AV6-R-Aug20141.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

AV6-R-Aug20141.Pdf R E C I P R O C A T I N G E N G I N E S A ® ® 1 R E C I P R O C A T I N G E N G I N E S Purpose Spark Plugs ................................................................................... 2-18 Product Features ............................................................................................. 3 This service manual presents recom- Design Features .............................................................................................. 3 mended service, handling and recondi- Spark Plug Type Designation System ............................................................... 4 tioning practices to assure economic, Typical Types of Electrode Construction .................................................. 4 satisfactory operation from Champion Operating Period ................................................................................... 4 Aerospace spark plugs and oil filters. Selection Criteria ............................................................................................. 5 Proper service and handling can help Reach .................................................................................................... 5 lengthen the time between replacement Heat Rating............................................................................................ 5 Shielded Terminal Designs ...................................................................... 5 periods, while reducing unscheduled or Electrode Conditions .................................................................................... 6-9 emergency replacements. Electrode Wear Patterns ...................................................................... 6-7 Included are ways to analyze spark plug Carbon Fouling...................................................................................... 8 performance through examples of Oil Fouling............................................................................................. 8 adverse effects from certain engine Lead Fouling....................................................................................... 8-9 operating conditions. You will also find Bridged Electrode Gaps ......................................................................... 9 Cracked Core Nose ................................................................................ 9 application information and spark plug Operating Data ............................................................................................ 10 type selection criteria, as well as useful Preignition ........................................................................................... 10 references to supplemental Champion Detonation .......................................................................................... 10 publications. Connector Well Flashover .................................................................... 10 Improper Gaskets ................................................................................. 10 FAA/PMA Approved Installation Procedures ............................................................................. 11-12 Preinstallation....................................................................................... 11 Champion Aerospace products are manu- Outside Gaskets ................................................................................... 11 factured in accordance with standards Anti-Seize Compound ........................................................................... 11 established by the Federal Aviation Installation ...................................................................................... 11-12 Administration. Correct Socket Tools ............................................................................. 11 Spark Plug Connector Installation .................................................... 11-12 Dow Corning Compound Application .................................................. 12 Removal Procedures................................................................................. 12-13 Shielded Terminal Connectors .............................................................. 12 Unshielded Terminal Connectors .......................................................... 12 Spark Plug Handling ............................................................................ 12 Reconditioning Service ............................................................................. 13-18 Preliminary Visual Inspection ................................................................ 13 Degreasing .......................................................................................... 13 Cleaning the Firing End .................................................................. 13-14 Model 2600A Vibrator/Cleaner............................................................. 13 Model CT-475AV Cleaner/Tester ........................................................... 14 Cleaning the Barrel End ....................................................................... 14 Cleaning the Terminal Wall ................................................................... 14 Cleaning Connector Seats .................................................................... 15 Firing End Inspection ........................................................................... 15 Cleaning the Threads ........................................................................... 15 Gap-Setting Tools and Procedure................................................................... 16 Model CT-482 Erosion Gauge ............................................................... 16 Model 2500A Gap-Setting Tool ............................................................. 16 Model CT-415 Gap-Setting Tool ............................................................ 17 Model CT-457 GAP-SETTING TOOL ....................................................... 17 Model CT-408 Gap-Setting Tool ............................................................ 17 Testing Tools and Procedures ........................................................................ 18 Model CT-475AV Cleaner/Tester ........................................................... 18 Tester Calibration ................................................................................. 18 Preservation and Storage .............................................................................. 18 Oil Filters .................................................................................... 