Facilitating Emergence: Complex, Adaptive Systems Theory and the Shape of Change Peter Martin Dickens Antioch University - Phd Program in Leadership and Change

Total Page:16

File Type:pdf, Size:1020Kb

Facilitating Emergence: Complex, Adaptive Systems Theory and the Shape of Change Peter Martin Dickens Antioch University - Phd Program in Leadership and Change Antioch University AURA - Antioch University Repository and Archive Student & Alumni Scholarship, including Dissertations & Theses Dissertations & Theses 2012 Facilitating Emergence: Complex, Adaptive Systems Theory and the Shape of Change Peter Martin Dickens Antioch University - PhD Program in Leadership and Change Follow this and additional works at: http://aura.antioch.edu/etds Part of the Health and Medical Administration Commons, Leadership Studies Commons, and the Organizational Behavior and Theory Commons Recommended Citation Dickens, Peter Martin, "Facilitating Emergence: Complex, Adaptive Systems Theory and the Shape of Change" (2012). Dissertations & Theses. 114. http://aura.antioch.edu/etds/114 This Dissertation is brought to you for free and open access by the Student & Alumni Scholarship, including Dissertations & Theses at AURA - Antioch University Repository and Archive. It has been accepted for inclusion in Dissertations & Theses by an authorized administrator of AURA - Antioch University Repository and Archive. For more information, please contact [email protected], [email protected]. FACILITATING EMERGENCE: COMPLEX, ADAPTIVE SYSTEMS THEORY AND THE SHAPE OF CHANGE PETER MARTIN DICKENS A DISSERTATION Submitted to the Ph.D. in Leadership and Change Program of Antioch University in partial fulfillment of the requirements for the degree of Doctor of Philosophy March, 2012 This is to certify that the Dissertation entitled: FACILITATING EMERGENCE IN A HOSPITAL SETTING: COMPLEX, ADAPTIVE SYSTEMS THEORY AND THE SHAPE OF CHANGE prepared by Peter Martin Dickens is approved in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Leadership and Change. Approved by: ________________________________________________________________________ Jon Wergin, Ph.D., Chair date ________________________________________________________________________ Carol Baron, Ph.D., Committee Member date ________________________________________________________________________ Curt Lindberg, D.Man. Committee Member date ________________________________________________________________________ Glenda Eoyang, Ph.D., External Reader date Copyright 2012 Peter Martin Dickens All rights reserved Acknowledgements Like most of my life, the journey to this dissertation has been one of discontinuous change. A friend once told me I have a habit of committing financial suicide by jumping off the tops of very steep learning curves. Looking back, that is certainly true. Why else would someone commit to the cost of a doctorate at the age of 55? Further, as a Canadian pursuing a doctorate at a private American university, I had no available financial support on either side of the border. Such is the risk of developing a passion for things and simply feeling a call that demands you take action, no matter how risky. In regard to that risk, I need to begin and end by acknowledging the incredible support of my wife, companion, and dialogue partner, Marion. Without her unfailing commitment, this doctorate would never have been completed. I returned to university later in life and completed my master’s degree when I was 51, in theological studies no less. In pursuing that degree, another deep passion, I discovered my inner academic and found that I really wanted to pursue more. In that leg of my journey, I was deeply grateful to Ken White, CEO of Trillium Health Centre near Toronto, to whom my thesis was dedicated. It was his support that enabled me to complete my master’s degree. More importantly, he offered me the largest canvas I could ever imagine for exploring the concept of complex, adaptive systems (CAS) within an organizational setting. I joined Trillium as the vice president of organization development at the time when Trillium was formed from the forced merger of two hospitals. Conscious experimentation with CAS theory enabled us to move relatively quickly in forging a unified culture and commitment to quality patient care. It was during this time I first encountered the work of Brenda Zimmerman and Curt Lindberg through their involvement in a large-scale CAS study with the Volunteer Hospital Association. Brenda has become a mentor to me and was central in the deeper development of some of my ideas i during one of my major papers for this doctorate. Curt has been an invaluable member of my dissertation committee. I am deeply indebted to the faculty at Antioch University as well as my classmates. Special mention must go to Dr. Kori Diehl and Dr. Linda Lyshall, as well as Peggy Mark, Michael Guillot, and Chuck Powell who all contributed to the development of the survey that is central