From Human Genome Project to Human Proteome Project /Hpp/: Russian Participation

Total Page:16

File Type:pdf, Size:1020Kb

From Human Genome Project to Human Proteome Project /Hpp/: Russian Participation FROM HUMAN GENOME PROJECT TO HUMAN PROTEOME PROJECT /HPP/: RUSSIAN PARTICIPATION ARCHAKOV A.I. INSTITUTE OF BIOMEDICAL CHEMISTRY OF RAMS, MOSCOW, RUSSIA www.ibmc.msk.ru [HTTP://WWW.PROTEOME.RU/EN/ROAD MAP] GENOME [OUTLINE] TRANSCRIPTOME [LAYOUT] PROTEOME [PRODUCT] THE MAIN DIFFERENCE BETWEEN GENOMICS AND PROTEOMICS: THE SAME GENOME CATERPILLAR BUTTERFLY THE DIFFERENT PROTEOME STEPS OF HPP HUPO FORMATION: BARBADOS CONFERENCE 2007 05/11-01-2007 H. PEARSEN. BIOLOGISTS INITIATE PLAN TO MAP HUMAN PROTEOME. NATURE, 452, 24, 920-921, 2008. HUMAN PROTEOME PROJECT HUPO 2008, 7th WORLD CONGRESS, 16/20-08-08,Amsterdam, NL HPP MOSCOW WORKSHOP, RUSSIA 20/21-03,2009 SEOUL, KHUPO, 26/27-03-2009 CANADIAN HUPO, TORONTO, 26/30-09-2009 THE EXISTING PROTEOMIC TECHNOLOGIES ALLOW TO LAUNCH HPP AFTER COMPLETION OF HPP PROJECT GENOME-BASED MEDICINE SHOULD BECOME PROTEOME-BASED, WHICH WILL BE THE BASIS FOR PERSONALIZED MEDICINE. HOW MANY PROTEINS EXIST IN HUMAN BODY? HUMAN GENOME 22 PAIRS SOMATIC CHR 20 000 GENES[1] 1 PAIR SEX CHR ~ 50 PROTEIN FORMS PER GENE[2] ~ 1[2] - 2[3] MLN.PROTEINS ________________________________________________ [1] The sequence of the human genome. Venter et al., Science. 2001 [2] Extent of modifications in Human Proteome Samples…, Nielsen et al., MCP, 2009 [3] Biospecific irreversible fishing… Archakov et al., Proteomics, 2009 HOW MANY PROTEINS IN HUMAN PROTEOME : dependence between detection limit of the staining method and number of proteins spots on 2DE. (Archakov et al., PROTEOMICS (2009), 9, 1326-1343). Staining Methods: 10-6 AmidoBlack 10-7 Coummassi Blue -8 BLOOD PLASMA 10 Silver Tio 10-9 Silver Glutar -10 HEP G2 CELLS Cy5 , М 10 Cy5Sat DL 10-11 10-12 10-13 2.2 Mln 10-20 380 Thsnd 10-24 10 100 500 1000 2000 3000 4000 5000 Number of protein species WHY GENE CENTRIC PROTEOME PROJECT IS REALISTIC? • RECENT PROTEOMICS IS GENOME-BASED SCIENCE. GENE CENTRIC PROJECT IS APPLICATION OF EXISTING TECHNOLOGIES TO SIMPLIFYED TASKS • CREATED MRM/IRREVERSIBLE BINDING TECHNOLOGY ALLOWS TO ANALYSE BLOOD PLASMA PROTEINS WITH SENSITIVITY 10-18M (1 copy/1µL) OR 1 PROTEIN COPY PER 103 LIVER OR HEP2G CELLS . • • FOCUSED MRM ANALYSIS OF SINGLE CHROMOSOME WITH KNOWN GENE NUMBER ALLOWS TO GENERATE “GOLD STANDARD” FOR GENE CENTRIC PROTEOME PROJECT. • Molecular recognize mapping (MRM) CRITERIA FOR CHROMOSOME SELECTION: • TOTAL NUMBER OF PROTEIN-CODING GENES • CLINICAL RELEVANCE • NUMBER OF ALREADY IDENTIFIED PROTEINS • ABSENCE OF IMMUNOGLOBULINS CHROMOSOME STATISTICS LENGTH (BPS): 78,077,248 GENES 513 KNOWN PROTEIN-CODING GENES: 285 PSEUDOGENE GENES: 64 miRNA Genes: 32 rRNA Genes: 13 snRNA Genes: 51 snoRNA Genes: 36 Misc RNA Genes: 25 Ensembl release 60 - Nov 2010 http://www.ensembl.org DATA MINING STATISTICS FOR 18th CHROMOSOME: 286 MASTER PROTEIN CODING GENES PRIDE = 224 identified proteins Protein Atlas = 102 proteins PRIDE (PRoteomics IDEntifications database) 48 PROTEINS – NOT CONFIRMED In Protein Atlas only In PRIDE only (12) (134) In PRIDE and in Protein Atlas (90) How many proteins can we expect for 18th chromosome? 