Aerosol, Cloud, Ecosystems (ACE) Final Study Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AATSR Frequently Asked Questions (FAQ)
AATSR Frequently Asked Questions (FAQ) Author : IDEAS+ AATSR QC Team (Telespazio VEGA UK) IDEAS+-VEG-OQC-REP-2117 Issue 3 14 December 2016 AATSR Frequently Asked Questions (FAQ) Issue 3 AMENDMENT RECORD SHEET The Amendment Record Sheet below records the history and issue status of this document. ISSUE DATE REASON 1 20 Dec 2005 Initial Issue (as AEP_REP_001) 2 02 Oct 2013 Updated with new questions and information (issued as IDEAS- VEG-OQC-REP-0955) 3 14 Dec 2016 General updates, major edits to Q37., new questions: Q17., Q25., Q26., Q28., Q32., Q38., Q39., Q48. Now issued as IDEAS+-VEG-OQC-REP-2117 TABLE OF CONTENTS 1. INTRODUCTION ........................................................................................................................ 5 1.1 The Third AATSR Reprocessing Dataset (IPF 6.05) ............................................................ 5 1.2 References ............................................................................................................................ 6 2. GENERAL QUESTIONS ........................................................................................................... 7 Q1. What does AATSR stand for? ........................................................................................ 7 Q2. What is AATSR and what does it do? ............................................................................ 7 Q3. What is Envisat? ............................................................................................................. 7 Q4. What orbit does Envisat use? ........................................................................................ -
Cloud Cci ATSR-2 and AATSR Dataset Version 3: a 17-Year Climatology of Global Cloud and Radiation Properties Caroline A
Discussions https://doi.org/10.5194/essd-2019-217 Earth System Preprint. Discussion started: 11 December 2019 Science c Author(s) 2019. CC BY 4.0 License. Open Access Open Data Cloud_cci ATSR-2 and AATSR dataset version 3: a 17-year climatology of global cloud and radiation properties Caroline A. Poulsen1, Gregory R. McGarragh2, Gareth E. Thomas3,6, Martin Stengel4, Matthew W. Christensen5, Adam C. Povey7, Simon R. Proud5,6, Elisa Carboni3,6, Rainer Hollmann4, and Roy G. Grainger7 1Monash University, Melbourne, Australia 2Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK Now at Cooperative Institute for Research in the Atmosphere, Colorado State University 3Science Technology Facility Council, Rutherford Appleton Laboratory, Harwell, Oxfordshire, UK 4Deutscher Wetterdienst, Frankfurter Str. 135, 63067, Offenbach, Germany 5Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK 6National Centre for Earth Observation, Reading RG6 6BB, UK 7National Centre for Earth Observation, Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Road, Oxford OX1 3PU, U.K. Correspondence: Caroline Poulsen ([email protected]) Abstract. We present version 3 (V3) of the Cloud_cci ATSR-2/AATSR dataset. The dataset was created for the European Space Agency (ESA) Cloud_cci (Climate Change Initiative) program. The cloud properties were retrieved from the second Along- Track Scanning Radiometer (ATSR-2) on board the second European Remote Sensing Satellite (ERS-2) spanning 1995-2003 and the Advanced ATSR (AATSR) on board Envisat, which spanned 2002-2012. The data comprises a comprehensive set 5 of cloud properties: cloud top height, temperature, pressure, spectral albedo, cloud effective emissivity, effective radius and optical thickness alongside derived liquid and ice water path. -
FAME-C: Cloud Property Retrieval Using Synergistic AATSR and MERIS Observations
