United States Patent (10) Patent N0.: US 7,266,154 B2 Gundrum (45) Date of Patent: Sep

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (10) Patent N0.: US 7,266,154 B2 Gundrum (45) Date of Patent: Sep US007266154B2 (12) United States Patent (10) Patent N0.: US 7,266,154 B2 Gundrum (45) Date of Patent: Sep. 4, 2007 (54) DIGITAL SUBSCRIBER LINE INDUCTION FOREIGN PATENT DOCUMENTS NEUTRALIZING TRANSFORMER NETWORK FR 2697392 4/1994 JP 62126721 A 6/1987 (75) Inventor: Russell E. Gundrum, Kingwood, TX SU 1363-491 12/1987 US ( ) OTHER PUBLICATIONS (73) Assignee: The southwestern Bell Telephone Co" Wayback machine, archived web pageisncmfgcom, http://web. San Amomo, TX (Us) archive.org/web/20010211012502/sncmfg.com/telecom/ * _ _ _ _ _ noiseiprotection/intinfo.htrnl (Feb. 11, 2001).* ( ) Nonce: subleqw any dlsclalmeri the term of thls Wayback machine, archived web pageisncmfgcom, http://web. Pawnt 15 extended or adlusted under 35 archive.org/web/20010214224442/sncmfg.com/telecom/ U.S.C. 154(b) by 902 days. noiseiprotection/tenhtml (Feb. 14, 2001).* SNC INT’s, The low-frequency interference solution (article) 4 (21) Appl. No.: 10/143,130 pages. Induction neutralizing transformer can reduce power line distur (22) Filed: May 10, 2002 bances. Reprint from TELEPHONY, Sep. 8, 1980. 4 pages. (65) Prior Publication Data (Continued) Us 2003/0210747 A1 Nov. 13, 2003 Primary ExamineriDavid B- Lugo (74) Attorney, Agent, or F irmiToler Schaifer LLP (51) Int. Cl. H04B 3/00 (2006.01) (57) ABSTRACT (52) US. Cl. .................................................... .. 375/258 (58) Field of Classi?cation Search .............. .. 375/257, Adigital Subscriber line (DSL) induction-neutralizing trans 375/258; 336/15’ 221 former (INT) (28) for use in a DSL INT network (10) is See application ?le for Complete Search history provided. The DSL INT (28) includes a core (72) and a coil (74) that is electrically coupled to and wound around the (56) References Cited core (72). The coil (74) includes approximately 100-200 feet Us‘ PATENT DOCUMENTS of approximately 24-gauge wire. The core (72) and coil (74) add longitudinal inductance to a telecommunication line and 3,920,925 A 11/1975 Lindow reduce induced voltage levels at a non-digital subscriber line 3,932,713 A 1/ 1976 Fleuchaus et a1~ frequency on the telecommunication line. The DSL INT 4,118,603 A * 10/1978 Kumhyf network (10), containing at least one DSL INT (28), and a i EakktGII """"""""""" " 379/395 method of routing DSL communication signals within the , , in e a . - 6,266,395 B1 7/2001 Liu et a1‘ DSL INT network (10), are also provlded. 6,556,661 B1 * 4/2003 Ingalsbe et al. ....... .. 379/2204 2002/0101851 A1 * 8/2002 Blake et al. .............. .. 370/352 17 Claims, 4 Drawing Sheets W533 L 34 3 39 /4 REMOTE _ TEN DSL rs?l’ TEN 24 CUSTOMER TERMINAL A1 : “*1 INTMS Tnfb'l'g" j; '“a‘ 1 TERMINALMa 3/ 24 as g; 3395 35 39 //4 [/5 33' k l \ ' “CUSTOMER REMOTE '39 36 30 30\ TERMlNALMb TERMINAL A2 24 .35 35 1 3’ l4 '2 3/ a, F: 39)I 39 J2 ‘- TERNHNALAZaCUSTOMER REMOTE 24 g; 35- 35 24 39 CUSTOMER TERMINAL % TERMINAL 51 3/” 1mm 32 51a 39 1 [/6 ,Z? - REMOTE Z4 TERMINALBz “ . 3/ 5, J6“ Z4 /4 TERMINAL 0%J2 _ 52a US 7,266,154 B2 Page 2 OTHER PUBLICATIONS IEEE Guide for the Implementation of Inductive Coordination Mitigation Techniques and Application, Pub. by the Institute of Inductive Coordination Low Voltage Neutralizing Transformers, Electrical & Electronics Engineers, Jun. 1, 1992, 6 pgs. Bell System Practices, AT&T Standard, Section 873-505-107, Issue Russ Gundrum, abc of the telephone, vol. 14. 