285 Trancriptome analisys of 18th chromosome + 230 Over 80% of the genes undergo alternative splicing (Kampa at. al, Genome Res., 2004, 14, 331-342) 516 On average, each of them can have 50 PTMs x 50 (Nielsen M, Savitski M, Zubarev R, MCP, 2006, 5, 2384-) Protein species can be expected as expressed in HepG2 cell line 25800 HepG2 cell lines ซึ่งเป็นต้นกำเนิดจำกมะเร็งชนิด hepatocellular adenocarcinoma ROADMAP PROTEOME OF THE 18-TH HUMAN CHROMOSOME: GENE CENTRIC IDENTIFICATION OF TRANSCRIPTS, PROTEINS AND PEPTIDES http://www.proteome.ru/en/roadmap/ http://www.hupo.org/research/hpp/soc/ RusHPP CONSISTS OF TWO PHASES: GOAL OF THE PILOT PHASE IS IDENTIFICATION OF ALL MASTER PROTEINS PRODUCED BY 18thCHR IN LIVER AND HEP2G CELLS AND IDENTIFICATION OF THEM IN PLASMA WITH SENSITIVITY 10-18 M (1 PROTEIN COPY/ΜL ) AND 1 PROTEIN COPY PER 103 LIVER OR HEP2G CELLS. MAIN PHASE OF RusHPP THE GOAL IS THE IDENTIFICATION OF ALL MODIFIED PROTEINS(ABOUT 30000) EXPRESSED BY 18CHR AT SENSITIVITY 10-18 M. BIOINFORMATIC AND EXPERIMENTAL CREATION OF 18THCHR PROTEIN INTERACTOME BY COMBINING OF OPTICAL BIOSENSOR WITH MS (BUNEEVA O. ET AL. PROTEOMICS 2010, 10, 23-57.) CREATION OF 18THCHR PROTEIN KNOWLEDGE BASE PRINCIPLE DIFFERENCE BETWEEN GENOMIC AND PROTEOMICS PRINCIPLE DIFFERENCE BETWEEN GENOMIC AND PROTEOMICS IS EXISTENCE OF POLYMERASE CHAIN REACTION (PCR) IN GENOMICS ALLOWING TO MULTIPLY NUCLEIC ACID MOLECULES AND ABSENCE OF PCR-LIKE REACTION IN PROTEOMICS. DUE TO PCR GENOMICS DOES NOT HAVE DETECTION LIMIT (DL) OBSTACLE. PROTEOMICS HAS IT. THREE BOTTLENECKS OF HPP • LOW SENSITIVITY OF RECENT PROTEOMIC TECHNOLOGIES. THE BEST ONE -- MRM-MS REACHES SENSITIVITY UP TO 10-14 M*, CORRESPONDING TO 10 000 PROTEIN COPIES IN 1ΜL OF PLASMA. • THE ABSENCE OF “GOLD STANDARD” FOR SAMPLES AND SAMPLING. • PROTEOMICS IS SITUATIONAL SCIENCE. WHAT IS BOARD LINE BETWEEN DIFFERENT SITUATIONS ?? WHAT IS REVERSE AVOGADRO’s NUMBER ? 23 NA=6.022x10 MOLECULES/MOLE 1 MOLE - 1L - 1M -24 1/NA≈10 MOLE/MOLECULE ≈1MOLECULE/L = 10-24 M [Archakov A.I. et. al. PROTEOMICS 2007, 7, 4–9] IT WOULD BE POSSIBLE TO INCREASE THE SENSITIVITY UP 10-18M [ARCHAKOV ET AL., 2009], CORRESPONDING TO 1 PROTEIN COPY IN 1ΜL. IT BECAME ACHIEVABLE DUE TO COMBINING AFM OR MRM TECHNOLOGIES WITH IRREVERSIBLE BINDING OF PROTEINS TO BRCN- SEPHAROSE. ** atomic force microscopy (AFM) and magnetic resonance microscopy (MRM) THE SENSITIVITY AT THE RANGE OF 10-18M WILL BE QUITE ENOUGH FOR STARTING THE HPP. COMBINING OF IRREVERSIBLE FISHING TECHNOLOGY WITH AFM CONCENTRATION OF PROTEINS FROM SOLUTION ON THE ACTIVATED AFM –CHIP USING IRREVERSIBLE FISHING SOLUTION FISHING AFM SURFACE AFM SURFACE - CONCENTRATION OF PROTEINS SURFACED CONCENTRATION OF IN THE SOLUTION – 10-11 M FISHED PROTEINS – 10-3 M - VOLUME – 1mL - AFM SURFACE – 1mm2 - 5 nm HEIGHT OF THE MOLECULE AFM IRREVERSIBLE FISHING INCREASES SURFACE CONCENTRATION BY FACTOR OF 108 AFM IRREVERSIBLE CHEMICAL FISHING AVIDIN ON AFM-SUPPORT 5nm EXPERIMENT SUCCINIMIDE MODIFIED MICA -13 СAVIDIN=10 M; 0 V=1 ml; T=37 C; t INCUB= 60 min 2 SACTIVATION=0,4 mm ; 2 -4 2 Sscan=16FRAMES*25m =4*10 mm tSCAN=240min NMOLECULES=5122500 molecules 2 0 5µm /400 m -6 CVS =5*10 M (FROM EXPERIMENT) -5 CVS=10 M (FROM THEORY) THE DEPENDENCE OF ANTI-HCVcoreim /HCVcoreAg PROTEIN COMPLEX NUMBER ON HCVcoreAg CONCENTRATION IN SOLUTION (IRREVERSIBLE BINDING) (ARCHAKOV et al 2009, 