EN 302 288-1 V1.1.1 (2004-03) European Standard (Telecommunications Series)

Total Page:16

File Type:pdf, Size:1020Kb

EN 302 288-1 V1.1.1 (2004-03) European Standard (Telecommunications Series) Draft ETSI EN 302 288-1 V1.1.1 (2004-03) European Standard (Telecommunications series) Electromagnetic compatibility and Radio spectrum Matters (ERM); Short Range Devices; Road Transport and Traffic Telematics (RTTT); Short range radar equipment operating in the 24 GHz range; Part 1: Technical requirements and methods of measurement 2 Draft ETSI EN 302 288-1 V1.1.1 (2004-03) Reference DEN/ERM-TG31B-002-1 Keywords radar, radio, testing, SRD, RTTT ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, send your comment to: [email protected] Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. © European Telecommunications Standards Institute 2004. All rights reserved. DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members. TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members. 3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. ETSI 3 Draft ETSI EN 302 288-1 V1.1.1 (2004-03) Contents Intellectual Property Rights................................................................................................................................6 Foreword.............................................................................................................................................................6 1 Scope ........................................................................................................................................................7 2 References ................................................................................................................................................7 3 Definitions, symbols and abbreviations ...................................................................................................8 3.1 Definitions..........................................................................................................................................................8 3.2 Symbols..............................................................................................................................................................9 3.3 Abbreviations ...................................................................................................................................................10 4 Technical requirements specifications ...................................................................................................11 4.1 Presentation of equipment for testing purposes................................................................................................11 4.1.1 Choice of model for testing ........................................................................................................................11 4.2 Mechanical and electrical design......................................................................................................................11 4.3 Auxiliary test equipment ..................................................................................................................................11 4.4 Interpretation of the measurement results ........................................................................................................11 5 Test conditions, power sources and ambient temperatures ....................................................................12 5.1 Normal and extreme test conditions .................................................................................................................12 5.2 External test power source................................................................................................................................12 5.3 Normal test conditions......................................................................................................................................12 5.3.1 Normal temperature and humidity..............................................................................................................12 5.3.2 Normal test power source ...........................................................................................................................12 5.3.2.1 Mains voltage........................................................................................................................................12 5.3.2.2 Other power sources..............................................................................................................................12 5.4 Extreme test conditions ....................................................................................................................................13 5.4.1 Extreme temperatures .................................................................................................................................13 5.4.1.1 Procedure for tests at extreme temperatures..........................................................................................13 5.4.1.2 Extreme temperature ranges..................................................................................................................13 5.4.2 Extreme test source voltages.......................................................................................................................13 5.4.2.1 Mains voltage........................................................................................................................................13 5.4.2.2 Other power sources..............................................................................................................................13 6 General conditions..................................................................................................................................13 6.1 Test fixture .......................................................................................................................................................13 6.1.1 Radio equipment operating in the 21,625 GHz to 26,625 GHz band .........................................................13 6.1.2 Calibration ..................................................................................................................................................14 