Sichuan & Tibetan Plateau Tour Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phenotypic Flexibility in Passerine Birds Seasonal Variation of Aerobic
Journal of Thermal Biology 36 (2011) 430–436 Contents lists available at ScienceDirect Journal of Thermal Biology journal homepage: www.elsevier.com/locate/jtherbio Phenotypic flexibility in passerine birds: Seasonal variation of aerobic enzyme activities in skeletal muscle Eric T. Liknes 1, David L. Swanson n Department of Biology, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA article info abstract Article history: Improved winter cold tolerance is widespread among small passerines resident in cold climates and is Received 1 March 2011 generally associated with elevated summit metabolic rate (Msum ¼maximum thermoregulatory metabolic Accepted 26 July 2011 rate) and improved shivering endurance with increased reliance on lipids as fuel. Elevated Msum and Available online 2 August 2011 improved cold tolerance may result from greater metabolic intensity, due to mass-specific increase in Keywords: oxidative enzyme capacity, or increase in the masses of thermogenic tissues. To examine the mechanisms Phenotypic flexibility underlying winter increases in Msum, we investigated seasonal changes in mass-specific and total activities Seasonal acclimatization of the key aerobic enzymes citrate synthase (CS) and b-hydroxyacyl CoA-dehydrogenase (HOAD) in Citrate synthase pectoralis, supracoracoideus and mixed leg muscles of three resident passerine species, black-capped b-Hydroxyacyl CoA-dehydrogenase chickadee (Poecile atricapillus), house sparrow (Passer domesticus), and white-breasted nuthatch Poecile atricapillus (Sitta carolinensis). Activities of CS were generally higher in winter than in summer muscles for chickadees Passer domesticus Sitta carolinensis and house sparrows, but not nuthatches. Mass-specific HOAD activity was significantly elevated in winter relative to summer in all muscles for chickadees, but did not vary significantly with season for sparrows or nuthatches, except for sparrow leg muscle. -
Disaggregation of Bird Families Listed on Cms Appendix Ii
Convention on the Conservation of Migratory Species of Wild Animals 2nd Meeting of the Sessional Committee of the CMS Scientific Council (ScC-SC2) Bonn, Germany, 10 – 14 July 2017 UNEP/CMS/ScC-SC2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II (Prepared by the Appointed Councillors for Birds) Summary: The first meeting of the Sessional Committee of the Scientific Council identified the adoption of a new standard reference for avian taxonomy as an opportunity to disaggregate the higher-level taxa listed on Appendix II and to identify those that are considered to be migratory species and that have an unfavourable conservation status. The current paper presents an initial analysis of the higher-level disaggregation using the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World Volumes 1 and 2 taxonomy, and identifies the challenges in completing the analysis to identify all of the migratory species and the corresponding Range States. The document has been prepared by the COP Appointed Scientific Councilors for Birds. This is a supplementary paper to COP document UNEP/CMS/COP12/Doc.25.3 on Taxonomy and Nomenclature UNEP/CMS/ScC-Sc2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II 1. Through Resolution 11.19, the Conference of Parties adopted as the standard reference for bird taxonomy and nomenclature for Non-Passerine species the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World, Volume 1: Non-Passerines, by Josep del Hoyo and Nigel J. Collar (2014); 2. -
Discrimination of Black-Capped Chickadee (Poecile Atricapillus) Chick-A-Dee Calls Produced Across Seasons
ABC 2020, 7(2):247-256 Animal Behavior and Cognition DOI: https://doi.org/10.26451/abc.07.02.14.2020 ©Attribution 3.0 Unported (CC BY 3.0) Discrimination of black-capped chickadee (Poecile atricapillus) chick-a-dee calls produced across seasons Erin N. Scully1, Kimberly A. Campbell2, Jenna V. Congdon1, and Christopher B. Sturdy*,1,2 1Department of Psychologya, University of Alberta 2Neuroscience and Mental Health Instituteb, University of Alberta *Corresponding author (Email: [email protected]) Citation – Scully, E. N., Campbell, K. A., Congdon, J. V., & Sturdy, C. B. (2020). Discrimination of black-capped chickadee (Poecile atricapillus) chick-a-dee calls produced across seasons. Animal Behavior and Cognition, 7(2), 247-256. doi: https://doi.org/10.26451/abc.07.02.14.2020 Abstract – While black-capped chickadees (Poecile atricapillus) primarily produce