9, 1363-1343) NUMBER OF 1 – EXPERIMENTAL IRREVERSIBLE BINDING COMPLEXES 2 – THEORETICAL IRREVERSIBLE BINDING -V=1 mL - V=50 mL 104 EXPERIMENTAL CONDITIONS: 103 anti-HCVcoreAgimm (PHOTO- cutoff line CROSS LINKER MODIFIED) SIMS=0,4 mm2; Scan=16FRAMES*25m2=4*10-4 102 mm2 tSCAN=240min T = 370C; t = 60 min; 10 10-13 10-15 10-17 10-19 CONCENTRATION, M COMBINING OF IRREVERSIBLE FISHING WITH MRM MS Experimental workflow for low and ultra low copied protein detection Step 1 Step 2 Step 3 QqQ dynamic MRM analysis of individual proteins and in Human Plasma HPLC-Chip QqQ (Agilent 6410) HPLC-Chip Q-TOF (Agilent 6510) MRM STRATEGY FOR LOW AND ULTRA-LOW COPIED PROTEIN DETECTION (BSA and CYP102/BM3/ as an example) + trypsin Detection limit for purified proteins is 10-16 M, 600 copies/1 l (s/n>7) +serum + trypsin Detection limit for CYP102 in the presence of human serum is 10-14 M 60 000 copies/1 l (s/n>7) IRREVERSIBLE BINDING OF PROTEINS ON BrCN-SEPHAROSE BEADS PURIFIED CYP102/BSA IN THE PRESENCE OF HUMAN SERUM 10E-9M 10E-12M 10E-15M 10E-18M 0.5-50 ml DETECTION LIMIT FOR IRREVERSIBLE BINDING OF CYP102/BSA FOR PURIFIED PROTEINS ON BrCN-SEPHAROSE PROTEIN BEADS FOLLOWING AND PROTEINS IN BY DIGESTION WITH TRYPSIN THE PRESENCE OF HUMAN SERUM IS 10-18 M, 1 COPY/1ΜL NEW TECHNOLOGIES FOR Rus-HPP 1. ANALYTICAL COMPLEX BASED ON THE COMBINATION OF ATOMIC FORCE MICROSCOPY AND MASS- SPECTROMETRY 2. ANALYTICAL INSTRUMENTS BASED ON NANOWIRES 3. INFORMATIONAL CLOUD COMPUTING SYSTEM BASED ON THE PERSONAL SUPERCOMPUTER PLATFORM WHAT IT MEANS PROTEOME-BASED MEDICINE? 1. NEW DIAGNOSTIC TESTS BASED ON HIGH SENSITIVITY TECHNOLOGY SOLUTIONS (1A) AND PROTEOTYPING (1B) WILL BE CREATED. 1A. UP-TO-DATE METHODS HAVE SENSITIVITY ABOUT 10-12 M. IT MEANS, THAT 1 BILLION OF PROTEIN COPIES COULD BE DETECTED IN 10L OF BIOLOGICAL MATERIAL. IF SENSITIVITY INCREASE UP 10-18 M WE COULD DETECT 1 PROTEIN COPY PER CELL. 1B. AS THERE EXIST SNP, SAP, AS AND PTM, THE TOTAL NUMBER OF PROTEINS ENCODED IN THE GENOME (~20,000 GENES) COULD INCREASE UP 2 MLN. PRESUMABLY, THESE UNKNOWN PROTEINS CAN BE USED IN DIAGNOSTICS. DETECTION OF HCVcoreAg AT TWO SPOTS AFM CHIP FROM HCVcoreAg SOLUTION (C=10-9 М) ANTI-HCVcoreAgimm SPOT 25 1 – ANTI HCVcoreAg 20 1 2 – anti- 15 HCVcoreimm/HCVcoreAg % 2 h= 3-7 nm 10 5 RELATIVE CONTENT, 0 0 2 4 6 8 10 HEIGHT, NM ANTI-HBsAgimm (CONTROL SPOT) 25 3 – ANTI-HBsAg 3 imm 20 4 – AFM CHIP AFTER INCUBATION IN 15 4 HCVcore Ag (C=10-9М) 10 SOLUTION 5 SURFACE RELATIVECONTENT, % 0 TOPOGRAPHY HAS 0 2 4 6 8 10 HEIGHT, NM NOT CHANGED COMPARISON OF AFM AND OTHER METHODS (ELISA AND PCR) FOR DETECTION OF HBsAg AND HCVcoreAg HCVcoreAg HBsAg hepatitis C virus (HCV) (Hepatitis B Surface Antigen : HBsAg) PCR (RNA HCV) ELISA АFM + - AFM + - + 24 2 + 25 3 - 8 7 - 1 6 COINCIDENCE – 76% COINCIDENCE – 89% POSSIBLE REASON OF DISAGREEMENT: 132 aa of 191 (70%) in HCVcore PROTEIN 183 aa of 226 (80%) in HBsAg PROTEIN SEQUENCE ARE INVARIANT SEQUENCE ARE INVARIANT [Bukh et.al., PNAS, 1994, 91, 8239-8234] [Norder et.al., J. Gener. Virol.,, 1992, 73, 1201-1208] NEW DIAGNOSTIC TESTS BASED ON PROTEOTYPING PROTEOTYPE IS A RESULT OF: WHAT IT MEANS PROTEOME-BASED MEDICINE/continuation/? 2. NEW DRUG TARGETS THERE ARE ABOUT 500 DRUG TARGETS NOW IN USE IN PHARMACOLOGY.
Recommended publications
  • A High-Stringency Blueprint of the Human Proteome