19-26 Product Features ........................................................................................... 19 Aircraft Engine Oil Filters ............................................................................... 20 Benefits of Efficient Engine Oil Filtration ........................................................ 20 Oil Filter and Efficient Element Design ...................................................... 20-21 Champion Replacement Elements ................................................................. 20 Filter Media .......................................................................................... 21 Dirt-Holding Capability ......................................................................... 21 Resistance to Collapse .......................................................................... 21 Champion Full-Flow Spin-On Filters ............................................................... 21 Champion Aviation Engine Oil Filters............................................................. 22 Lycoming Replacement Filters .............................................................. 22 Semi-Depth Type Filters ........................................................................ 23 Element Removal and Installation Procedures ................................................ 23 Housing Removal ................................................................................. 23 Cleaning and Lubrication ..................................................................... 23 Assembly ........................................................................................ 23-24 By-Pass Filter System ............................................................................. 24 Full-Flow Filter System .......................................................................... 25 Oil Filter Sludge Inspection ............................................................................ 25 Over Pressurized Lube Oil Filter ..................................................................... 26 Supplemental Information ............................................................................. 27 2 R E C I P R O C A T I N G E N G I N E S ® 3 S P A R K P L U G S Spark Plug Type Designation System All Champion Aerospace spark plugs are Typical Spark Plug Number with Symbol Explanation identified by type designations as indicated on the following spark plug number and symbol chart. The symbol is composed of a rating position number, together with prefix and suffix numbers to indicate major plug design characteristics. RHB37E Typical Types of Electrode Construction Resistor Electrode Design None — No Resistor None — Conventional Single R — Mil Spec. E — Two Electrode Massive Resistor — Erosion N — Four Electrode Massive Two-Prong E Protection Ground Electrodes S — Single Electrode (Iridium) B — Twin Electrodes R — Push-wire - 90' to Center Y — Projected Core Nose Fine Wire Barrel Style Heat Rating Position None — Unshielded Low Number — Cold E —Shielded 5/8" - 24 Thread High Number — Hot H — Shielded 3/4" - 20 Thread
Recommended publications
  • Engine Components and Filters: Damage Profiles, Probable Causes and Prevention
    ENGINE COMPONENTS AND FILTERS: DAMAGE PROFILES, PROBABLE CAUSES AND PREVENTION Technical Information AFTERMARKET Contents 1 Introduction 5 2 General topics 6 2.1 Engine wear caused by contamination 6 2.2 Fuel flooding 8 2.3 Hydraulic lock 10 2.4 Increased oil consumption 12 3 Top of the piston and piston ring belt 14 3.1 Hole burned through the top of the piston in gasoline and diesel engines 14 3.2 Melting at the top of the piston and the top land of a gasoline engine 16 3.3 Melting at the top of the piston and the top land of a diesel engine 18 3.4 Broken piston ring lands 20 3.5 Valve impacts at the top of the piston and piston hammering at the cylinder head 22 3.6 Cracks in the top of the piston 24 4 Piston skirt 26 4.1 Piston seizure on the thrust and opposite side (piston skirt area only) 26 4.2 Piston seizure on one side of the piston skirt 27 4.3 Diagonal piston seizure next to the pin bore 28 4.4 Asymmetrical wear pattern on the piston skirt 30 4.5 Piston seizure in the lower piston skirt area only 31 4.6 Heavy wear at the piston skirt with a rough, matte surface 32 4.7 Wear marks on one side of the piston skirt 33 5 Support – piston pin bushing 34 5.1 Seizure in the pin bore 34 5.2 Cratered piston wall in the pin boss area 35 6 Piston rings 36 6.1 Piston rings with burn marks and seizure marks on the 36 piston skirt 6.2 Damage to the ring belt due to fractured piston rings 37 6.3 Heavy wear of the piston ring grooves and piston rings 38 6.4 Heavy radial wear of the piston rings 39 7 Cylinder liners 40 7.1 Pitting on the outer
    [Show full text]
  • Mr. Gasket Catalog
    Restore. Restyle. Relive. PRODUCT CATALOG THE MR. GASKET STORY Back in 1964, Joe Hrudka was a drag racer in Northern Ohio who was looking to solve a problem that parts manufacturers had not addressed. Using his own 1957 Chevy drag race car as a test vehicle, he created a line of engine gaskets and fasteners proven to seal and withstand extreme temperatures, pressures and stresses created by high performance engines. This product line that was developed by a drag racer would evolve into a brand of legendary proportions over the next 50 years. Mr. Gasket started with Joe’s ‘57 Chevy and has continued to advance and expand with application coverage and even more new products for muscle cars. Head gaskets, exhaust gaskets and oil pan gaskets were just the beginning. The Mr. Gasket brand develops and distributes a variety of performance parts for your vehicle including: carburetor and fuel accessories, chrome-plated accessories, cooling system accessories, engine components, fuel additives, shifter accessories, specialty tools, suspension and driveline components. Located in Cleveland, Ohio, the Mr. Gasket team continues to design, develop, manufacture and distribute products that bring back the luster and performance that everyone remembers to a variety of auto projects. It may have started with a Chevrolet, but when you are ready to Restore, Restyle and Rebuild your car, Mr. Gasket is who you can trust to have the parts and advice you need to complete your project. Find out about all of the Mr. Gasket products and applications at www.mr-gasket.com www.mr-gasket.com TABLE OF CONTENTS CHEMICALS .......................................................................