fee-bee songs in spring, they produce chick-a-dee calls year-round with call production peaking in the fall. This call serves multiple functions, including food location, flock communication, and predator alarm. As seasons change, the meaning of the call may also change. For instance, flock communication could be more important in the fall than in the spring, and food type and availability change according to season. To determine if the chick-a-dee call varies acoustically across seasons in a predictable manner, we conducted an operant go/no-go discrimination task that examined black-capped chickadees’ ability to categorize calls produced in two different seasons: fall and spring. We found that birds trained to respond to vocalizations produced in either fall or spring learned to discriminate at the same rate as birds trained to respond to pseudorandomized stimuli, suggesting that none of the groups demonstrated category learning, relying instead on rote memorization. -
Resolving Phylogenetic Relationships Within Passeriformes Based on Mitochondrial Genes and Inferring the Evolution of Their Mitogenomes in Terms of Duplications
GBE Resolving Phylogenetic Relationships within Passeriformes Based on Mitochondrial Genes and Inferring the Evolution of Their Mitogenomes in Terms of Duplications Paweł Mackiewicz1,*, Adam Dawid Urantowka 2, Aleksandra Kroczak1,2, and Dorota Mackiewicz1 1Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Poland 2Department of Genetics, Wroclaw University of Environmental and Life Sciences, Poland *Corresponding author: E-mail: pamac@smorfland.uni.wroc.pl. Accepted: September 30, 2019 Abstract Mitochondrial genes are placed on one molecule, which implies that they should carry consistent phylogenetic information. Following this advantage, we present a well-supported phylogeny based on mitochondrial genomes from almost 300 representa- tives of Passeriformes, the most numerous and differentiated Aves order. The analyses resolved the phylogenetic position of para- phyletic Basal and Transitional Oscines. Passerida occurred divided into two groups, one containing Paroidea and Sylvioidea, whereas the other, Passeroidea and Muscicapoidea. Analyses of mitogenomes showed four types of rearrangements including a duplicated control region (CR) with adjacent genes. Mapping the presence and absence of duplications onto the phylogenetic tree revealed that the duplication was the ancestral state for passerines and was maintained in early diverged lineages. Next, the duplication could be lost and occurred independently at least four times according to the most parsimonious scenario. In some lineages, two CR copies have been inherited from an ancient duplication and highly diverged, whereas in others, the second copy became similar to the first one due to concerted evolution. The second CR copies accumulated over twice as many substitutions as the first ones. However, the second CRs were not completely eliminated and were retained for a long time, which suggests that both regions can fulfill an important role in mitogenomes. -
Programs and Field Trips
CONTENTS Welcome from Kathy Martin, NAOC-V Conference Chair ………………………….………………..…...…..………………..….…… 2 Conference Organizers & Committees …………………………………………………………………..…...…………..……………….. 3 - 6 NAOC-V General Information ……………………………………………………………………………………………….…..………….. 6 - 11 Registration & Information .. Council & Business Meetings ……………………………………….……………………..……….………………………………………………………………………………………………………………….…………………………………..…..……...….. 11 6 Workshops ……………………….………….……...………………………………………………………………………………..………..………... 12 Symposia ………………………………….……...……………………………………………………………………………………………………..... 13 Abstracts – Online login information …………………………..……...………….………………………………………….……..……... 13 Presentation Guidelines for Oral and Poster Presentations …...………...………………………………………...……….…... 14 Instructions for Session Chairs .. 15 Additional Social & Special Events…………… ……………………………..………………….………...………………………...…………………………………………………..…………………………………………………….……….……... 15 Student Travel Awards …………………………………………..………...……………….………………………………..…...………... 18 - 20 Postdoctoral Travel Awardees …………………………………..………...………………………………..……………………….………... 20 Student Presentation Award Information ……………………...………...……………………………………..……………………..... 20 Function Schedule …………………………………………………………………………………………..……………………..…………. 22 – 26 Sunday, 12 August Tuesday, 14 August .. .. .. 22 Wednesday, 15 August– ………………………………...…… ………………………………………… ……………..... Thursday, 16 August ……………………………………….…………..………………………………………………………………… …... 23 Friday, 17 August ………………………………………….…………...………………………………………………………………………..... 24 Saturday, -