    Providence St. Joseph Health Providence St. Joseph Health Digital Commons Articles, Abstracts, and Reports 10-16-2020 A high-stringency blueprint of the human proteome. Subash Adhikari Edouard C Nice Eric W Deutsch Institute for Systems Biology, Seattle, WA, USA. Lydie Lane Gilbert S Omenn See next page for additional authors Follow this and additional works at: https://digitalcommons.psjhealth.org/publications Part of the Genetics and Genomics Commons Recommended Citation Adhikari, Subash; Nice, Edouard C; Deutsch, Eric W; Lane, Lydie; Omenn, Gilbert S; Pennington, Stephen R; Paik, Young-Ki; Overall, Christopher M; Corrales, Fernando J; Cristea, Ileana M; Van Eyk, Jennifer E; Uhlén, Mathias; Lindskog, Cecilia; Chan, Daniel W; Bairoch, Amos; Waddington, James C; Justice, Joshua L; LaBaer, Joshua; Rodriguez, Henry; He, Fuchu; Kostrzewa, Markus; Ping, Peipei; Gundry, Rebekah L; Stewart, Peter; Srivastava, Sanjeeva; Srivastava, Sudhir; Nogueira, Fabio C S; Domont, Gilberto B; Vandenbrouck, Yves; Lam, Maggie P Y; Wennersten, Sara; Vizcaino, Juan Antonio; Wilkins, Marc; Schwenk, Jochen M; Lundberg, Emma; Bandeira, Nuno; Marko-Varga, Gyorgy; Weintraub, Susan T; Pineau, Charles; Kusebauch, Ulrike; Moritz, Robert L; Ahn, Seong Beom; Palmblad, Magnus; Snyder, Michael P; Aebersold, Ruedi; and Baker, Mark S, "A high-stringency blueprint of the human proteome." (2020). Articles, Abstracts, and Reports. 3832. https://digitalcommons.psjhealth.org/publications/3832 This Article is brought to you for free and open access by Providence St. Joseph Health
    [Show full text]
  • PROTEOMICS the Human Proteome Takes the Spotlight
    RESEARCH HIGHLIGHTS PROTEOMICS The human proteome takes the spotlight Two papers report mass spectrometry– big data. “We then thought, include some surpris- based draft maps of the human proteome ‘What is a potentially good ing findings. For example, and provide broadly accessible resources. illustration for the utility Kuster’s team found protein For years, members of the proteomics of such a database?’” says evidence for 430 long inter- community have been trying to garner sup- Kuster. “We very quickly genic noncoding RNAs, port for a large-scale project to exhaustively got to the idea, ‘Why don’t which have been thought map the normal human proteome, including we try to put together the not to be translated into pro- identifying all post-translational modifica- human proteome?’” tein. Pandey’s team refined tions and protein-protein interactions and The two groups took the annotations of 808 genes providing targeted mass spectrometry assays slightly different strategies and also found evidence and antibodies for all human proteins. But a towards this common goal. for the translation of many Nik Spencer/Nature Publishing Group Publishing Nik Spencer/Nature lack of consensus on how to exactly define Pandey’s lab examined 30 noncoding RNAs and pseu- Two groups provide mass the proteome, how to carry out such a mis- normal tissues, including spectrometry evidence for dogenes. sion and whether the technology is ready has adult and fetal tissues, as ~90% of the human proteome. Obtaining evidence for not so far convinced any funding agencies to well as primary hematopoi- the last roughly 10% of pro- fund on such an ambitious project.