1, May 1975. Multipair induction neutralizing transformers (INTs), Chapter 9, 9 Russ Gundrum, Power Protectioniis Wire obsolete? (article) 3 PgS~ pages. SNC HDR,Harmonic Drainage Reactor, 2 pgs. Russ Gundrum, Power Protection, (article) 3 pages. Induction Neutralizing Transformers (INTs) (article) 4 pgs. Russ Gundrum, Get “RID” of glitches, (article) 4 pages. * cited by examiner U.S. Patent Sep. 4,2007 Sheet 4 M4 US 7,266,154 B2 Route DSL Communication Signals between a Background Network and Remote Terminals iv Route the DSL Communication Signals between Central Offices and //02 DSL Circuits + Receive an Excitation Current /' /04 + Supply a First Low Impedance /'/06 Path to Ground Supply a Second Low impedance _//05 Path to Ground Add Longitudinal inductance to a Telecommunication Line ///0 + Receive and Transmit the DSL Communication Signals to and from Customer Terminals FIG. 4 US 7,266,l54 B2 1 2 DIGITAL SUBSCRIBER LINE INDUCTION the operation of the primary-line protector. The surge NEUTRALIZING TRANSFORMER induced voltages can cause damage to sensitive electronic NETWORK components in the DSLAM equipment, such as a line card and the DSL modern equipment, rendering the service TECHNICAL FIELD inoperable. Also, impulse noise spikes can occur that can reduce the effective speed of the data transmission. The present invention relates generally to data transmis Historically, AC induction problems have come from the sion systems, and more particularly, to an apparatus and long loops serving customers at the ends of an exchange area method of routing digital subscriber line communication boundary, Which are the most distant customer terminal signals Within a digital subscriber line induction neutraliZing locations Within local calling areas from a central of?ce. transformer network. These loops are not only predominantly exposed to unbal anced, single phase poWer lines, but the areas they serve are BACKGROUND OF THE INVENTION in suburban/rural environments that are less “built-up”, and additional shielding bene?ts are not available as in urban Demand for high-speed data transmission is ever increas areas. ing. Internet access, electronic commerce, Internet protocol Neutralizing transformers Were originally designed for telephony, and videoconferencing are telecommunications use in open Wire telephony netWorks. Large oil-?lled neu examples driving such a demand. traliZing transformers have been used on Wire-line facilities Digital subscriber line (DSL) technology provides high entering poWer substations and in generating plants to speed data transmission over a so-called “last mile” of “local 20 suppress high-induced alternating current (AC) voltages and loop” of a telephone netWork via copper tWisted Wire pair ground potential rise (GPR). Smaller dry-type neutraliZing cable betWeen residential and small business sites and transformers, knoWn as induction neutraliZing transformers telephone company central o?ices and remote terminals. (INTs), have been used to reduce voice-frequency noise and There are various types of DSL such as asymmetric DSL, induced AC voltages from 350-600 volts on Wire-line voice high bit-rate DSL, single-line DSL, very-high-data-rate 25 grade and digital carrier telecommunications circuits. DSL, integrated services digital netWork DSL, and rate adaptive DSL having various transmission rates, sWitched HoWever, the voice-grade INTs are typically made With circuit characteristics, and other knoWn operation character up to 500 feet of 26 gauge Category 3 cable, Which not only reduces the available transmission overhead margins Which istics. These are collectively referred to as XDSL technolo limits their application on DSL applications, but also gies. 30 increases the probability of crosstalk coupling interference In a simpli?ed general vieW, a DSL system may be on adjacent DSL circuits. As the length of a copper pair is considered as a pair of communicating modems, one of Which is located at a home or office computer, and the other extended, the signal poWer decreases in intensity, thereby, limiting the alloWable distance betWeen a customer terminal of Which is located at a netWork control site, typically at a and a central of?ce or remote terminal. Also, the higher the telephone company central o?ice or a remote terminal. The 35 frequency application, as With DSL, the more noticeable the central of?ce or remote terminal modem is connected to diminution in signal poWer. The use of a voice-grade