The Generic Taxonomy of Parrotbills (Aves, Timaliidae)
FORKTAIL 25 (2009): 137–141 The generic taxonomy of parrotbills (Aves, Timaliidae) JOHN PENHALLURICK and CRAIG ROBSON The parrotbills are typically considered to contain just three genera: Conostoma, Paradoxornis and Panurus. Discounting Panurus from consideration (it has recently been shown to have a distant relationship to the babblers), we maintain a single species in Conostoma, C. aemodium, and assign the species currently lumped into Paradoxornis among seven genera that fall into two groups based in part on size: the first group (which also includes Conostoma) consists of Hemirhynchus (for paradoxus and unicolor); Psittiparus (for gularis, margaritae, ruficeps and bakeri) and Paradoxornis (for flavirostris, guttaticollis and heudei); the second comprises Chleuasicus (for atrosuperciliaris), a new genus Sinosuthora (for brunnea, webbiana, alphonsiana, conspicillata, zappeyi and przewalskii), Neosuthora (for davidiana) and Suthora (for fulvifrons, verreauxi, nipalensis, humii, poliotis, ripponi and beaulieui). INTRODUCTION to reflect this distant relationship. We will go through the genera we propose, giving the full citation for the generic Earlier accounts of the parrotbills, such as Sharpe (1883), name, plus synonyms, and listing the species we assign to Hartert (1907), Hartert and Steinbacher (1932–38), and each genus, and its subspecies, with detailed distribution Baker (1930), treated them in multiple genera, but in provided for both monotypic species and subspecies. recent works (Deignan 1964, Dickinson 2003, Robson 2007) the great majority have been placed in Paradoxornis. This arrangement goes back to Delacour (1946), who THE GENERA AND SPECIES assigned all taxa except Great Parrotbill Conostoma aemodium and Bearded Reedling Panurus biarmicus to Conostoma Hodgson, 1842 Paradoxornis. His explanation for this radical move was Conostoma Hodgson, 1842 [‘1841’], Journal of the Asiatic brief, and roughly translates as follows: Society of Bengal 10: 856. -
Black-Capped Chickadee (Poecile Atricapilla) Alec Lindsay
Black-capped Chickadee (Poecile atricapilla) Alec Lindsay Lake Erie Metropark, Wayne Co., MI 10/30/2008 © Jerry Jourdan This species is sponsored by: Petoskey Regional Audubon Society (Click to view a comparison of Atlas I to II) Ubiquitous, social, and tolerant of human Province of Ontario. Their southern range extends only partially across Illinois, Indiana activities, Black-capped Chickadees are and Ohio, where the Carolina Chickadee arguably among Michigan’s most easily becomes more common. recognized birds. Year-round residents of urban, rural and wilderness habitats, Black-capped Distribution chickadees are also regular visitors to bird Some of the earliest accounts of chickadees in feeders. Unlike many other “feeder birds,” Michigan (Barrows 1912) indicate chickadees chickadees are a scatter-hoarding species, have been breeding across both peninsulas of storing individual food items in thousands of the state for a long period. Black-capped caches that they remember and return to over Chickadee distribution changed slightly between long periods of time (Hitchcock and Sherry the two Atlas periods. Chickadees were reported 1990). For a small bodied bird like a chickadee, from over 3,700 Atlas blocks during MBBA II, supplemental feeding can have positive impacts compared with over 4,100 blocks in MBBA I. on winter survival (Wilson 2001). Chickadees Reports of chickadees were clearly widespread typically spend the fall and winter months in across the state, yet fewer than a quarter of larger chickadee flocks with linear dominance reports were confirmed breeding records. With hierarchies, where males dominate females and the exception of Lenawee and Hillsdale older birds dominate new recruits (Glase 1973). -
Mai Po Nature Reserve Management Plan: 2019-2024