    [Show full text]
  • The Chromosome-Centric Human Proteome Project for Cataloging Proteins Encoded in the Genome
    CORRESPONDENCE The Chromosome-Centric Human Proteome Project for cataloging proteins encoded in the genome To the Editor: utility for biological and disease studies. Table 1 Features of salient genes on The Chromosome-Centric Human With development of new tools for in- chromosomes 13 and 17 Proteome Project (C-HPP) aims to define depth characterization of the transcriptome Genea AST nsSNPs the full set of proteins encoded in each and proteome, the HPP is well positioned Chromosome 13 chromosome through development of a to have a strategic role in addressing the BRCA2 3 54 standardized approach for analyzing the complexity of human phenotypes. With this RB1 2 3 massive proteomic data sets currently being in mind, the HUPO has organized national IRS2 1 3 generated from dedicated efforts of national chromosome teams that will collaborate and international teams. The initial goal with well-established laboratories building Chromosome 17 of the C-HPP is to identify at least one complementary proteotypic peptides, BRCA1 24 24 representative protein encoded by each of antibodies and informatics resources. ERBB2 6 13 the approximately 20,300 human genes1,2. An important C-HPP goal is to encourage TP53 14 5 aEnsembl protein and AST information can be found at The proteins will be characterized for tissue capture and open sharing of proteomic http://www.ensembl.org/Homo_sapiens/. localization and major isoforms, including data sets from diverse samples to enhance AST, alternative splicing transcript; nsSNP, nonsyno- mous single-nucleotide polyphorphism assembled from post-translational modifications (PTMs), a gene- and chromosome-centric display data from the 1000 Genomes Projects.
    [Show full text]
  • Is It Time for Cognitive Bioinformatics?
    g in Geno nin m i ic M s ta & a P Lisitsa et al., J Data Mining Genomics Proteomics 2015, 6:2 D r f o Journal of o t e l DOI: 10.4172/2153-0602.1000173 o a m n r i c u s o J ISSN: 2153-0602 Data Mining in Genomics & Proteomics Review Article Open Access Is it Time for Cognitive Bioinformatics? Andrey Lisitsa1,2*, Elizabeth Stewart2,3, Eugene Kolker2-5 1The Russian Human Proteome Organization (RHUPO), Institute of Biomedical Chemistry, Moscow, Russian Federation 2Data Enabled Life Sciences Alliance (DELSA Global), Moscow, Russian Federation 3Bioinformatics and High-Throughput Data Analysis Laboratory, Seattle Children’s Research Institute, Seattle, WA, USA 4Predictive Analytics, Seattle Children’s Hospital, Seattle, WA, USA 5Departments of Biomedical Informatics & Medical Education and Pediatrics, University of Washington, Seattle, WA, USA Abstract The concept of cognitive bioinformatics has been proposed for structuring of knowledge in the field of molecular biology. While cognitive science is considered as “thinking about the process of thinking”, cognitive bioinformatics strives to capture the process of thought and analysis as applied to the challenging intersection of diverse fields such as biology, informatics, and computer science collectively known as bioinformatics. Ten years ago cognitive bioinformatics was introduced as a model of the analysis performed by scientists working with molecular biology and biomedical web resources. At present, the concept of cognitive bioinformatics can be examined in the context of the opportunities represented by the information “data deluge” of life sciences technologies. The unbalanced nature of accumulating information along with some challenges poses currently intractable problems for researchers.