    [Show full text]
  • Spark Plug Condition Chart
    Spark Plug Condition Chart Normal Mechanical Damage Oil Fouled May be caused by a foreign object that Too much oil is entering the combustion has accidentally entered the combus- Combustion deposits are slight chamber. This is often caused by piston tion chamber. When this condition is and not heavy enough to cause rings or cylinder walls that are badly discovered, check the other cylinders to any detrimental effect on engine worn. Oil may also be pulled into the prevent a recurrence, since it is possi- performance. Note the brown to chamber because of excessive clear- ble for a small object to "travel" from greyish tan color, and minimal ance in the valve stem guides. If the one cylinder to another where a large amount of electrode erosion which PCV valve is plugged or inoperative it degree of valve overlap exists. This clearly indicates the plug is in the can cause a build-up of crankcase pres- condition may also be due to improper correct heat range and has been sure which can force oil and oil vapors reach spark plugs that permit the piston operating in a "healthy" engine. past the rings and valve guides into the to touch or collide with the firing end. combustion chamber. Overheated Insulator Glazing Pre-Ignition A clean, white insulator firing tip and/or excessive electrode ero- Usually one or a combination of several sion indicates this spark plug con- Glazing appears as a yellowish, var- dition. This is often caused by over engine operating conditions are the nish-like color. This condition indicates prime causes of pre-ignition.
    [Show full text]
  • Tech Spotlight
    impact.qxd 3/12/04 11:25 AM Page 1 TECH SPOTLIGHT Impact Testing notched side by the moving striker by the metrology of the parts that are Wayne Hayward pendulum, and the energy needed to subject to the most wear and tear, and Tinius Olsen Testing Machine Co. break off the free end is the measure some machines were manufactured Horsham, Pennsylvania of the impact strength. This article before strict adherence to the specifi- discusses the equipment, calibration, cations in ASTM E23 was deemed to and procedures for Charpy testing. be critical. Accurate results are not pos- he purpose of impact testing is to sible if the equipment is not operating Tdetermine the toughness of a ma- Impact testing equipment according to the specification; there- terial by measuring the amount of en- Instruments for impact testing of fore, it is strongly recommended that ergy absorbed by a specimen as it frac- metals have been manufactured com- the impact tester be calibrated and/or tures while being struck by a striker mercially since the 1900’s, and several verified by an accredited calibration pendulum moving at high speed. The manufacturers of testing equipment service at regular intervals. impact strength is defined as the max- meet the requirements of ASTM E23, imum amount of energy that can be “Standard Test Methods for Notched Instrument calibration absorbed by the specimen without Bar Impact Testing of Metallic Mate- A calibration swing is performed to fracture. rials.” The standard provides dimen- ensure that energy losses due to In the Charpy impact test, a notch sion and tolerance requirements for windage and friction in the bearings is placed in the specimen.