6.1.3 General requirements for RF cables............................................................................................................16 6.1.4 Schielded anechoic chamber.......................................................................................................................16 7 Methods of measurement and limits for transmitter parameters ............................................................18 7.1 Methods of measurement and limits for transmitters in the 21,625 GHz to 26,625 GHz band........................18 7.1.1 Permitted range of operating frequencies ...................................................................................................18 7.1.1.1 Definition ..............................................................................................................................................18 7.1.1.2 Method of measurement........................................................................................................................18 7.1.1.3 Limits ....................................................................................................................................................19 7.1.2 Maximum radiated average power density (e.i.r.p.) ...................................................................................19 7.1.2.1 Definition ..............................................................................................................................................19 7.1.2.2 Method of measurement........................................................................................................................19 7.1.2.3 Limits ....................................................................................................................................................20 7.1.3 Maximum radiated peak power density (e.i.r.p.) ........................................................................................21 7.1.3.1 Definition ..............................................................................................................................................21 7.1.3.2 Method of measurement for 21,625 to 24,05 GHz and 24,25 to 26,625 GHz.......................................21 7.1.3.2.1 Standard procedure and setup extensions ........................................................................................22
Recommended publications
  • Maintenance of Remote Communication Facility (Rcf)
    ORDER rlll,, J MAINTENANCE OF REMOTE commucf~TIoN FACILITY (RCF) EQUIPMENTS OCTOBER 16, 1989 U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION AbMINISTRATION Distribution: Selected Airway Facilities Field Initiated By: ASM- 156 and Regional Offices, ZAF-600 10/16/89 6580.5 FOREWORD 1. PURPOSE. direction authorized by the Systems Maintenance Service. This handbook provides guidance and prescribes techni- Referenceslocated in the chapters of this handbook entitled cal standardsand tolerances,and proceduresapplicable to the Standardsand Tolerances,Periodic Maintenance, and Main- maintenance and inspection of remote communication tenance Procedures shall indicate to the user whether this facility (RCF) equipment. It also provides information on handbook and/or the equipment instruction books shall be special methodsand techniquesthat will enablemaintenance consulted for a particular standard,key inspection element or personnel to achieve optimum performancefrom the equip- performance parameter, performance check, maintenance ment. This information augmentsinformation available in in- task, or maintenanceprocedure. struction books and other handbooks, and complements b. Order 6032.1A, Modifications to Ground Facilities, Order 6000.15A, General Maintenance Handbook for Air- Systems,and Equipment in the National Airspace System, way Facilities. contains comprehensivepolicy and direction concerning the development, authorization, implementation, and recording 2. DISTRIBUTION. of modifications to facilities, systems,andequipment in com- This directive is distributed to selectedoffices and services missioned status. It supersedesall instructions published in within Washington headquarters,the FAA Technical Center, earlier editions of maintenance technical handbooksand re- the Mike Monroney Aeronautical Center, regional Airway lated directives . Facilities divisions, and Airway Facilities field offices having the following facilities/equipment: AFSS, ARTCC, ATCT, 6. FORMS LISTING. EARTS, FSS, MAPS, RAPCO, TRACO, IFST, RCAG, RCO, RTR, and SSO.
    [Show full text]
  • Use of GIS in Radio Frequency Planning and Positioning Applications
    Use of GIS in Radio Frequency Planning and Positioning Applications Victoria R. Jewell Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering R. Michael Buehrer, Chair Peter M. Sforza Jeffrey H. Reed July 3, 2014 Blacksburg, Virginia Keywords: GIS, RF Modeling, Positioning Copyright 2014, Victoria R. Jewell Use of GIS in Radio Frequency Planning and Positioning Applications Victoria R. Jewell (ABSTRACT) GIS are geoprocessing programs that are commonly used to store and perform calculations on terrain data, maps, and other geospatial data. GIS offer the latest terrain and building data as well as tools to process this data. This thesis considers three applications of GIS data and software: a Large Scale Radio Frequency (RF) Model, a Medium Scale RF Model, and Indoor Positioning. The Large Scale RF Model estimates RF propagation using the latest terrain data supplied in GIS for frequencies ranging from 500 MHz to 5 GHz. The Medium Scale RF Model incorporates GIS building data to model WiFi systems at 2.4 GHz for a range of up to 300m. Both Models can be used by city planners and government officials, who commonly use GIS for other geospatial and geostatistical information, to plan wireless broadband systems using GIS. An Indoor Positioning Experiment is also conducted to see if apriori knowledge of a building size, location, shape, and number of floors can aid in the RF geolocation of a target indoors. The experiment shows that correction of a target to within a building's boundaries reduces the location error of the target, and the vertical error is reduced by nearly half.