    [Show full text]
  • Proteomics and Metabolomics: the Final Frontier of Nutrition Research 71
    SIGHT AND LIFE | VOL. 29(1) | 2015 PROTEOMICS AND METABOLOMICS: THE FINAL FRONTIER OF NUTRITION RESEARCH 71 Proteomics and Metabolomics: The Final Frontier of Nutrition Research Richard D Semba RNA editing, RNA splicing, post-translational modifications, and Wilmer Eye Institute, Johns Hopkins University School protein degradation; the proteome does not strictly reflect the of Medicine, Baltimore, Maryland, USA genome. Proteins function as enzymes, hormones, receptors, immune mediators, structure, transporters, and modulators of cell communication and signaling. The metabolome consists Introduction of amino acids, amines, peptides, sugars, oligonucleotides, ke- Revolutionary new technologies allow us to penetrate scientific tones, aldehydes, lipids, steroids, vitamins, and other molecules. frontiers and open vast new territories for discovery. In astrono- These metabolites reflect intrinsic chemical processes in cells my, the Hubble Space Telescope has facilitated an unprecedent- as well as environmental exposures such as diet and gut micro- ed view outwards, beyond our galaxy. Wherever the telescope is bial flora. The current Human Metabolome Database contains directed, scientists are making exciting new observations of the more than 40,000 entries7 – a number that is expected to grow deep universe. Another revolution is taking place in two fields quickly in the future. of “omics” research: proteomics and metabolomics. In contrast, The goals of proteomics include the detection of the diver- this view is directed inwards, towards the complexity of biologi- sity of proteins, their quantity, their isoforms, and the localiza- cal processes in living organisms. Proteomics is the study of the tion and interactions of proteins. The goals of metabolomics structure and function of proteins expressed by an organism.
    [Show full text]
  • Article (Submitted Version)
    Article Metrics for the Human Proteome Project 2016: Progress on Identifying and Characterizing the Human Proteome, Including Post-Translational Modifications OMENN, Gilbert S, et al. Abstract The HUPO Human Proteome Project (HPP) has two overall goals: (1) stepwise completion of the protein parts list, the draft human proteome, confidently identifying and characterizing at least one protein product from each protein-coding gene, with increasing emphasis on the sequence variants, post-translational modifications, and splice isoforms of those proteins, and (2) making proteomics an integrated counterpart to genomics throughout the biomedical and life sciences community. PeptideAtlas and GPMDB reanalyze all major mass spectrometry datasets available through ProteomeXchange with standardized protocols and stringent quality filters; neXtProt curates and integrates mass spectrometry and other findings. The HPP Guidelines for Mass Spectrometry Data Interpretation version 2.0 were applied to manuscripts submitted for this 2016 C-HPP-led special issue [www.thehpp.org/guidelines]. The Human Proteome presented as neXtProt version 2016-02 has 16,518 confident protein identifications (Protein Existence [PE] Level 1), up from 13,664 at 2012-12, 15,646 at 2013-09, and 16,491 at 2014-10. There are 485 proteins that would have [...] Reference OMENN, Gilbert S, et al. Metrics for the Human Proteome Project 2016: Progress on Identifying and Characterizing the Human Proteome, Including Post-Translational Modifications. Journal of Proteome Research, 2016, vol. 15, no. 11, p. 3951-3960 DOI : 10.1021/acs.jproteome.6b00511 PMID : 27487407 Available at: http://archive-ouverte.unige.ch/unige:86187 Disclaimer: layout of this document may differ from the published version.
    [Show full text]
  • The Human Proteome Project: Current State and Future Direction
    balt3/zjw-macp/zjw-macp/zjw00711/zjw3889-11a xppws Sϭ1 3/6/11 8:30 4/Color Figure(s) F1 ARTNO: M111.009993 Research © 2011 by The American Society for Biochemistry and Molecular Biology, Inc. This paper is available on line at http://www.mcponline.org The Human Proteome Project: Current State and Future Direction Pierre Legrain‡q**, Ruedi Aebersold§, Alexander Archakov¶, Amos Bairochʈ, Kumar Bala**, Laura Beretta‡‡, John Bergeron§§, Christoph H. Borchers¶¶, Garry L. Corthalsʈʈ, Catherine E. Costelloa, Eric W. Deutschb, Bruno Domonc, William Hancockd, Fuchu Hee, Denis Hochstrasserf, Gyo¨ rgy Marko-Vargag, Ghasem Hosseini Salekdehh, Salvatore Sechii, Michael Snyderj, Sudhir Srivastavak, Mathias Uhle´nl, Cathy H. Wum, Tadashi Yamamoton, Young-Ki Paiko,q**, and Gilbert S. Omennp,q** AQ: A After the successful completion of the Human Genome initiatives and a chromosome-centric protein mapping Project, the Human Proteome Organization has recently strategy, termed C-HPP, with which many national teams officially launched a global Human Proteome Project are currently engaged. In addition, numerous biologically (HPP), which is designed to map the entire human protein driven and disease-oriented projects will be stimulated set. Given the lack of protein-level evidence for about 30% and facilitated by the HPP. Timely planning with proper of the estimated 20,300 protein-coding genes, a system- governance of HPP will deliver a protein parts list, re- atic global effort will be necessary to achieve this goal agents, and tools for protein studies and analyses, and a with respect to protein abundance, distribution, subcellu- stronger basis for personalized medicine. The Human lar localization, interaction with other biomolecules, and Proteome Organization urges each national research functions at specific time points.