to this study. I have come to admire, respect, and truly love my dissertation chair, Jon Wergin. From the time spent at his river house in Virginia, thinking through the research possibilities to the constant encouragement, guidance, and support, he has been integral to this process. Dr. Carol Baron, who guided me, a complete neophyte, through the intricacies of scale development central to this study has also been a source of support, humor, and deep wisdom. I am grateful to all the staff, physicians, and managers at my research site who have been wonderful sources of very rich data. I am particularly thankful to my friend, Marla Fryers, who was unstinting in her support. Finally, I acknowledge my family: my daughters, Lindsey, Shannon, Danielle, and Tamara, as well as my son-in-law, Tolga. They all deserve thanks for their slightly confused good humor whenever I tried to explain my research. The last word of thanks goes to Marion, who has made it all possible. When I was recovering from cancer, she asked me what was on my “bucket list” and a Ph.D. was at the top of the list. From that moment on, she made enormous financial and personal sacrifices and never flinched in her encouragement. The unique philosophy of Antioch encourages spouses to participate actively in each of the residencies. Marion was a regular attendee and became an honorary member of Cohort 7. This arrangement ensured she was deeply familiar with the ii content and structure of the program, which made her a superb coach and accountability partner. This whole thing would never have been possible without her. It’s your turn now, my love. Gloria Dei iii Abstract This study used Principal Component Analysis to examine factors that facilitate emergent change in an organization. As organizational life becomes more complex, today’s dominant management paradigms no longer suffice. This is particularly true in a health care setting where multiple sources of disease interacting with each other meet with often-competing organizational priorities and accountabilities in a highly complex world. This study identifies new ways of approaching complexity by embracing the capacity of complex systems to find their own form of order and coherence. Based on a review of the literature, interviews with hospital CEOs, and my organization development practice experience in the health care sector, I identified nine constructs of interest: a strategic framework; organizational culture; work structures; CEO and executive team; leadership culture; quality control systems; accountability framework; learning structures; and feedback processes. One hundred and sixty-two senior leaders, managers, and staff at a hospital in Toronto, Canada, who had completed an eight-week leadership program, completed an Emergence Survey© based on the nine constructs of interest. The survey included Likert items representing the nine constructs, as well as opportunities to provide narrative feedback. In the initial analysis of the survey results, the items taken as a whole would not converge on a clear set of components. It was also clear that the mean for most of the items was very high. I theorized that the size of the sample and possibility that they were a favorably biased convenience sample because they had self-selected as leaders may have contributed to the lack of convergence and high mean. I then theorized three clusters of constructs, based on what appeared to be natural affinities. At that point I facilitated two focus groups with people who were among the survey group. Both focus groups affirmed the importance of each of the factors in improving organizational performance indicators such as patient satisfaction, staff iv engagement, and quality. I then completed a principal component analysis of each of the three clusters of constructs. From this analysis, seven components emerged. Five of these, executive engagement, safe-fail culture, collaborative decision-processes, a collaborative quality, and intentional learning processes had reliability >.70; culture of experimentation and purposeful orientation had reliability < .70. The electronic version of this Dissertation is at OhioLink ETD Center, www.ohiolink.edu/etd v TABLE OF CONTENTS Acknowledgments i Abstract iv Table of Contents v List of Tables viii Chapter I: Introduction 1 Statement of the Problem 1 Locating the Researcher 7 Rationale for Studying the Problem 10 Statement of Purpose 13 Literature/Research Background 13 Research Questions 15 Methodology 15 Summary 16 Chapter II: Literature Review 17 Introduction 17 Setting the Context: Health Care 17 The Specific Context for This Study: The Ontario Hospital System 21 Introduction to Complexity Science 24 Schools of Thought in the Current Literature 29 Making the Shift to New Metaphors 34 Organizational Ecocycles and Resilience 38 Accepting Complexity for What It Is 45 Broad Definitions of Complex, Adaptive
Recommended publications
  • What Is a Complex Adaptive System?