Mai Po Nature Reserve Management Plan: 2019-2024 ©Anthony Sun June 2021 (Mid-term version) Prepared by WWF-Hong Kong Mai Po Nature Reserve Management Plan: 2019-2024 Page | 1 Table of Contents EXECUTIVE SUMMARY ................................................................................................................................................... 2 1. INTRODUCTION ..................................................................................................................................................... 7 1.1 Regional and Global Context ........................................................................................................................ 8 1.2 Local Biodiversity and Wise Use ................................................................................................................... 9 1.3 Geology and Geological History ................................................................................................................. 10 1.4 Hydrology ................................................................................................................................................... 10 1.5 Climate ....................................................................................................................................................... 10 1.6 Climate Change Impacts ............................................................................................................................. 11 1.7 Biodiversity ................................................................................................................................................ -
Habitat Modelling and the Ecology of the Marsh Tit (Poecile Palustris)
HABITAT MODELLING AND THE ECOLOGY OF THE MARSH TIT (POECILE PALUSTRIS) RICHARD K BROUGHTON A thesis submitted in partial fulfilment of the requirements of Bournemouth University for the degree of Doctor of Philosophy August 2012 Bournemouth University in collaboration with the Centre for Ecology & Hydrology This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis. 2 ABSTRACT Richard K Broughton Habitat modelling and the ecology of the Marsh Tit (Poecile palustris) Among British birds, a number of woodland specialists have undergone a serious population decline in recent decades, for reasons that are poorly understood. The Marsh Tit is one such species, experiencing a 71% decline in abundance between 1967 and 2009, and a 17% range contraction between 1968 and 1991. The factors driving this decline are uncertain, but hypotheses include a reduction in breeding success and annual survival, increased inter-specific competition, and deteriorating habitat quality. Despite recent work investigating some of these elements, knowledge of the Marsh Tit’s behaviour, landscape ecology and habitat selection remains incomplete, limiting the understanding of the species’ decline. This thesis provides additional key information on the ecology of the Marsh Tit with which to test and review leading hypotheses for the species’ decline. Using novel analytical methods, comprehensive high-resolution models of woodland habitat derived from airborne remote sensing were combined with extensive datasets of Marsh Tit territory and nest-site locations to describe habitat selection in unprecedented detail. -
Prioritizing Green Spaces for Biodiversity Conservation in Beijing Based on Habitat Network Connectivity
sustainability Article Prioritizing Green Spaces for Biodiversity Conservation in Beijing Based on Habitat Network Connectivity Zhiyuan Lv 1, Jun Yang 1,2, Ben Wielstra 3,4, Jie Wei 1, Fei Xu 1 and Yali Si 1,5,* 1 Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing 100084, China; [email protected] (Z.L.); [email protected] (J.Y.); [email protected] (J.W.); [email protected] (F.X.) 2 Joint Center for Global Change Studies (JCGCS), Beijing 100875, China 3 Institute of Biology Leiden, Leiden University, P.O. Box 9500, 2300 RA Leiden, The Netherlands; [email protected] 4 Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands 5 Center for Healthy Cities, Institute for China Sustainable Urbanization, Tsinghua University, Beijing 100084, China * Correspondence: [email protected]; Tel.: +86-010-62772750 Received: 19 February 2019; Accepted: 2 April 2019; Published: 5 April 2019 Abstract: Rapid urbanization results in changes in land use, biogeochemical cycles, climate, hydrosystems, and biodiversity. Policy-makers have formulated ecological protection measures to facilitate sustainable development. However, traditional conservation planning mainly focuses on protecting specific green spaces, with limited consideration of the connectivity among green spaces from a habitat network perspective. Using citizen science data and occupancy modelling, we predicted habitat suitability, built habitat networks and identified key habitat patches based on their contribution to the functional connectivity of the habitat network for three focal water, forest, and open-habitat bird species. Based on the habitat requirement, small waterbodies and intermediate forest and open-habitat cover facilitate preserving water, forest and open-habitat birds. -
Can Habitat Quality Index Measured Using the Invest Model Explain Variations in Bird Diversity in an Urban Area?