    [Show full text]
  • Metrics for the Human Proteome Project 2016: Progress On
    Perspective pubs.acs.org/jpr Metrics for the Human Proteome Project 2016: Progress on Identifying and Characterizing the Human Proteome, Including Post-Translational Modifications † ‡ § ⊥ ∥ Gilbert S. Omenn,*, Lydie Lane, Emma K. Lundberg, Ronald C. Beavis, Christopher M. Overall, and ¶ Eric W. Deutsch † Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, Michigan 48109-2218, United States ‡ CALIPHO Group, SIB Swiss Institute of Bioinformatics and Department of Human Protein Science, University of Geneva, CMU, Michel-Servet 1, 1211 Geneva 4, Switzerland § SciLifeLab Stockholm and School of Biotechnology, KTH, Karolinska Institutet Science Park, Tomtebodavagen̈ 23, SE-171 65 Solna, Sweden ⊥ Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada ∥ Biochemistry and Molecular Biology, and Oral Biological and Medical Sciences University of British Columbia, 2350 Health Sciences Mall, Room 4.401, Vancouver, BC V6T 1Z3, Canada ¶ Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109-5263, United States *S Supporting Information ABSTRACT: The HUPO Human Proteome Project (HPP) has two overall goals: (1) stepwise completion of the protein parts listthe draft human proteome including confidently identifying and character- izing at least one protein product from each protein-coding gene, with increasing emphasis on sequence variants, post-translational modifica- tions (PTMs), and splice isoforms of those proteins; and (2) making proteomics an integrated counterpart to genomics throughout the biomedical and life sciences community. PeptideAtlas and GPMDB reanalyze all major human mass spectrometry data sets available through ProteomeXchange with standardized protocols and stringent quality filters; neXtProt curates and integrates mass spectrometry and other findings to present the most up to date authorative compendium of the human proteome.
    [Show full text]
  • A High-Stringency Blueprint of the Human Proteome
    PERSPECTIVE https://doi.org/10.1038/s41467-020-19045-9 OPEN A high-stringency blueprint of the human proteome Subash Adhikari et al.# The Human Proteome Organization (HUPO) launched the Human Proteome Project (HPP) in 2010, creating an international framework for global collaboration, data sharing, quality assurance and enhancing accurate annotation of the genome-encoded proteome. During the subsequent decade, the HPP established collaborations, developed guidelines and metrics, and undertook reanalysis of previously deposited community data, continuously increasing 1234567890():,; the coverage of the human proteome. On the occasion of the HPP’s tenth anniversary, we here report a 90.4% complete high-stringency human proteome blueprint. This knowledge is essential for discerning molecular processes in health and disease, as we demonstrate by highlighting potential roles the human proteome plays in our understanding, diagnosis and treatment of cancers, cardiovascular and infectious diseases. decade after the release of the draft Human Genome Project (HGP), the Human Proteome Organization (HUPO) leveraged this genomic encyclopedia to launch a visionary inter- A 1–4 national scientific collaboration called the Human Proteome Project (HPP) .Utilizing substantial community data, the HPP connects scientists, clinicians, industry, institutions and knowledgebase (KB) partners to create a framework for collaboration, data sharing and quality assurance—all targeted at discovering credible evidence for the entire complement of human genome-coded proteins (Box 1). Here we report and discuss HUPO’s first high-stringency HPP blueprint (https://www.nextprot. org/about/statistics, data release 17-01-2020). This blueprint was assembled over 10 years by the HPP and covers >90% of the human proteome, paralleling progress made by the HGP5.Thiseffort relied heavily upon community efforts that enabled HPP data inspection and re-analysis, culmi- nating in the creation of a high-stringency human proteome KB.