    [Show full text]
  • Oil Leaks from Valve Cover Gasket 19-2309
    Page 1 of 5 TECHNICAL SERVICE BULLETIN 19-2309 5.0L - Oil Leaks From Valve Cover Gasket 16 October 2019 This bulletin supersedes 19-2260. Reason for update: Incorrect or Incomplete Symptom Model: Ford 2015-2017 Mustang Summary This article supersedes TSB 19-2260 to update the Issue Statement and Service Procedure. Issue: Some 2015-2017 Mustang vehicles equipped with a 5.0L engine may exhibit an oil leak from either valve cover gasket. This may be due to the valve covers warping due to excessive heat. To correct the condition, follow the Service Procedure steps to add fasteners to both valve covers. Action: Follow the Service Procedure steps to correct the condition on vehicles that meet all of the following criteria: • 2015-2017 Mustang • 5.0L engine • Oil leak from either valve cover gasket Parts Part Number Description Quantity JR3Z-00812-B Valve Cover Bolt (Package Contains 1 Piece, 8 Pieces Required) 8 W712334-S440 Strut Tower Brace/Cowl Extension Nut (Package Contains 3 Pieces, 4 2 Pieces Required) ER3Z-6584-B Valve Cover Gasket (Left Side) 1 ER3Z-6584-A Valve Cover Gasket (Right Side) 1 BR3Z-6C535-A As VCT Seal Needed BR3Z-6C535-B As Spark Plug Seal Needed ZC-30-A As Motorcraft® Silicone Gasket Remover Needed ZC-31-B As Motorcraft® Metal Surface Prep Wipes Needed TA-30 As Motorcraft® Silicone Gasket and Sealant Needed PM-4-A As Motorcraft® Metal Brake Parts Cleaner Needed XO-5W20- Motorcraft® SAE 5W-20 Synthetic Blend Motor Oil (All Markets Except As Q1SP Canada) Needed CXO-5W20- As Motorcraft® SAE 5W-20 Super Premium Motor Oil (Canada Only) LSP6 Needed http://www.fordservicecontent.com/Ford_Content/vdirsnet/TSB/EU/~WTSB19 -2309/US/ ..
    [Show full text]
  • Digital Twin and Triple Spark Ignition in Four- Stroke Internal Combustion Engines of Two- Wheelers
    International Journal of Innovations in Engineering and Technology (IJIET) Digital Twin and Triple Spark Ignition in Four- Stroke Internal Combustion Engines of Two- Wheelers G.V.N.B.Prabhkar Department Of Mechanical Engineering, V.K.R, V.N.B &A.G.K College of Engineering B.Kiran Babu Department Of Mechanical Engineering, V.K.R, V.N.B &A.G.K College of Engineering K.Durga Prasad Department Of Mechanical Engineering, V.K.R, V.N.B &A.G.K College of Engineering Abstract - Today it is a common trend. It has become a fashion for the people especially living in urban areas to ride such vehicles. Now the companies even want to launch such vehicles that attract the younger generation. This can be achieved by technology known as DTSi. Due to DTSi (digital twin spark ignition) system it is possible to combine strong performance and fuel efficiency. The improved engine efficiency modes have also resulted in lowered fuel consumption. The efficiency of these small engines were enhanced with increased power output just by increasing the number of fuel igniting element i.e. Spark Plug. Spark ignition is one of the most vital systems of an engine. Any variation in the spark timing and number of sparks per minute affects the engine performance severely. Thus a good design and control of the system parameters becomes most essential for optimum performance of an engine. Due to Digital Twin Spark Ignition system it is possible to combine strong performance and higher fuel efficiency. DTSi offers many advantages over conventional mechanical spark ignition system.
    [Show full text]
  • IM-391 April 2020
    Inline Fume Exhaust Fans IM-391 April 2020 General Installation, Operation and Maintenance Instructions For Aerovent Products Throughout this manual, there are a number of HAZARD WARNINGS that must be read and adhered to in order to prevent possible personal injury and/or damage to equipment. Two signal words "WARNING" and "CAUTION" are used to indicate the severity of a hazard and are preceded by the safety alert symbol. WARNING Used when serious injury or death MAY result from misuse or failure to follow specific instructions. CAUTION Used when minor or moderate injury or product / equipment damage MAY result from misuse or failure to follow specific instructions. NOTICE Indicates information considered important, but not hazard-related. It is the responsibility of all personnel involved in installation, operation and maintenance to fully understand the Warning and Caution procedures by which hazards are to be avoided. INTRODUCTION This manual has been prepared to guide the users of AFE Fume Exhaust Fans in the proper installation, operation and maintenance procedures to insure maximum equipment life with trouble-free operation. AFE CONTENTS Inspection and Receiving ..................................................2 Handling and Rigging ........................................................2 CAUTION Unit Storage ........................................................................2 Installation Fan systems include rotating components and • Pre-Installation Checklist ..........................................2 electrical devices.