INT some type of network, usually referred to as a backbone reduces signal poWer approximately 2.3 dB at loWer DSL netWork, Which is in communication With other communi cation paths by Way of routers or digital subscriber line frequencies. Digital-grade INTs are typically Wound With up to 200 access multiplexers (DSLAMs). Through DSLAMs the 40 backbone netWork is able to communicate With dedicated feet of 24 gauge Category 3 cable, and are built With a screen information sources and With the Internet. As a result, (shield) to separate tWo directions of T1 carrier transmis information accessible to the backbone netWork may be sions, to prevent crosstalk interference. Digital grade INTs communicated betWeen the central of?ce or remote terminal exhibit a loWer signal poWer loss over voice-grade INTs, but as With voice-grade INTs they are large, heavy, and expen modem and a customer site modem. 45 DSL applications may be served from central of?ce and sive units because of the 350-600 volt design criteria. The remote terminal locations by up to 12,000 feet of copper costs involved in manufacturing and implementing both tWisted Wire pair cable that may exist betWeen the DSLAM digital-grade INTs and voice-grade INTs is high. The screen equipment at a central of?ce or remote terminal and a DSL is a signi?cant added cost and is not required in DSL modem at a customer site. HoWever, cable from a remote 50 applications. terminal is typically exposed to a more hostile electrical An additional impairment With high-speed DSL transmis environment that can cause service reliability problems. sion speeds is crosstalk interference betWeen adjacent cir These problems become highly prevalent in areas of high cuits. The crosstalk can be minimized by using non-adjacent earth resisitivity, Which is usually in soil equal to or greater pairs Within a binder group. HoWever, the non-adjacent pairs than 500 meter ohms. 55 become tightly Wound together for several hundred feet in Additionally, although mo st telecommunication netWorks an INT.
Recommended publications
  • A Comprehensive Study of Routing Protocols Performance with Topological Changes in the Networks Mohsin Masood Mohamed Abuhelala Prof
    A comprehensive study of Routing Protocols Performance with Topological Changes in the Networks Mohsin Masood Mohamed Abuhelala Prof. Ivan Glesk Electronics & Electrical Electronics & Electrical Electronics & Electrical Engineering Department Engineering Department Engineering Department University of Strathclyde University of Strathclyde University of Strathclyde Glasgow, Scotland, UK Glasgow, Scotland, UK Glasgow, Scotland, UK mohsin.masood mohamed.abuhelala ivan.glesk @strath.ac.uk @strath.ac.uk @strath.ac.uk ABSTRACT different topologies and compare routing protocols, but no In the modern communication networks, where increasing work has been considered about the changing user demands and advance applications become a functionality of these routing protocols with the topology challenging task for handling user traffic. Routing with real-time network limitations. such as topological protocols have got a significant role not only to route user change, network congestions, and so on. Hence without data across the network but also to reduce congestion with considering the topology with different network scenarios less complexity. Dynamic routing protocols such as one cannot fully understand and make right comparison OSPF, RIP and EIGRP were introduced to handle among any routing protocols. different networks with various traffic environments. Each This paper will give a comprehensive literature review of of these protocols has its own routing process which each routing protocol. Such as how each protocol (OSPF, makes it different and versatile from the other. The paper RIP or EIGRP) does convergence activity with any change will focus on presenting the routing process of each in the network. Two experiments are conducted that are protocol and will compare its performance with the other.