    PROJECT GUTS What is a Complex Adaptive System? Introduction During the last three decades a leap has been made from the application of computing to help scientists ‘do’ science to the integration of computer science concepts, tools and theorems into the very fabric of science. The modeling of complex adaptive systems (CAS) is an example of such an integration of computer science into the very fabric of science; models of complex systems are used to understand, predict and prevent the most daunting problems we face today; issues such as climate change, loss of biodiversity, energy consumption and virulent disease affect us all. The study of complex adaptive systems, has come to be seen as a scientific frontier, and an increasing ability to interact systematically with highly complex systems that transcend separate disciplines will have a profound affect on future science, engineering and industry as well as in the management of our planet’s resources (Emmott et al., 2006). The name itself, “complex adaptive systems” conjures up images of complicated ideas that might be too difficult for a novice to understand. Instead, the study of CAS does exactly the opposite; it creates a unified method of studying disparate systems that elucidates the processes by which they operate. A complex system is simply a system in which many independent elements or agents interact, leading to emergent outcomes that are often difficult (or impossible) to predict simply by looking at the individual interactions. The “complex” part of CAS refers in fact to the vast interconnectedness of these systems. Using the principles of CAS to study these topics as related disciplines that can be better understood through the application of models, rather than a disparate collection of facts can strengthen learners’ understanding of these topics and prepare them to understand other systems by applying similar methods of analysis (Emmott et al., 2006).
    [Show full text]
  • Organization, Self-Organization, Autonomy and Emergence: Status and Challenges
    Organization, Self-Organization, Autonomy and Emergence: Status and Challenges Sven Brueckner 1 Hans Czap 2 1 New Vectors LLC 3520 Green Court, Suite 250, Ann Arbor, MI 48105-1579, USA Email: [email protected] http://www.altarum.net/~sbrueckner 2 University of Trier, FB IV Business Information Systems I D-54286 Trier, Germany Email: [email protected] http://www.wi.uni-trier.de/ Abstract: Development of IT-systems in application react and adapt autonomously to changing requirements. domains is facing an ever-growing complexity resulting from Therefore, approaches that rely on the fundamental principles a continuous increase in dynamics of processes, applications- of self-organization and autonomy are growing in acceptance. and run-time environments and scaling. The impact of this Following such approaches, software system functionality trend is amplified by the lack of central control structures. As is no longer explicitly designed into its component processes a consequence, controlling this complexity and dynamics is but emerges from lower-level interactions that are one of the most challenging requirements of today’s system purposefully unaware of the system-wide behavior. engineers. Furthermore, organization, the meaningful progression of The lack of a central control instance immediately raises local sensing, processing and action, is achieved by the the need for software systems which can react autonomously system components themselves at runtime and in response to to changing environmental requirements and conditions. the current state of the environment and the problem that is to Therefore, a new paradigm is necessary how to build be solved, rather than being enforced from the “outside” software systems changing radically the way one is used to through design or external control.
