algebraic structures such as octonions and Jordan algebras. There is, however, a uniform construction of all exceptional Lie algebras (except for G2) using spin groups and their spinor representations, described in Adams’ posthu- mous notes on exceptional Lie groups (1) and, for the special case of E8, also in (2). This construction, once suitably geometrised, is very familiar to practitioners of supergravity. The purpose of this note is to present this geometrisation, perhaps as an invitation for differential geometers to think about supergravity.
    [Show full text]
  • (Conformal) Killing Spinor Valued Forms on Riemannian Manifolds
    Charles University in Prague Faculty of Mathematics and Physics MASTER THESIS Petr Zima (Conformal) Killing spinor valued forms on Riemannian manifolds Mathematical Institute of Charles University Supervisor of the master thesis: doc. RNDr. Petr Somberg, Ph.D. Study programme: Mathematics Specialization: Mathematical Structures Prague 2014 This thesis is dedicated to the memory of Jarolím Bureš, who arose my interest in differential geometry and supported my first steps in this field of mathematics. I thank Petr Somberg for suggesting the idea of studying the metric cone and for excellent supervision of the thesis. I also thank other members of the group of differential geometry at Mathematical Institute of Charles University, especially Vladimír Souček and Svatopluk Krýsl, for their valuable advice. I declare that I carried out this master thesis independently, and only with the cited sources, literature and other professional sources. I understand that my work relates to the rights and obligations under the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles University in Prague has the right to conclude a license agreement on the use of this work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act. In . on . Author signature Název práce: (Konformní) Killingovy spinor hodnotové formy na Riemannov- ských varietách Autor: Petr Zima Katedra: Matematický ústav UK Vedoucí diplomové práce: doc. RNDr. Petr Somberg, Ph.D., Matematický ústav UK Abstrakt: Cílem této práce je zavést na Riemannovské Spin-varietě soustavu parciálních diferenciálních rovnic pro spinor-hodnotové diferenciální formy, která se nazývá Killingovy rovnice. Zkoumáme základní vlastnosti různých druhů Killingových polí a vztahy mezi nimi.
    [Show full text]
  • Spinorial Geometry and Killing Spinor Equations of 6D Supergravity M Akyol, G Papadopoulos
    Spinorial geometry and Killing spinor equations of 6D supergravity M Akyol, G Papadopoulos To cite this version: M Akyol, G Papadopoulos. Spinorial geometry and Killing spinor equations of 6D supergrav- ity. Classical and Quantum Gravity, IOP Publishing, 2011, 28 (10), pp.105001. 10.1088/0264- 9381/28/10/105001. hal-00699367 HAL Id: hal-00699367 https://hal.archives-ouvertes.fr/hal-00699367 Submitted on 21 May 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Confidential: not for distribution. Submitted to IOP Publishing for peer review 22 December 2010 Spinorial geometry and Killing spinor equations of 6-D supergravity M. Akyol† and G. Papadopoulos+1 † Department of Mathematics, King’s College London Strand, London WC2R 2LS, UK + AEI, Max-Planck Institute f¨ur Gravitationsphysik Am M¨uhlenberg 1, D-14476 Potsdam Germany Abstract We solve the Killing spinor equations of 6-dimensional (1,0)-supergravity cou- pled to any number of tensor, vector and scalar multiplets in all cases. The isotropy groups of Killing spinors are Sp(1)·Sp(1)nH(1), U(1)·Sp(1)nH(2), Sp(1)nH(3, 4), Sp(1)(2), U(1)(4) and {1}(8), where in parenthesis is the number of supersymme- tries preserved in each case.
    [Show full text]
  • The Killing Superalgebra of Ten-Dimensional Supergravity
    THE KILLING SUPERALGEBRA OF TEN-DIMENSIONAL SUPERGRAVITY BACKGROUNDS JOSE´ FIGUEROA-O’FARRILL, EMILY HACKETT-JONES, AND GEORGE MOUTSOPOULOS Abstract. We construct the Killing superalgebra of supersymmetric backgrounds of ten-dimensional heterotic and type II supergravities and prove that it is a Lie superalgebra. We also show that if the fraction of supersymmetry preserved by the background is greater than 1/2, in the heterotic case, or greater than 3/4 in the type II case, then the background is locally homogeneous. Contents 1. Introduction 1 2. Heterotic supergravity backgrounds 2 2.1. Supersymmetric heterotic backgrounds 3 2.2. The Killing superalgebra 3 2.3. Homogeneity of heterotic backgrounds 5 3. Type IIB supergravity backgrounds 7 3.1. Supersymmetric IIB backgrounds 7 3.2. The Killing superalgebra 9 3.3. Homogeneity of IIB backgrounds 12 4. Conclusion 13 Acknowledgments 14 Appendix A. Spinors in 9 + 1 dimensions 14 Appendix B. K preserves G(3) and G(5) 16 Appendix C. A Fierz identity 17 References 19 arXiv:hep-th/0703192v4 2 Aug 2012 1. Introduction One of the major problems in supergravity is to understand how super- symmetry shapes the geometry of classical solutions to the field equations. In other words, what is the geometry of a supergravity background which preserves a given fraction of the supersymmetry? Much recent work has gone into answering this question for supergravity theories in diverse di- mensions. For some of the supergravity theories in dimensions 4, 5 and 6, there is a more or less complete story [1, 2, 3, 4, 5], whereas for the ten- and eleven-dimensional supergravities the story is far from complete.