    [Show full text]
  • Routing As a Service
    Routing as a Service Karthik Lakshminarayanan Ion Stoica Scott Shenker Jennifer Rexford University of California, Berkeley Princeton University Abstract configuration, making it difficult to offer meaningful service- level agreements (SLAs) to customers or to identify the AS In Internet routing, there is a fundamental tussle between the responsible for end-to-end performance problems. end users who want control over the end-to-end paths and the An ISP's customers, such as end users, enterprise net- Autonomous Systems (ASes) who want control over the flow works, and smaller ISPs, have even less control over the se- of traffic through their infrastructure. To resolve this tussle lection of end-to-end paths. By connecting to more than one and offer flexible routing control across multiple routing do- ISPs, an enterprise can select from multiple paths [2]; how- mains, we argue that customized route computation should ever, the customer controls only the first hop for outbound be offered as a service by third-party providers. Outsourcing traffic and has (at best) crude influence on incoming traffic. specialized route computation allows different path-selection Yet, some customers need more control over the end-to-end mechanisms to coexist, and evolve over time. path, or at least its properties, to satisfy performance and pol- icy goals. For example, a customer might not want his Web 1 Introduction traffic forwarded through an AS that filters packets based on Interdomain routing has long been based on three pillars: their contents. Alternatively, a customer might need to discard traffic from certain sources to block denial-of-service attacks • Local control: ASes have complete control over routing or protect access to a server storing sensitive data.
    [Show full text]
  • Routing Basics
    CHAPTER 5 Chapter Goals • Learn the basics of routing protocols. • Learn the differences between link-state and distance vector routing protocols. • Learn about the metrics used by routing protocols to determine path selection. • Learn the basics of how data travels from end stations through intermediate stations and on to the destination end station. • Understand the difference between routed protocols and routing protocols. Routing Basics This chapter introduces the underlying concepts widely used in routing protocols. Topics summarized here include routing protocol components and algorithms. In addition, the role of routing protocols is briefly contrasted with the role of routed or network protocols. Subsequent chapters in Part VII, “Routing Protocols,” address specific routing protocols in more detail, while the network protocols that use routing protocols are discussed in Part VI, “Network Protocols.” What Is Routing? Routing is the act of moving information across an internetwork from a source to a destination. Along the way, at least one intermediate node typically is encountered. Routing is often contrasted with bridging, which might seem to accomplish precisely the same thing to the casual observer. The primary difference between the two is that bridging occurs at Layer 2 (the link layer) of the OSI reference model, whereas routing occurs at Layer 3 (the network layer). This distinction provides routing and bridging with different information to use in the process of moving information from source to destination, so the two functions accomplish their tasks in different ways. The topic of routing has been covered in computer science literature for more than two decades, but routing achieved commercial popularity as late as the mid-1980s.
    [Show full text]
  • Routing Tables
    Routing Tables A routing table is a grouping of information stored on a networked computer or network router that includes a list of routes to various network destinations. The data is normally stored in a database table and in more advanced configurations includes performance metrics associated with the routes stored in the table. Additional information stored in the table will include the network topology closest to the router. Although a routing table is routinely updated by network routing protocols, static entries can be made through manual action on the part of a network administrator. How Does a Routing Table Work? Routing tables work similar to how the post office delivers mail. When a network node on the Internet or a local network needs to send information to another node, it first requires a general idea of where to send the information. If the destination node or address is not connected directly to the network node, then the information has to be sent via other network nodes. In order to save resources, most local area network nodes will not maintain a complex routing table. Instead, they will send IP packets of information to a local network gateway. The gateway maintains the primary routing table for the network and will send the data packet to the desired location. In order to maintain a record of how to route information, the gateway will use a routing table that keeps track of the appropriate destination for outgoing data packets. All routing tables maintain routing table lists for the reachable destinations from the router’s location.