    [Show full text]
  • Adaptive Capacity and Traps
    Copyright © 2008 by the author(s). Published here under license by the Resilience Alliance. Carpenter, S. R., and W. A. Brock. 2008. Adaptive capacity and traps. Ecology and Society 13(2): 40. [online] URL: http://www.ecologyandsociety.org/vol13/iss2/art40/ Insight Adaptive Capacity and Traps Stephen R. Carpenter 1 and William A. Brock 1 ABSTRACT. Adaptive capacity is the ability of a living system, such as a social–ecological system, to adjust responses to changing internal demands and external drivers. Although adaptive capacity is a frequent topic of study in the resilience literature, there are few formal models. This paper introduces such a model and uses it to explore adaptive capacity by contrast with the opposite condition, or traps. In a social– ecological rigidity trap, strong self-reinforcing controls prevent the flexibility needed for adaptation. In the model, too much control erodes adaptive capacity and thereby increases the risk of catastrophic breakdown. In a social–ecological poverty trap, loose connections prevent the mobilization of ideas and resources to solve problems. In the model, too little control impedes the focus needed for adaptation. Fluctuations of internal demand or external shocks generate pulses of adaptive capacity, which may gain traction and pull the system out of the poverty trap. The model suggests some general properties of traps in social–ecological systems. It is general and flexible, so it can be used as a building block in more specific and detailed models of adaptive capacity for a particular region. Key Words: adaptation; allostasis; model; poverty trap; resilience; rigidity trap; transformation INTRODUCTION it seems empty of ideas, it will be abandoned or transformed into something else.
    [Show full text]
  • 1 Emergence of Universal Grammar in Foreign Word Adaptations* Shigeko
    1 Emergence of Universal Grammar in foreign word adaptations* Shigeko Shinohara, UPRESA 7018 University of Paris III/CNRS 1. Introduction There has been a renewal of interest in the study of loanword phonology since the recent development of constraint-based theories. Such theories readily express target structures and modifications that foreign inputs are subject to (e.g. Paradis and Lebel 1994, Itô and Mester 1995a,b). Depending on how the foreign sounds are modified, we may be able to make inferences about aspects of the speaker's grammar for which the study of the native vocabulary is either inconclusive or uninformative. At the very least we expect foreign words to be modified in accordance with productive phonological processes and constraints (Silverman 1992, Paradis and Lebel 1994). It therefore comes as some surprise when patterns of systematic modification arise for which the rules and constraints of the native system have nothing to say or even worse contradict. I report a number of such “emergent” patterns that appear in our study of the adaptations of French words by speakers of Japanese (Shinohara 1997a,b, 2000). I claim that they pose a learnability problem. My working hypothesis is that these emergent patterns are reflections of Universal Grammar (UG). This is suggested by the fact that the emergent patterns typically correspond to well-established crosslinguistic markedness preferences that are overtly and robustly attested in the synchronic phonologies of numerous other languages. It is therefore natural to suppose that these emergent patterns follow from the default parameter settings or constraint rankings inherited from the initial stages of language acquisition that remain latent in the mature grammar.
    [Show full text]
  • Clunio Populations to Different Tidal Conditions
    Genetic adaptation in emergence time of Clunio populations to different tidal conditions DIETRICH NEUMANN Zoologisches Institut der Universitiit Wiirzburg, Wiirzburg KURZFASSUNG: Genetische Adaptation der Schliipfzeiten yon Clunio-Populationen an verschiedene Gezeitenbedingungen. Die Schliipfzeiten der in der Gezeitenzone Iebenden Clunio-Arten (Diptera, Chironomidae) sind mit bestimmten Wasserstandsbedingungen syn- chronisiert, und zwar derart, dat~ die nnmittelbar anschlief~ende Fortpflanzung der kurz- lebigen Imagines auf dem trockengefallenen Habitat stattfinden kann. Wenn das Habitat einer Clunio-Art in der mittleren Gezeitenzone liegt und parallel zu dem halbt~igigen Gezeiten- zyklus (T = 12,4 h) zweimal t~iglich auftaucht, dann kann sich eine 12,4stiindige Schliipf- periodik