    [Show full text]
  • A Draft Map of the Human Proteome
    ARTICLE doi:10.1038/nature13302 A draft map of the human proteome Min-Sik Kim1,2, Sneha M. Pinto3, Derese Getnet1,4, Raja Sekhar Nirujogi3, Srikanth S. Manda3, Raghothama Chaerkady1,2, Anil K. Madugundu3, Dhanashree S. Kelkar3, Ruth Isserlin5, Shobhit Jain5, Joji K. Thomas3, Babylakshmi Muthusamy3, Pamela Leal-Rojas1,6, Praveen Kumar3, Nandini A. Sahasrabuddhe3, Lavanya Balakrishnan3, Jayshree Advani3, Bijesh George3, Santosh Renuse3, Lakshmi Dhevi N. Selvan3, Arun H. Patil3, Vishalakshi Nanjappa3, Aneesha Radhakrishnan3, Samarjeet Prasad1, Tejaswini Subbannayya3, Rajesh Raju3, Manish Kumar3, Sreelakshmi K. Sreenivasamurthy3, Arivusudar Marimuthu3, Gajanan J. Sathe3, Sandip Chavan3, Keshava K. Datta3, Yashwanth Subbannayya3, Apeksha Sahu3, Soujanya D. Yelamanchi3, Savita Jayaram3, Pavithra Rajagopalan3, Jyoti Sharma3, Krishna R. Murthy3, Nazia Syed3, Renu Goel3, Aafaque A. Khan3, Sartaj Ahmad3, Gourav Dey3, Keshav Mudgal7, Aditi Chatterjee3, Tai-Chung Huang1, Jun Zhong1, Xinyan Wu1,2, Patrick G. Shaw1, Donald Freed1, Muhammad S. Zahari2, Kanchan K. Mukherjee8, Subramanian Shankar9, Anita Mahadevan10,11, Henry Lam12, Christopher J. Mitchell1, Susarla Krishna Shankar10,11, Parthasarathy Satishchandra13, John T. Schroeder14, Ravi Sirdeshmukh3, Anirban Maitra15,16, Steven D. Leach1,17, Charles G. Drake16,18, Marc K. Halushka15, T. S. Keshava Prasad3, Ralph H. Hruban15,16, Candace L. Kerr19{, Gary D. Bader5, Christine A. Iacobuzio-Donahue15,16,17, Harsha Gowda3 & Akhilesh Pandey1,2,3,4,15,16,20 The availability of human genome sequence has transformed biomedical research over the past decade. However, an equiv- alent map for the human proteome with direct measurements of proteins and peptides does not exist yet. Here we present a draft map of the human proteome using high-resolution Fourier-transform mass spectrometry.
    [Show full text]
  • Human Genome Project
    Human Genome Project The Human Genome Project (HGP) was an international scientific research project with the goal of determining the sequence of nucleotide base pairs that make up human DNA, and of identifying and mapping all of the genes of the human genome from both a physical and a functional standpoint.[1] It remains the world's largest collaborative biological project.[2] After the idea was picked up in 1984 by the US government when the planning started, the project formally launched in 1990 and was declared complete in 2003[3]. Funding came from the US government through the National Institutes of Health (NIH) as well as numerous other groups from around the world. A parallel project was conducted outside government by the Celera Corporation, or Celera Genomics, which was formally launched in 1998. Most of the government-sponsored sequencing was performed in twenty universities and research centers in the United States, the United Kingdom, Japan, France, Logo HGP; Vitruvian Man, Leonardo Germany, Spain and China.[4] da Vinci The Human Genome Project originally aimed to map the nucleotides contained in a human haploid reference genome (more than three billion). The "genome" of any given individual is unique; mapping the "human genome" involved sequencing a small number of individuals and then assembling these together to get a complete sequence for each chromosome. Therefore, the finished human genome is a mosaic, not representing any one individual. Contents Human Genome Project History State of completion Applications and proposed
    [Show full text]
  • 2018 Metrics from the HUPO Human Proteome Project † ● ‡ § ∥ Gilbert S
    Perspective Cite This: J. Proteome Res. 2018, 17, 4031−4041 pubs.acs.org/jpr Progress on Identifying and Characterizing the Human Proteome: 2018 Metrics from the HUPO Human Proteome Project † ● ‡ § ∥ Gilbert S. Omenn,*, , Lydie Lane, Christopher M. Overall, Fernando J. Corrales, ⊥ # ¶ ∇ ○ Jochen M. Schwenk, Young-Ki Paik, Jennifer E. Van Eyk, Siqi Liu, Michael Snyder, ⊗ ● Mark S. Baker, and Eric W. Deutsch † Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, Michigan 48109-2218, United States ‡ CALIPHO Group, SIB Swiss Institute of Bioinformatics and Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CMU, Michel-Servet 1, 1211 Geneva 4, Switzerland § Life Sciences Institute, Faculty of Dentistry, University of British Columbia, 2350 Health Sciences Mall, Room 4.401, Vancouver, BC V6T 1Z3, Canada ∥ Centro Nacional de Biotecnologia (CSIC), Darwin 3, 28049 Madrid, Spain ⊥ Science for Life Laboratory, KTH Royal Institute of Technology, Tomtebodavagen̈ 23A, 17165 Solna, Sweden # Yonsei Proteome Research Center, Yonsei University, Room 425, Building #114, 50 Yonsei-ro, Seodaemoon-ku, Seoul 120-749, Korea ¶ Advanced Clinical BioSystems Research Institute, Cedars Sinai Precision Biomarker Laboratories, Barbra Streisand Women’s Heart Center, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States ∇ Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, United States ○ Department
    [Show full text]