    [Show full text]
  • Small Gasoline Engine Repair, Troubleshooting and Tips
    http://waterheatertimer.org Small Gasoline troubleshooting Engine Repair and Tips Three step approach Determine why a small engine will not start or run properly. Welcome to Find N Choose, your free information site. Fuel - Spark - Compression A gasoline engine needs the following three essentials to "run" In time problems develop with fuel delivery, spark or compression, it only takes one of these to fail to prevent an engine from starting or to run. The first step is to determine which of these is at fault. Three Step Trouble Shooting Spark Place the engine out of bright sunlight, remove the spark plug, reconnect the ignition wire to the spark plug and lie it on the engine head, or metal of the engine, where it makes a path to ground of the engine. Give the rope a tug and observe whether there is a good spark jumping the spark plug electrode gap. A good blue spark is ideal, If there is no spark, try changing the spark plug, and try this test again. No spark indicates ignition problems. 1 of 15 7/25/2011 5:35 PM Small Gasoline Engine Repair, Troubleshooting and Tips http://www3.telus.net/findNchoose/smallenginerepair.html Note the colors and sound to the spark. A fat blue spark that cracks audibly indicates a very good spark. A white spindly sparks indicates a problem in the spark producing mechanism (check grounding of spark coil first) A reddish sparks usually indicate burnt points, or a failing condenser. A weak spark may not ignite the fuel-air under compression. If there is a spark, the problem lies either in fuel delivery, or in the compression of the engine.
    [Show full text]
  • Technical Information on Considerations When Choosing and Operating a Spark-Plug Sensor Solution
    TECHNICAL INFORMATION ON CONSIDERATIONS WHEN CHOOSING AND OPERATING A SPARK-PLUG SENSOR SOLUTION This paper describes characteristics that must be considered when choosing the correct instrumented spark plugs to substitute for the original standard spark-plugs of an engine in order to allow reliable pressure measurements via the spark-plug bore. Electrode gap The integration of a pressure measurement function requires space inside the spark-plug body. This results in a smaller ceramic insulator for the spark-plug function, and therefore a lower arc-over resistivity. To compensate for the lower arc-over resistivity, the ignition voltage must be low enough to avoid damage to the unit. To reduce the ignition voltage, the Electrode Gap needs to be chosen wisely. This will ensure safe and long lasting operation of the unit. On the other hand, to avoid misfire and therefore insure proper ignition of the air-fuel mixture, the arc of the Electrode Gap requires a minimum length. Choosing this gap will require a tradeoff between a minimum suffi- cient size gap and engine operating condition versus risking an internal arc-over. The maximum Electrode Gap (EG) is determined by the Final Compression Pressure (FCP) from the compression stroke, as this is a convenient metric that is roughly proportional to the demand voltage required to jump the gap in the spark plug. It is neces- sary to match the spark-plug specifications exactly to have reliable firing of the engine and to insure that the demand voltage is not exceeding component limits to avoid permanent damage of the spark-plug sensor assembly.