    [Show full text]
  • Advanced Routing – Cisco (4 Cr.) Course Description
    NVCC COLLEGE-WIDE COURSE CONTENT SUMMARY ITN 250 - Advanced Routing – Cisco (4 cr.) Course Description ITN 250 - Includes instruction focusing on the characteristics of various Routing protocols used in the TCP/IP networking environment, static routing, OSPF, IGRP, EIGRP, IS-IS, BGP, advanced IP addressing, and security. Course content also examines various strategies for optimizing network routing performance. Lecture 4 hours per week. Recommended Pre-requisites Student should: be a Cisco Certified Network Associate (CCNA), or, have successfully completed ITN157 WAN Technologies – Cisco, or have successfully completed TEL251 Internetworking 4, or, have successfully completed CCNA Semester 4 training at a Cisco Network Academy, or, have instructor’s permission. Course Objectives Upon completion of this course, the student will be able to: Selecting and configuring scalable IP addresses Configure the RIP version 2 routing protocol Configure the EIGRP routing protocol Configure Open Shortest Path First protocol in a multi-area environment Configure the IS-IS routing protocol Develop route filtering and policy routing Configure route redistribution Describe the Border Gateway Protocol (BGP) Configure and troubleshoot the BGP routing protocol Course Content Overview of Scalable Internetworks Advanced IP Addressing Management Routing Overview Routing Information Protocol Version 2 EIGRP OSPF IS-IS Route Optimization BGP Student Learning Outcomes Selecting and configuring scalable IP addresses Understand the issues of IP address
    [Show full text]
  • Introduction to Wifi Networking
    Introduction to WiFi Networking Marco Zennaro Ermanno Pietrosemoli Goals The goal of this lecture is to introduce: ‣ 802.11 family of radio protocols ‣ 802.11 radio channels ‣ Wireless network topologies ‣ WiFi modes of operation ‣ Strategies for routing network traffic 2 ISM / UNII bands Most commercial wireless devices (mobile phones, television, radio, etc.) use licensed radio frequencies. Large organizations pay licensing fees for the right to use those radio frequencies. WiFi uses unlicensed spectrum. License fees are not usually required to operate WiFi equipment. The Industrial, Scientific and Medical (ISM) bands allow for unlicensed use of 2.4-2.5 GHz, 5.8 GHz, and many other (non-WiFi) frequencies. 3 802.11 family 4 802.11 family 5 Wireless networking protocols The 802.11 family of radio protocols are commonly referred to as WiFi. • 802.11a supports up to 54 Mbps using the 5 GHz unlicensed bands. • 802.11b supports up to 11 Mbps using the 2.4 GHz unlicensed band. • 802.11g supports up to 54 Mbps using the 2.4 GHz unlicensed band. • 802.11n supports up to 600 Mbps using the 2.4 GHz and 5 GHz unlicensed bands. • 802.16 (WiMAX) is not 802.11 WiFi! It is a completely different technology that uses a variety of licensed and unlicensed frequencies. 6 Compatibility of standards AP 802.11a 802.11b 802.11g 802.11n 802.16 Yes C 802.11a Yes @5GHz L Yes Yes 802.11b Yes I (slower) @2.4GHz Yes Yes E 802.11g Yes (slower) @2.4GHz N Yes Yes Yes 802.11n Yes T @5GHz @2.4GHz @2.4GHz 802.16 Yes 7 IEEE 802.11 AC Improved performance by means of: • Two or up to 8 Spatial streams (MIMO) • Higher order modulation types (up to 256 QAM) • Wider Channels bandwidth (up to 160 MHz) 8 IEEE 802.11 AC: MIMO 9 IEEE 802.11 AC, 256 constellation 1 0 Data rates Note that the “data rates” quoted in the WiFi specifications refer to the raw radio symbol rate, not the actual TCP/IP throughput rate.
