San Acacia Reach San Acacia Dam to Escondida Bridge Hydraulic Modeling Analysis 1918-2006
Total Page:16
File Type:pdf, Size:1020Kb
San Acacia Reach San Acacia Dam to Escondida Bridge Hydraulic Modeling Analysis 1918-2006 Middle Rio Grande, New Mexico September 2011 Prepared For: US Bureau of Reclamation Albuquerque, New Mexico Prepared By: Seema C. Shah-Fairbank, PE Jaehoon Kim Dr. Pierre Julien Colorado State University Engineering Research Center Department of Civil Engineering Fort Collins, Colorado 80523 Abstract Human influence on the Middle Rio Grande has resulted in major changes throughout the Middle Rio Grande region in central New Mexico. Many of these changes are associated with erosion and sedimentation. Therefore, hydraulic modeling analyses have been performed on the San Acacia reach to determine the changes in morphology and other important parameters. This study is an extension of the previous reach report developed by Reclamation on the San Acacia reach. The 11.6 mile long reach extends from the San Acacia Diversion dam (River Mile 116.2) to the Escondida Bridge (104.6). Spatial and temporal trends in channel geometry, discharge and sediment have been analyzed. In addition, historical bedform data were analyzed and potential equilibrium conditions were predicted. Aerial photographs, GIS active channel planforms, cross section surveys, hydraulic model analysis and channel classification methods were used to analyze spatial and temporal trends in channel geometry and morphology. Narrowing of the channel was observed from the GIS active channel planforms from 1918 to 2006. There is fluctuation in the channel properties (geometry) associated with complex channel response. There has been significant degradation in this reach due to channelization and the construction of the diversion dam. Due to the degradation, the particle diameter has coarsened from about 0.1 mm in 1972 to 0.36 mm in 2002. Field observation of bedforms were compiled and compared to the bedforms predicted by the van Rijn and the Simons and Richardson methods. Both methods produced a large amount of scatter, which can be associated with the cross section variability and the variability in the bedform observations. However, the predicted dune formation was correct approximately 75% of the time. The methods were not as accurate for ripple and upper regime prediction. A variety of approaches were used to predict future equilibrium width and slope conditions. The approaches used include hydraulic geometry equations, hyperbolic and exponential regressions, stable channel geometry, and sediment transport relationships. The equilibrium widths predicted ranged from 150 to 450 feet, and the predicted equilibrium slope ranged from 0.0003 to 0.00156. The equilibrium width seems to provide a reasonable estimate of the future trend because the tends are consistent with the current channel conditions which show a river, which is narrowing. ; However, the relocation of the LFCC, near RM 111 and 114, increases the potential meander length and channel width, which could change the prediction. In addition, there is a wide range of variability in the predicted equilibrium slopes. ii Table of Contents Abstract .......................................................................................................................... ii Table of Contents .......................................................................................................... ii List of Figures .............................................................................................................. iv List of Tables ................................................................................................................. v 1. Introduction ............................................................................................................ 1 2. Site Description and Background ......................................................................... 4 2.1. Subreach definition ............................................................................................ 7 2.2. Available Data .................................................................................................... 8 2.2.1. Water and Suspended Sediment Data ........................................................ 8 2.2.2. Bed Material .............................................................................................. 11 2.2.3. Tributary and Arroyo Information ............................................................... 11 2.2.4. Survey Lines and Dates ............................................................................. 11 2.3. Channel Forming Discharge ............................................................................. 15 3. Channel Classification ......................................................................................... 16 3.1. Channel Planform Methods .............................................................................. 16 3.1.1. Slope-Discharge Methods ......................................................................... 16 3.1.2. Channel Morphology Methods ................................................................... 18 3.1.3. Stream Power Methods ............................................................................. 20 3.2. Channel Planform Results................................................................................ 21 3.3. Sinuosity........................................................................................................... 25 3.3.1. Methods ..................................................................................................... 25 3.3.2. Results ....................................................................................................... 25 3.4. Longitudinal Profile ........................................................................................... 26 3.4.1. Methods ..................................................................................................... 26 3.4.2. Results ....................................................................................................... 27 3.5. Channel Geometry ........................................................................................... 32 3.5.1. Methods ..................................................................................................... 32 3.5.2. Results ....................................................................................................... 32 3.6. Bed Material Analysis ....................................................................................... 37 3.6.1. Methods ..................................................................................................... 37 3.6.2. Results ....................................................................................................... 37 4. Bedforms .............................................................................................................. 40 4.1. Methods ........................................................................................................... 40 4.2. Results ............................................................................................................. 42 5. Equilibrium State Predictors ............................................................................... 45 5.1. Hydraulic Geometry ......................................................................................... 45 5.1.1. Methods ..................................................................................................... 45 5.1.2. Results ....................................................................................................... 49 5.2. Width Regression Model .................................................................................. 52 5.2.1. Methods ..................................................................................................... 52 5.2.2. Results ....................................................................................................... 54 5.3. Sediment Transport .......................................................................................... 58 5.3.1. Methods ..................................................................................................... 58 ii 5.3.2. Results ....................................................................................................... 59 5.4. SAM ................................................................................................................. 62 5.4.1. Methods ..................................................................................................... 62 5.4.2. Results ....................................................................................................... 62 6. Discussion ............................................................................................................ 64 6.1. Historic Trends and Current Conditions ........................................................... 64 6.2. Channel response models................................................................................ 68 6.2.1. Schumm’s (1969) river metamorphosis model .......................................... 68 6.2.2. Lane’s Balance (1955) .............................................................................. 70 6.3. Future Dynamic Equilibrium Conditions ........................................................... 72 6.3.1. Equilibrium Width ....................................................................................... 72 6.3.2. Equilibrium Slope ....................................................................................... 72 7. Summary ..............................................................................................................