    [Show full text]
  • Citizens' Band (CB) Radio Spectrum Use – Information and Operation
    Citizens’ Band Radio equipment– information and operation Citizens’ Band (CB) radio spectrum use – information and operation Of 364 Guidance Publication date: March 2018 Citizens’ Band Radio equipment– information and operation Contents Section Page 1 Regulatory and equipment information 1 2 Frequently asked questions 5 3 CB operating practice 8 Citizens’ Band Radio equipment– information and operation Section 1 Regulatory and equipment information Citizens’ Band (‘CB’) radio 1.1 Citizens’ Band (‘CB’) radio operates in the 27 MHz band. It is a short-range radio service for both hobby and business use. It is designed to be used without the need for technical qualifications. However, its use must not cause interference to other radio users. Consequently, only radios meeting certain specific requirements may be used. These are described below. How Ofcom authorises the use of CB radio 1.2 Ofcom seeks to reduce regulation, where possible. In 2006, we therefore made exemption regulations1, removing the need for a person to hold a licence to operate CB radio equipment using Angle Modulation (FM/PM). 1.3 In 2014, Ofcom made further exemption regulations2, which permitted the operation of CB radio equipment using two additional modes of Amplitude Modulation (AM) - Double Side Band (DSB) and Single Side Band (SSB). This followed an international agreement3 made in 2011.”. 1.4 CB users share spectrum in a frequency band used by the Ministry of Defence (MOD). CB users must therefore accept incoming interference caused by use of this spectrum by the MOD. 1.5 CB radio equipment must be operated on a 'non-interference’ basis.
    [Show full text]
  • Recommendation ITU-R V.573-4
    Rec. ITU-R V.573-5 1 RECOMMENDATION ITU-R V.573-5* Radiocommunication vocabulary (1978-1982-1986-1990-2000-2007) Scope This Recommendation provides the main vocabulary reference, giving synonymous terms in three languages and the associated definitions. It includes terms given in Article 1 of the Radio Regulations (RR) and extends the list to technical terms defined in texts of the ITU-R. The ITU Radiocommunication Assembly, considering a) that Article 1 of the Radio Regulations (RR) contains the definitions of terms for regulatory purposes; b) that the Radiocommunication Study Groups have a need to establish new and amended definitions for technical terms that do not appear in RR Article 1 or that are so defined as to be unsuitable for Radiocommunication Study Group purposes; c) that it would be desirable for some of these terms and definitions established by the Radiocommunication Study Groups to be more widely used within the ITU-R, recommends that the terms listed in RR Article 1 and in Annex 1 below should be used as far as possible with the meaning ascribed to them in the corresponding definition. NOTE 1 – Study Groups are invited, where there is a difficulty in using any of the terms with the meaning given in the corresponding definition, to forward to the Coordination Committee for Vocabulary (CCV) a proposal for revision or alternative application, accompanied by substantiating argument. NOTE 2 – A number of terms in this Recommendation appear also in RR Article 1 with a different definition. These terms are identified by (RR . ., MOD) or (RR . .(MOD)) if the modifications consist only of editorial changes.