    [Show full text]
  • Galling and Galling Resistance of Stainless Steels
    Stainless Steel Advisory Service Tel: 0114 267 1265 Fax 0114 266 1252 A service provided by the SSAS Information Sheet No.5.60 th British Stainless Steel Association Issue 02 12 March 2001 Page 1 of 1 Galling and Galling Resistance of Stainless Steels Introduction Galling, or cold welding as it is sometimes referred to as, is a form of severe adhesive wear. Adhesive wear occurs between two metal surfaces that are in relative motion to each other and under sufficient load to permit the transfers of material between themselves. This is a solid-phase welding process. The load must be sufficient, during relative motion, to disrupt the protective oxide layer covering surface asperities of the metal and permit metal to metal contact. Under high stress and poor lubrication conditions, stronger bonds may form over a larger surface area. Large fragments or surface protrusions may be formed and the result is galling of the surfaces. Severe galling can result in the seizure of metal components. Materials which are highly ductile or which possess low work-hardening rates tend to be prone to galling. Austenitic stainless steels show a tendency to gall under certain conditions. Factors Affecting Wear and Galling The factors affecting wear and galling are related to design, lubrication, environment, and steel properties. The material properties relevant to the issue of galling of stainless steels include: - • design tolerances and surface finish of the steel • surface properties (hardness) and structure of the steel • applied load • contact area and degree of movement. Design tolerances should provide sufficient clearance. The contact load on sliding components should be kept to a minimum, while the contact area should be maximised.
    [Show full text]
  • Recall Bulletin
    Bulletin No.: 07035D Date: September 2016 Recall Bulletin PRODUCT SAFETY RECALL SUBJECT: Engine Compartment Fire MODELS: 1997-2003 Buick Regal GS 1997-2003 Pontiac Grand Prix GTP Equipped with a 3.8L V6 Supercharged Engine (RPO L67 – VIN 1) This bulletin is being revised to enhance the Service Procedure with additional information to assure proper sealing of the replacement valve cover gasket, and to add the customer re-contact letter to the end of the bulletin. Please discard all copies of bulletin 07035C. It is a violation of Federal law for a dealer to deliver a new motor vehicle or any new or used item of motor vehicle equipment (including a tire) covered by this notification under a sale or lease until the defect or noncompliance is remedied. All involved vehicles that are in dealer inventory must be held and not delivered to customers, dealer traded, or used for demonstration purposes until the repair contained in this bulletin has been performed on the vehicle. CONDITION General Motors has decided that a defect, which relates to motor vehicle safety, exists in certain 1997-03 model year Buick Regal GS and Pontiac Grand Prix GTP model vehicles, equipped with a 3.8L V6 Supercharged (RPO L67 – VIN 1) engine. Some of these vehicles have a condition in which drops of engine oil may be deposited on the exhaust manifold through hard braking. If this condition occurs, and if a hot surface ignition source were present, an engine compartment fire could occur. CORRECTION Dealers are to replace the engine’s front valve cover and front valve cover gasket with new parts of an improved design.
    [Show full text]
  • Investigation of Micro-Pilot Fuel Ignition System for Large Bore Natural Gas Engines
    2004 Gas Machinery Conference Albuquerque, NM INVESTIGATION OF MICRO-PILOT FUEL IGNITION SYSTEM FOR LARGE BORE NATURAL GAS ENGINES Scott A. Chase, Daniel B. Olsen, and Bryan D. Willson Colorado State University Engines and Energy Conversion Laboratory Mechanical Engineering Department Fort Collins, CO 80523 and oxides of nitrogen (NOx) below their original ABSTRACT design values. The cost of replacing these engines is This investigation assesses the feasibility of a highly prohibitive creating a need for retrofit retrofit diesel micro-pilot ignition system on a technologies to reduce emissions within the current Cooper-Bessemer GMV-4TF two-stroke cycle standards. natural gas engine with a 14” (36 cm) bore and a One of the current retrofit technologies 14” (36 cm) stroke. The pilot fuel injectors are being investigated is a pilot fuel ignition system. installed in a liquid cooled adapter mounted in a Pilot fuel ignition systems have been investigated spark plug hole. The engine is installed with a set of by a number of engine manufactures with a high dual-spark plug heads, with the other spark plug degree of success. Pilot fuel ignition systems used to start the engine. A high pressure, common- implemented on large bore reciprocating engines rail, diesel fuel delivery system is employed and employ natural gas as the primary fuel. Natural gas customizable power electronics control the current is either inducted into the cylinder through an intake signal to the pilot injectors. manifold or directly injected into the cylinder. In Three independent micropilot variables are order to initiate combustion, a small amount of pilot optimized using a Design of Experiments statistical fuel is injected into the cylinder self igniting at technique to minimize a testing variable consisting compression temperatures.
    [Show full text]