einstellen (Beispiel: Clunio takahashii). Wenn das Habitat in der unteren Gezeiten- zone liegt und nur um die Zeit der Springtiden auftaucht, dann ist eine 15t~igige (semilunare) SchRipfperiodik zu erwarten (Beispiele: Clunio marinus und C. mecliterraneus). Diese 15t~igige Schliipfperiodik ist synchronisiert mit bestimmten Niedrigwasserbedingungen, die an einem Kiistenort alle 15 Tage jewqils um die gleiche Tageszeit auftreten. Sie wird daher dutch zwei Daten eindeutig gekennzeichnet: (1) die lunaren Schliipftage (wenige aufeinanderfolgende Tage um Voll- und Neumond) und (2) die t~igliche Schliipfzeit. Wie experimentelle Untersuchungen iiber die Steuerung der Schliipfperiodik zeigten, kiSnnen die Tiere beide Daten richtig voraus- bestimmen. Die einzelnen Kiistenpopulationen
    [Show full text]
  • Control Theory
    Control theory S. Simrock DESY, Hamburg, Germany Abstract In engineering and mathematics, control theory deals with the behaviour of dynamical systems. The desired output of a system is called the reference. When one or more output variables of a system need to follow a certain ref- erence over time, a controller manipulates the inputs to a system to obtain the desired effect on the output of the system. Rapid advances in digital system technology have radically altered the control design options. It has become routinely practicable to design very complicated digital controllers and to carry out the extensive calculations required for their design. These advances in im- plementation and design capability can be obtained at low cost because of the widespread availability of inexpensive and powerful digital processing plat- forms and high-speed analog IO devices. 1 Introduction The emphasis of this tutorial on control theory is on the design of digital controls to achieve good dy- namic response and small errors while using signals that are sampled in time and quantized in amplitude. Both transform (classical control) and state-space (modern control) methods are described and applied to illustrative examples. The transform methods emphasized are the root-locus method of Evans and fre- quency response. The state-space methods developed are the technique of pole assignment augmented by an estimator (observer) and optimal quadratic-loss control. The optimal control problems use the steady-state constant gain solution. Other topics covered are system identification and non-linear control. System identification is a general term to describe mathematical tools and algorithms that build dynamical models from measured data.
    [Show full text]
  • Ophthalmology and the Emergence of Artificial Intelligence
    Perspectives Ophthalmology and the emergence of artificial intelligence Rapid advances in AI in ophthalmology are a harbinger of things to come for other fields of medicine he autonomous detection and triage of eye for retinopathy using retinal photography. This disease, or even accurate estimations of gender, vast demand for diabetic eye screening services Tage, and blood pressure from a simple retinal has stimulated the development of AI algorithms to photo, may sound like the realms of science fiction, identify sight-threatening disease. Several algorithms but advances in artificial intelligence (AI) have already have achieved performance that meets or exceeds that made this a reality.1 Ophthalmology is at the vanguard of human experts.4,5 Accordingly, in 2018, the United of the development and clinical application of AI. States Food and Drug Administration approved an AI Advances in the field may provide useful insights into system to detect referable diabetic retinopathy from the application of this technology in health care more retinal photographs, the first autonomous diagnostic broadly. system to be approved in any field of medicine.6 Advances in deep learning have extended to other Artificial intelligence imaging modalities that are commonly used in ophthalmology. Ocular coherence tomography is an Once described as the capacity of intelligent machines imaging technology that produces highly detailed, to imitate human intelligence and behaviour, AI now depth-resolved images of the retina. A recent describes many theories and practices used to achieve collaboration between researchers and clinicians computer intelligence (Box 1).2 Machine learning is at Google DeepMind, Moorfields Eye Hospital an application of AI that uses algorithms or statistical and University College London culminated in the models to make decisions or predictions.