    [Show full text]
  • Regulation on Collective Frequencies for Licence-Exempt Radio Transmitters and on Their Use
    FICORA 15 AIH/2015 M 1 (22) Unofficial translation Regulation on collective frequencies for licence-exempt radio transmitters and on their use Issued in Helsinki on 6 February 2015 The Finnish Communications Regulatory Authority (FICORA) has, under section 39(3 and 4) of the Information Society Code of 7 November 2014 (917/2014), laid down: Chapter 1 General provisions Section 1 The oObjective of the Regulation This Regulation lays down provisions on collective frequencies for as well as use and registration of such radio transmitters whose conformity with requirements has been attested in such a way as laid down in the Information Society Code, and for the possession and use of which a radio licence is not required. Section 2 Scope of application This Regulation applies to the following radio transmitters which operate only on the collective frequencies assigned in this Regulation and whose conformity with requirements has been attested in such a way as mentioned in section 257 or section 352 of the Information Society Code: 1) cordless CT1 telephones taken into use on 31 December 2003 at the latest, cordless CT2 telephones taken into use on 31 December 2004 at the latest, and DECT equipment; 2) mobile terminals and other terminals for GSM, UMTS, digital broadband mobile networks and terrestrial systems capable of providing electronic communications services; 3) LA telephones (national Citizen Band equipment) which have been approved according to the regulations of 25 March 1981 by the General Directorate of Posts and Telecommunications
    [Show full text]
  • Antennas for 136Khz Index
    ON7YD, longwave, 136kHz, antennas Page 1 of 51 ON7YD Antennas for 136kHz About this page : The main object of this page is to provide information. It has been deliberately kept simple, no fancy and flashy tricks, in order to achieve maximum compatibility for the different browsers and to allow fast downloading. Any comments and/or suggestions are welcome at : [email protected] last updated on 8 July 2004 Index 1. Introduction 2. Short vertical antennas 1. Vertical monopole antenna 2. Short vertical monopole 3. Vertical antenna with capacitive toploading 4. Umbrella antenna 5. Capacitive toploading of single-tower antennas 6. Spiral toploaded antenna 7. Vertical antenna with inductive toploading 8. Vertical antenna with capacitive and inductive toploading 9. Vertical antenna with tuned counterpoise 10. Meander antenna 11. Antenna with multiple vertical elements 12. Using a non isolated antenna-tower as LF-antenna 13. Antennas with a long horizontal section 14. Helical antenna 15. Short vertical dipole 16. Why a horizontal dipole is a rather unefficient antenna on LF 17. Safety precautions 18. Bringing a short vertical monopole to resonance 1. Loading coil 2. Coil losses : the Q-factor 3. Variometer 4. Tapped coil 5. Impedance matching 6. Bandwidth considerations 3. Efficiency of antenna systems on LF (short vertical antennas) 1. Antenna system 2. Efficiency 3. Antenna system efficiency, antenna directivity, ERP, EIRP and EMRP 4. Optimizing the antenna system efficiency 5. Enviromental losses 6. Ground loss 1. Type (composition) of the soil 2. Frequency 3. Shape and dimensions of the antenna 4. Radial system and ground rods 4. Measuring ERP on LF http://www.qsl.net/on7yd/136ant.htm 12/19/2006 ON7YD, longwave, 136kHz, antennas Page 2 of 51 1.
    [Show full text]
  • The Transatlantic on 2200 Meters
    The Transatlantic on 2200 Meters Joe Craig, VO1NA and Alan Melia, G3NYK here has been much excite- ment below our so-called top Longing for the days when amateurs built band at 1.8 MHz. At less than T one-tenth this frequency, near their own gear and DX was big news? 136 kHz, you will find many amateurs en- joying QSOs using a variety of modes. Al- They’re back again...on the “top” top band. though US and Canadian amateurs need special permission to transmit here, there is a 2200 meter amateur band in many pared with the thickness (about 30 km) of in north Nova Scotia. Other, regularly heard European countries and in New Zealand. the daytime absorbing D-layer. Unlike HF calls in the early days of tests was the well Aside from its low frequency, the most strik- frequencies, LF has a substantial ground- known MF station of Jack, VE1ZZ and the ing thing about the 135.8-138.8 kHz band is wave service area, with the wave front being late Larry Kayser, VA3LK. its narrow width—only 2.1 kHz, barely wide bent to follow the curvature of the Earth to Daytime propagation is mainly ground enough to admit a single SSB transmission. some extent. In daytime, there is an absorb- wave, but at extreme range (in excess of Huge sources of interference are present ing ionized region, formed by photo-disso- 1500 km) there is a significant daytime in the band. In Greece, the Navy transmitter ciation, which corresponds to the D-layer ionospheric component.