    [Show full text]
  • RIP: Routing Information Protocol a Routing Protocol Based on the Distance-Vector Algorithm
    Laboratory 6 RIP: Routing Information Protocol A Routing Protocol Based on the Distance-Vector Algorithm Objective The objective of this lab is to configure and analyze the performance of the Routing Information Protocol (RIP) model. Overview A router in the network needs to be able to look at a packet’s destination address and then determine which of the output ports is the best choice to get the packet to that address. The router makes this decision by consulting a forwarding table. The fundamental problem of routing is: How do routers acquire the information in their forwarding tables? Routing algorithms are required to build the routing tables and hence forwarding tables. The basic problem of routing is to find the lowest-cost path between any two nodes, where the cost of a path equals the sum of the costs of all the edges that make up the path. Routing is achieved in most practical networks by running routing protocols among the nodes. The protocols provide a distributed, dynamic way to solve the problem of finding the lowest-cost path in the presence of link and node failures and changing edge costs. One of the main classes of routing algorithms is the distance-vector algorithm. Each node constructs a vector containing the distances (costs) to all other nodes and distributes that vector to its immediate neighbors. RIP is the canonical example of a routing protocol built on the distance-vector algorithm. Routers running RIP send their advertisements regularly (e.g., every 30 seconds). A router also sends an update message whenever a triggered update from another router causes it to change its routing table.
    [Show full text]
  • Switches, Routers and Networks
    Switches, Routers and Networks Muriel Medard EECS MIT MIT Overview • Introduction • Routing and switching: – Switch fabrics : – Basics of switching – Blocking – Interconnection examples – Complexity – Recursive constructions • Interconnection routing • Buffering - input and output • Local area networks (LANs) • Metropolitan area networks (MANs) • Wide area networks (WANs) • Trends MIT Introduction • Data networks generally evolve fairly independently for different applications and are then patched together – telephony, variety of computer applications, wireless applications • IP is a large portion of the traffic, but it is carried by a variety of protocols throughout the network • Voice is still the application that has determined many of the implementation issues, but its share is decreasing and voice is increasingly carried over IP (voice over IP) • Voice-oriented networks are not very flexible, but are very robust • IP very successful because it is very flexible, but increasingly there is a drive towards enhancing the reliability of services • How do all of these network types and requirements fit together? MIT Networks • LANs serve a wide variety of services and attach to MANs or maybe directly to WANs • The two main purposes of a networks are: – Transmission across some distance: this involves amplification or regeneration (generally code-assisted) – The establishment of variable flows: switching and routing MAN LAN WAN LAN LAN SAN MAN LAN MIT Switching and Routing • Switching is generally the establishment of connections on a circuit basis • Routing is generally the forwarding of traffic on a datagram basis • Routing requires switching but not vice-versa – routing uses connections which are permanently or temporarily set up to in order to forward datagrams (those datagrams may be in circuit form, for instance VPs and VCs) MIT Packet routers • A packet switch consists of a routing engine (table look-up), a switch scheduler, and a switch fabric.
    [Show full text]
  • User Guide Model Number RAC2V1A 802.11Ac Wave 2 Router
    User Guide Model Number RAC2V1A 802.11ac Wave 2 Router C2V1A Router User Guide 1 Table of Contents 1. Overview ............................................................... 5 1.1. Introduction .................................................................................................. 5 2. Product Overview ............................................... 6 2.1. About The Router ....................................................................................... 6 2.2. What's in the Box? ..................................................................................... 6 2.3. Items You Need ........................................................................................... 6 2.4. About This Manual ...................................................................................... 7 3. System Requirements ........................................ 8 3.1. Recommended Hardware ........................................................................ 8 3.2. Windows ........................................................................................................ 8 3.3. Mac OS ........................................................................................................... 8 3.4. Linux/Unix ..................................................................................................... 8 3.5. Mobile Devices ............................................................................................. 8 4. Installing the Router ........................................... 9 4.1. Front Panel ...................................................................................................