    [Show full text]
  • Systems That Adapt to Their Users
    Systems That Adapt to Their Users Anthony Jameson and Krzysztof Z. Gajos DFKI, German Research Center for Artificial Intelligence Harvard School of Engineering and Applied Sciences Introduction This chapter covers a broad range of interactive systems which have one idea in common: that it can be worthwhile for a system to learn something about individual users and adapt its behavior to them in some nontrivial way. A representative example is shown in Figure 20.1: the COMMUNITYCOMMANDS recommender plug-in for AUTO- CAD (introduced by Matejka, Li, Grossman, & Fitzmau- rice, 2009, and discussed more extensively by Li, Mate- jka, Grossman, Konstan, & Fitzmaurice, 2011). To help users deal with the hundreds of commands that AUTO- CAD offers—of which most users know only a few dozen— COMMUNITYCOMMANDS (a) gives the user easy access to several recently used commands, which the user may want to invoke again soon; and (b) more proactively suggests com- mands that this user has not yet used but may find useful, Figure 20.1: Screenshot showing how COMMUNITY- given the type of work they have been doing recently. COMMANDS recommends commands to a user. (Image supplied by Justin Matejka. The length of the darker bar for a com- Concepts mand reflects its estimated relevance to the user’s activities. When the user A key idea embodied in COMMUNITYCOMMANDS and the hovers over a command in this interface, a tooltip appears that explains the command and might show usage hints provided by colleagues. See also other systems discussed in this chapter is that of adapta- http://www.autodesk.com/research.) tion to the individual user.
    [Show full text]
  • The Emergence of Artificial Intelligence in the Home: Products, Services, and Broader
    Western Oregon University Digital Commons@WOU Student Theses, Papers and Projects (Computer Department of Computer Science Science) 3-8-2017 The meE rgence of Artificial Intelligence in the Home: Products, Services, and Broader Developments of Consumer Oriented AI Bingqing Tang [email protected] Follow this and additional works at: https://digitalcommons.wou.edu/ computerscience_studentpubs Part of the Management Information Systems Commons Recommended Citation Tang, Bingqing, "The meE rgence of Artificial Intelligence in the Home: Products, Services, and Broader Developments of Consumer Oriented AI" (2017). Student Theses, Papers and Projects (Computer Science). 6. https://digitalcommons.wou.edu/computerscience_studentpubs/6 This Professional Project is brought to you for free and open access by the Department of Computer Science at Digital Commons@WOU. It has been accepted for inclusion in Student Theses, Papers and Projects (Computer Science) by an authorized administrator of Digital Commons@WOU. For more information, please contact [email protected]. The Emergence of Artificial Intelligence in the Home: Products, Services, and Broader Developments of Consumer Oriented AI Bingqing Tang IS642 MIS Graduate Project Dr. David Olson, Dr. John Leadley & Dr. Scot Morse March 15, 2017 Tang 1 Abstract Current home automation system merges a family's lifestyle with the latest technology & energy management tools to simplify people's lives. It allows users to easily manipulate a variety of home systems, including appliances, security systems, and environmental systems. Setting up a home automation system confuses many consumers. Multiple product lines and platforms make choosing the best system difficult. Basic requirements of setting up a home automations system and the comparison between different platforms are explained.
    [Show full text]
  • Systems Theory
    1 Systems Theory BRUCE D. FRIEDMAN AND KAREN NEUMAN ALLEN iopsychosocial assessment and the develop - nature of the clinical enterprise, others have chal - Bment of appropriate intervention strategies for lenged the suitability of systems theory as an orga - a particular client require consideration of the indi - nizing framework for clinical practice (Fook, Ryan, vidual in relation to a larger social context. To & Hawkins, 1997; Wakefield, 1996a, 1996b). accomplish this, we use principles and concepts The term system emerged from Émile Durkheim’s derived from systems theory. Systems theory is a early study of social systems (Robbins, Chatterjee, way of elaborating increasingly complex systems & Canda, 2006), as well as from the work of across a continuum that encompasses the person-in- Talcott Parsons. However, within social work, sys - environment (Anderson, Carter, & Lowe, 1999). tems thinking has been more heavily influenced by Systems theory also enables us to understand the the work of the biologist Ludwig von Bertalanffy components and dynamics of client systems in order and later adaptations by the social psychologist Uri to interpret problems and develop balanced inter - Bronfenbrenner, who examined human biological vention strategies, with the goal of enhancing the systems within an ecological environment. With “goodness of fit” between individuals and their its roots in von Bertalanffy’s systems theory and environments. Systems theory does not specify par - Bronfenbrenner’s ecological environment, the ticular theoretical frameworks for understanding ecosys tems perspective provides a framework that problems, and it does not direct the social worker to permits users to draw on theories from different dis - specific intervention strategies.