    [Show full text]
  • ITU-R RECOMMENDATION F.1096 (09-1994) Methods of Calculating Line-Of-Sight Interference Into Radio-Relay Systems to Account
    Rec. ITU-R F.1096 1 RECOMMENDATION ITU-R F.1096 METHODS OF CALCULATING LINE-OF-SIGHT INTERFERENCE INTO RADIO-RELAY SYSTEMS TO ACCOUNT FOR TERRAIN SCATTERING* (Question ITU-R 129/9) (1994) Rec. ITU-R F.1096 The ITU Radiocommunication Assembly, considering a) that interference from other radio-relay systems and other services can affect the performance of a line-of-sight radio-relay system; b) that the signal power from the transmitting antenna in one system may propagate as interference to the receiving antenna of another system by a line-of-sight great-circle path; c) that the signal power from the transmitting antenna in one system may propagate as interference to the receiving antenna of another system by the mechanism of scattering from natural or man-made features on the surface of the Earth; d) that terrain regions that produce the coupling of this interference may not be close to the great-circle path, but must be visible to both the interfering transmit antenna and the receive antenna of the interfered system; e) that the component of interference power that results from terrain scattering can significantly exceed the interference power that arrives by the great-circle path between the antennas; f) that efficient techniques have been developed for calculating the power of the interference scattered from terrain, recommends 1. that the effects of terrain scatter, when relevant, should be included in calculations of interference power when the interference is due to signals from the transmitting antenna of one system into the receiving antenna of another and when either or both of the following conditions apply (see Note 1): 1.1 there is a line-of-sight propagation path between the transmitting antenna of the interfering system and the receiving antenna of the interfered system; 1.2 there are natural, or man-made, features on the surface of the Earth that are visible from both the interfering transmit antenna and the interfered receive antenna; 2.
    [Show full text]
  • Etsi En 302 208 V3.1.1 (2016-11)
    ETSI EN 302 208 V3.1.1 (2016-11) HARMONISED EUROPEAN STANDARD Radio Frequency Identification Equipment operating in the band 865 MHz to 868 MHz with power levels up to 2 W and in the band 915 MHz to 921 MHz with power levels up to 4 W; Harmonised Standard covering the essential requirements of article 3.2 of the Directive 2014/53/EU 2 ETSI EN 302 208 V3.1.1 (2016-11) Reference REN/ERM-TG34-264 Keywords harmonised standard, ID, radio, RFID, SRD ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice The present document can be downloaded from: http://www.etsi.org/standards-search The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
    [Show full text]
  • Low RF Power Harvesting Circuit for Wireless Sensor Nodes in Industrial Plants
    Low RF Power Harvesting Circuit for Wireless Sensor Nodes In Industrial Plants Issam Chaour∗† Olfa Kanoun∗ and Ahmed Fakhfakh† ∗Chair for Measurement and Sensor Technology, Technische Universitat¨ Chemnitz , GERMANY †National Engineering School of Sfax, University of Sfax, Sfax, TUNISIA Email: [email protected] Abstract—Techniques and methods of energy harvesting are developed to recuperate energy coming from the ambiance to be transmitted to electronic systems. Energy should be useful in specific applications, to generate a certain voltage level and make capable of delivering a recommended Power to the load. So, the main challenge for energy harvesting is to obtain a significant amount of power efficiently from the environment. This paper describes an overview of power transfer systems and methods of charging low power sensors in industrial plants using harvested RF signals. It introduces a scheme investigation of the RF harvester consisting of receiver antenna and a rectifier circuit to convert the RF signal to DC voltage. Low power consumption Fig. 1. System diagram for RF energy harvesting sensor application. circuits are used to achieve the target of highest conceivable efficiency in order to produce the maximum power transfer. Index Terms—RF Energy Harvesting; wireless sensor network; RF power transmission; industrial plants. or microwave energy [3]. In this paper, we explore a potential method to this challenges for recharging wireless sensor nodes I. INTRODUCTION by RF Power transmission and harvesting energy from RF ambient sources. The transmitted RF energy is captured by Many wireless sensor node architectures are adopted for use a receiver antenna, transformed into microwatts (µW) to low in a wireless access point, listen and control system.