sustainability Article Can Habitat Quality Index Measured Using the InVEST Model Explain Variations in Bird Diversity in an Urban Area? Dehuan Li, Wei Sun, Fan Xia, Yixuan Yang and Yujing Xie * Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; [email protected] (D.L.); [email protected] (W.S.); [email protected] (F.X.); [email protected] (Y.Y.) * Correspondence: [email protected]; Tel.: +86-21-3124-8923 Abstract: Biodiversity maintenance is a crucial ecosystem service. Due to time limits and data availability, assessing biodiversity using indicators or models has become a hot topic in recent decades. However, whether some proposed indicators can explain biodiversity well at the local scale is still unclear. This study attempted to test whether the habitat quality index (HQI) as measured using the integrated valuation of ecosystem services and trade-offs (InVEST) model could explain variations in bird diversity in New Jiangwan Town, a rapidly urbanized region of Shanghai, China. The relationships from 2002 to 2013 among HQI and the two diversity indices, species richness and species abundance, were analyzed using Fisher’s exact test and gray correlation analysis. No significant association was found. Habitat connectivity was then integrated to develop a new combined indicator of habitat quality and connectivity index (HQCI). The associations between HQCI and the two diversity indices were improved significantly. The results indicated that connectivity may be an important factor explaining the diversity of certain species at a local scale. More empirical studies should be conducted to provide scientific evidence relating habitat quality to biodiversity. -
The Birds of the Wenyu
The Birds of the Wenyu Beijing’s Mother River Steve Bale 史進 1 Contents Introduction Page 3 The Status, The Seasons, The Months Page 9 The Birds Page 10 Finding Birds on the Wenyu Page 172 The List of the ‘New’ Birds for the Wenyu Page 178 Special Thanks Page 186 Free to Share… Page 187 References Page 188 2 Introduction In the meeting of the Zoological Society of London on the 22nd November 1842, John Gould (1804-81) presented what was described in the Society’s proceedings as a “new species of Parrot” 1. The impressively marked bird had been collected on the Marquesas Islands – a remote spot of the Pacific Ocean that would become part of French Polynesia. The members of the Society present at that meeting would have undoubtedly been impressed by yet another of the rare, exotic gems that Gould had a habit of pulling out of his seemingly bottomless hat. Next up in this Victorian frontiers-of-ornithology ‘show and tell’ was Hugh Edwin Strickland (1811-53). The birds he spoke about2 were quite a bit closer to home, although many were every bit as exotic as Gould’s Polynesian parrot. Strickland, instead of sourcing his specimens from the far corners of the Earth, had simply popped across London to Hyde Park Corner with his note book. There, causing quite a stir, was an exhibition of "Ten Thousand Chinese Things", displayed in a purpose-built “summer house” whose design was, according to The Illustrated London News3, “usual in the gardens of the wealthy, in the southern provinces of China”.