    [Show full text]
  • Information Systems Foundations Theory, Representation and Reality
    Information Systems Foundations Theory, Representation and Reality Information Systems Foundations Theory, Representation and Reality Dennis N. Hart and Shirley D. Gregor (Editors) Workshop Chair Shirley D. Gregor ANU Program Chairs Dennis N. Hart ANU Shirley D. Gregor ANU Program Committee Bob Colomb University of Queensland Walter Fernandez ANU Steven Fraser ANU Sigi Goode ANU Peter Green University of Queensland Robert Johnston University of Melbourne Sumit Lodhia ANU Mike Metcalfe University of South Australia Graham Pervan Curtin University of Technology Michael Rosemann Queensland University of Technology Graeme Shanks University of Melbourne Tim Turner Australian Defence Force Academy Leoni Warne Defence Science and Technology Organisation David Wilson University of Technology, Sydney Published by ANU E Press The Australian National University Canberra ACT 0200, Australia Email: [email protected] This title is also available online at: http://epress.anu.edu.au/info_systems02_citation.html National Library of Australia Cataloguing-in-Publication entry Information systems foundations : theory, representation and reality Bibliography. ISBN 9781921313134 (pbk.) ISBN 9781921313141 (online) 1. Management information systems–Congresses. 2. Information resources management–Congresses. 658.4038 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the publisher. Cover design by Brendon McKinley with logo by Michael Gregor Authors’ photographs on back cover: ANU Photography Printed by University Printing Services, ANU This edition © 2007 ANU E Press Table of Contents Preface vii The Papers ix Theory Designing for Mutability in Information Systems Artifacts, Shirley Gregor and Juhani Iivari 3 The Eect of the Application Domain in IS Problem Solving: A Theoretical Analysis, Iris Vessey 25 Towards a Unied Theory of Fit: Task, Technology and Individual, Michael J.
    [Show full text]
  • Emergent Behavior in Systems of Systems John S
    Emergent Behavior in Systems of Systems John S. Osmundson Thomas V. Huynh Department of Information Sciences Department of Systems Engineering Naval Postgraduate School Naval Postgraduate School 1 University Circle 1 University Circle Monterey, CA 93943, USA Monterey, CA 93943, USA [email protected] [email protected] Gary O. Langford Department of Systems Engineering Naval Postgraduate School 1 University Circle Monterey, CA 93943 [email protected] Copyright © 2008 by John Osmundson, Thomas Huynh and Gary Langford. Published and used by INCOSE with permission. Abstract. As the development of systems of systems becomes more important in global ventures, so does the issues of emergent behavior. The challenge for systems engineers is to predict and analyze emergent behavior, especially undesirable behavior, in systems of systems. In this paper we briefly discuss definitions of emergent behavior, describe a large-scale system of system that exhibits emergent behavior, review previous approaches to analyzing emergent behavior, and then present a system modeling and simulation approach that has promise of allowing systems engineers to analyze potential emergent behavior in large scale systems of systems. Introduction Recently there has been increased interest in what has been become known as systems of systems (SoS) and SoS engineering. Examples of SoS are military command, control, computer, communications and information (C4I) systems (Pei 2000), intelligence, surveillance and reconnaissance (ISR) systems (Manthrope 1996), intelligence collection management systems (Osmundson et al 2006a), electrical power distribution systems (Casazza and Delea 2000) and food chains (Neutel 2002.), among others. Much of this current interest in SoS is focused on the desire to integrate existing systems to achieve new capabilities that are unavailable by operation of any of the existing single individual systems.
    [Show full text]