    [Show full text]
  • Federal Communications Commission § 90.729
    § 87.525 47 CFR Ch. I (10–1–20 Edition) (1) The output power shall not exceed airport must be submitted with an ap- ¥3 dBm watts for each frequency au- plication. thorized. (c) Only one AWOS, ASOS, or ATIS (2) The antenna used in transmitting will be licensed at an airport. the audible warnings must be omnidirectional with a maximum gain [53 FR 28940, Aug. 1, 1988, as amended at 64 equal to or lower than a half-wave FR 27476, May 20, 1999] centerfed dipole above 30 degrees ele- § 87.529 Frequencies. vation, and a maximum gain of + 5 dBi from horizontal up to 30 degrees ele- Prior to submitting an application, vation. each applicant must notify the applica- (3) The audible warning shall not ex- ble FAA Regional Frequency Manage- ceed two seconds in duration. No more ment Office. Each application must be than six audible warnings may be accompanied by a statement showing transmitted in a single transmit cycle, the name of the FAA Regional Office which shall not exceed 12 seconds in and date notified. The Commission will duration. An interval of at least twen- assign the frequency. Normally, fre- ty seconds must occur between trans- quencies available for air traffic con- mit cycles. trol operations set forth in subpart E will be assigned to an AWOS, ASOS, or [78 FR 61207, Oct. 3, 2013] to an ATIS. When a licensee has en- tered into an agreement with the FAA Subpart R [Reserved] to operate the same station as both an AWOS and as an ATIS, or as an ASOS Subpart S—Automatic Weather and an ATIS, the same frequency will Stations (AWOS/ASOS) be used in both modes of operation.
    [Show full text]
  • Amateur Radio Notes
    Ham Radio – General Exam – Study Notes Frequency: 300/meter = MHz or 300/MHz = meters Dipole Antenna: ½ Wave dipole antennas = 468/Frequency Silicon – Seven letters = diode threshold of .07v Geranium – 3x3 letters = diode threshold of .03v NAND and ZERO both four letters QRQ = Quicker QRS = Slower QRV = ReceiVe CapACitors pass AC inDuCtors pass DC Fifteen amp fuse for Fourteen gauge wire Twenty amp fuse for Twelve gauge wire AC frequencies increases: – Coil springs higher (reactance increases) - Capacitor holds back (reactance decreases) AM – Product Detector Audio – Discriminator BFO – Product Detector Heterodyne receiver - Mixer Balanced Modulator + Mixer - Filter 20m Data band – 14.070 – 14.100 LC Oscillator – Tank Circuit CW Bandwidth = 150 Hz SBB Bandwidth = 2,300 Hz FM Bandwidth = +/- 5KHz or +/- 15 KHz Ohm’s Law: E/I*R Unit Measures Power Law: P/E*I Amp Current E – Voltage in Volts Farad Capacitance I – Current in Amps Henry Inductance R – Resistance in Ohms Hertz Frequency P – Power in Watts Ohm Resistance Series Parallel Watt Power Resistor Add Less Volt Voltage Inductor Add Less Capacitor Less Add Designation Frequency Wavelength ELF extremely low frequency 3Hz to 30Hz 100'000km to 10'000 km SLF superlow frequency 30Hz to 300Hz 10'000km to 1'000km ULF ultralow frequency 300Hz to 3000Hz 1'000km to 100km VLF very low frequency 3kHz to 30kHz 100km to 10km LF low frequency 30kHz to 300kHz 10km to 1km MF medium frequency 300kHz to 3000kHz 1km to 100m HF high frequency 3MHz to 30MHz 100m to 10m VHF very high frequency 30MHz to 300MHz
    [Show full text]