    [Show full text]
  • Arxiv:1311.0969V1 [Math.DG] 5 Nov 2013 an B Mgnr Iln Pnr,Ascae Ifrnilforms Differential Associated Spinors, Killing Imaginary Yterhlnm Ru 3,1] Riemannian 16]
    COMPLEX GENERALIZED KILLING SPINORS ON RIEMANNIAN SPINc MANIFOLDS NADINE GROSSE AND ROGER NAKAD ABSTRACT. In this paper, we extend the study of generalized Killing spinors on Riemannian Spinc manifolds started by Moroianu and Herzlich to complex Killing functions. We prove that such spinor fields are always real Spinc Killing spinors or imaginary generalized Spinc Killing spinors, providing that the dimension of the manifold is greater or equal to 4. Moreover, we classify Riemannian Spinc manifolds carrying imaginary and imaginary generalized Killing spinors. 1. INTRODUCTION On a Riemannian Spin manifold (M n,g) of dimension n ≥ 2, a non-trivial spinor field ψ is called a complex generalized Killing spinor field with smooth Killing function K if ∇X ψ = KX · ψ, (1) for all vector fields X on M, where ∇ denotes the spinorial Levi-Civita connection and “·” the Clifford multiplication. Here K := a + ib denotes a complex function with real part function a and imaginary part function b. It is well known that the existence of such spinors imposes several restrictions on the geometry and the topology of the manifold. More precisely, on a Riemannian Spin manifold, a complex generalized Killing spinor is either a real generalized Killing spinor (i.e., b = 0 and a =6 0), an imaginary generalized Killing spinor (i.e., a = 0 and b =6 0) or a parallel spinor (i.e., b = a =0) [9, 11]. Manifolds with parallel spinor fields are Ricci-flat and can be characterised by their holonomy group [32, 16]. Riemannian Spin manifolds carrying parallel spinors have been classified by M. Wang [45].
    [Show full text]
  • J. Geom. Phys. 91 (2015), 146–162. a Quaternion-Kähler Manifold Is a 4N
    Citations From References: 0 From Reviews: 0 MR3327056 (Review) 53C26 Gambioli, A. [Gambioli, Andrea] (3-DAWS-M); Nagatomo, Y. [Nagatomo, Yasuyuki] (J-MEIJ2); Salamon, S. [Salamon, Simon M.] (4-LNDKC) Special geometries associated to quaternion-K¨ahler8-manifolds. (English summary) J. Geom. Phys. 91 (2015), 146{162. A quaternion-K¨ahlermanifold is a 4n-dimensional smooth manifold (n ≥ 2) endowed with a Riemannian metric g with holonomy contained in the subgroup Sp(n)Sp(1) of SO(4n). In this interesting paper under review, the authors develop a calculus of differential forms on a quaternion-K¨ahlermanifold admitting an isometric circle action and establish the existence of direct links between quaternion-K¨ahlergeometry in dimension eight, half-flat geometry in dimension six, and G2 geometry in dimension seven. Gabriel Eduard V^ılcu References 1. B. Acharya, E. Witten, Chiral fermions from manifolds of G2 holonomy, hep- th/0106034. 2. A. Swann, Hyper-K¨ahlerand quaternionic K¨ahlergeometry, Math. Ann. 289 (1991) 421{450. MR1096180 3. R. Bryant, S. Salamon, On the construction of some complete metrics with excep- tional holonomy, Duke Math. J. 58 (1989) 829{850. MR1016448 4. K. Galicki, B. Lawson, Quaternionic reduction and quaternionic orbifolds, Math. Ann. 282 (1988) 1{21. MR0960830 5. N. Hitchin, A. Karlhede, U. Lindstr¨om,M. Roˇcek, Hyperk¨ahlermetrics and super- symmetry, Comm. Math. Phys. 108 (1987) 535{589. MR0877637 6. S. Salamon, Quaternionic K¨ahler manifolds, Invent. Math. 67 (1982) 143{171. MR0664330 7. F. Battaglia, Circle actions and Morse theory on quaternion-K¨ahler manifolds, J. Lond. Math. Soc. 59 (1999) 345{358.
    [Show full text]