    [Show full text]
  • Networks G22.2262-001
    Data Communication & Networks G22.2262-001 Session 7 - Main Theme Networks: Part II Routing Algorithms and Routing Protocol Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences 1 Agenda Routing Strategies Interplay Between Routing and Forwarding Graph Abstraction Routing Algorithm Classification Link-State Routing (LS) Algorithm Distance Vector (DV) Algorithm Comparison of LS and DV Algorithms Hierarchical Routing Interconnected ASes Inter-AS Tasks Intra-AS Routing Internet Inter-AS Routing – Border Gateway Protocol Why Different Intra- and Inter-AS Routing? 2 1 Part I Routing Strategies 3 Routing Strategies Fixed Flooding Random Adaptive 4 2 Fixed Routing Single permanent route for each source to destination pair Determine routes using a least cost algorithm Route fixed, at least until a change in network topology 5 Fixed Routing Tables 6 3 Flooding No network info required Packet sent by node to every neighbor Incoming packets retransmitted on every link except incoming link Eventually a number of copies will arrive at destination Each packet is uniquely numbered so duplicates can be discarded Nodes can remember packets already forwarded to keep network load in bounds Can include a hop count in packets 7 Flooding Examples 8 4 Properties of Flooding All possible routes are tried Very robust At least one packet will have taken minimum hop count route Can be used to set up virtual circuit All nodes are visited Useful to distribute information
    [Show full text]
  • BATSEN: Modifying the BATMAN Routing Protocol for Wireless Sensor Networks
    Rochester Institute of Technology RIT Scholar Works Theses 5-8-2018 BATSEN: Modifying the BATMAN Routing Protocol for Wireless Sensor Networks Nelson Henry Powell III [email protected] Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Powell, Nelson Henry III, "BATSEN: Modifying the BATMAN Routing Protocol for Wireless Sensor Networks" (2018). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. BATSEN: Modifying the BATMAN Routing Protocol for Wireless Sensor Networks By: Nelson Henry Powell III Committee Members: Dr. Sumita Mishra Dr. Yin Pan Dr. Andres Kwasinski In partial fulfillment of the requirements for the degree of Master of Science in Computing Security Rochester Institute of Technology B. Thomas Golisano College of Computing & Information Sciences Department of Computing Security May 8th, 2018 Acknowledgments I’d like to take this opportunity to thank my wife, my love, Emilia; for putting up with the deployments, active duty, and working two jobs, all while going back to school to complete this degree. None of this would have been possible without your love and support. You are my motivation for being a better me. To my children, Connor and Iliana, for teaching me to look at the world as if it were for the first time; and for all the snuggles, hugs, and kisses that happily kept me from my school work. You are both my favorite and most important accomplishments in my life.
    [Show full text]
  • Routing and Internetworking 2 a Network
    1 Routing and Internetworking 2 A Network H11 H10 H9 H3 H4 network/subnet 2 router R7 R6 H8 H2 R2 R3 R4 R5 H7 gateway H1 R1 router host network/subnet 1 H5 H6 gateway links networks together to form internet routing plans path through network 3 Internets An internet can be homogeneous internets all same type of network no need to convert frames heterogeneous internets free mix of network technologies need to convert between frame formats convert between CO and CL? 4 Switching the Data circuit switched networks physical communication channel to be set up between two hosts wasteful if bursty data e.g. PSTN message switched networks sends data in messages, which can share a channel store-and-forward e.g. Post Office packet switched networks similar to message switching limit on size → data sent in one or more packets 5 Store-and-forward (1) R time t R 6 Store-and-forward (2) R time t + 1 R 7 Store-and-forward (3) R time t + 2 R 8 Store-and-forward (4) R time t + 3 R delay ∝ packet size 9 Example: Reducing Store-and-forward Delays A router operating on a PSN using store-and-forward has links into it operating at 1Mbs−1, and the router is found to delay packets by 0.1s. How many pieces must you fragment the packet into to reduce this delay to 0.02s, and how large are those packets? delay ∝ packet size delay = packet size constant 0.1/1 = 0.02/s → s = 0.2, hence 5 packets are required for each of the old packets 0.02×1×106 packet size= delay = 8 = 2500 bytes 10 Virtual Circuits R7 R6 to/from from/to to/from from/to H11 H10 H9 net 2 L13 L18 L17 L9 L16 R4 R5 R7 R6 H8 to/from from/to to/from from/to L10 L8 L7 L15 R4 R5 H7 Virtual Circuits allow some features of L12 L14 CO to be present in PSN Divide links by virtual circuit H5 H6 identifiers (VCI) Lx(1), Lx(2), Lx(3),..
    [Show full text]