Atmos. Meas. Tech., 7, 3873–3890, 2014 www.atmos-meas-tech.net/7/3873/2014/ doi:10.5194/amt-7-3873-2014 © Author(s) 2014. CC Attribution 3.0 License. FAME-C: cloud property retrieval using synergistic AATSR and MERIS observations C. K. Carbajal Henken, R. Lindstrot, R. Preusker, and J. Fischer Institute for Space Sciences, Freie Universität Berlin (FUB), Berlin, Germany Correspondence to: C. K. Carbajal Henken ([email protected]) Received: 29 April 2014 – Published in Atmos. Meas. Tech. Discuss.: 19 May 2014 Revised: 17 September 2014 – Accepted: 11 October 2014 – Published: 25 November 2014 Abstract. A newly developed daytime cloud property re- trievals. Biases are generally smallest for marine stratocu- trieval algorithm, FAME-C (Freie Universität Berlin AATSR mulus clouds: −0.28, 0.41 µm and −0.18 g m−2 for cloud MERIS Cloud), is presented. Synergistic observations from optical thickness, effective radius and cloud water path, re- the Advanced Along-Track Scanning Radiometer (AATSR) spectively. This is also true for the root-mean-square devia- and the Medium Resolution Imaging Spectrometer (MERIS), tion. Furthermore, both cloud top height products are com- both mounted on the polar-orbiting Environmental Satellite pared to cloud top heights derived from ground-based cloud (Envisat), are used for cloud screening. For cloudy pixels radars located at several Atmospheric Radiation Measure- two main steps are carried out in a sequential form. First, ment (ARM) sites. FAME-C mostly shows an underestima- a cloud optical and microphysical property retrieval is per- tion of cloud top heights when compared to radar observa- formed using an AATSR near-infrared and visible channel. -
Synthetic Aperture Radar in Europe: ERS, Envisat, and Beyond
SYNTHETIC APERTURE RADAR IN EUROPE Synthetic Aperture Radar in Europe: ERS, Envisat, and Beyond Evert Attema, Yves-Louis Desnos, and Guy Duchossois Following the successful Seasat project in 1978, the European Space Agency used advanced microwave radar techniques on the European Remote Sensing satellites ERS-1 (1991) and ERS-2 (1995) to provide global and repetitive observations, irrespective of cloud or sunlight conditions, for the scientific study of the Earth’s environment. The ERS synthetic aperture radars (SARs) demonstrated for the first time the feasibility of a highly stable SAR instrument in orbit and the significance of a long-term, reliable mission. The ERS program has created opportunities for scientific discovery, has revolutionized many Earth science disciplines, and has initiated commercial applica- tions. Another European SAR, the Advanced SAR (ASAR), is expected to be launched on Envisat in late 2000, thus ensuring the continuation of SAR data provision in C band but with important new capabilities. To maximize the use of the data, a new data policy for ERS and Envisat has been adopted. In addition, a new Earth observation program, The Living Planet, will follow Envisat, offering opportunities for SAR science and applications well into the future. (Keywords: European Remote Sensing satellite, Living Planet, Synthetic aperture radar.) INTRODUCTION In Europe, synthetic aperture radar (SAR) technol- Earth Watch component of the new Earth observation ogy for polar-orbiting satellites has been developed in program, The Living Planet, and possibly the scientific the framework of the Earth observation programs of Earth Explorer component will include future SAR the European Space Agency (ESA). -
This Is an Electronic Reprint of the Original Article. This Reprint May Differ from the Original in Pagination and Typographic Detail
This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Sterken, Christiaan; Aspaas, Per Pippin; Dunér, David; Kontler, László; Neul, Reinhard; Pekonen, Osmo; Posch, Thomas Title: A voyage to Vardø - A scientific account of an unscientific expedition Year: 2013 Version: Please cite the original version: Sterken, C., Aspaas, P. P., Dunér, D., Kontler, L., Neul, R., Pekonen, O., & Posch, T. (2013). A voyage to Vardø - A scientific account of an unscientific expedition. The Journal of Astronomical Data, 19(1), 203-232. http://www.vub.ac.be/STER/JAD/JAD19/jad19.htm All material supplied via JYX is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user. MEETING VENUS C. Sterken, P. P. Aspaas (Eds.) The Journal of Astronomical Data 19, 1, 2013 A Voyage to Vardø. A Scientific Account of an Unscientific Expedition Christiaan Sterken1, Per Pippin Aspaas,2 David Dun´er,3,4 L´aszl´oKontler,5 Reinhard Neul,6 Osmo Pekonen,7 and Thomas Posch8 1Vrije Universiteit Brussel, Brussels, Belgium 2University of Tromsø, Norway 3History of Science and Ideas, Lund University, Sweden 4Centre for Cognitive Semiotics, Lund University, Sweden 5Central European University, Budapest, Hungary 6Robert Bosch GmbH, Stuttgart, Germany 7University of Jyv¨askyl¨a, Finland 8Institut f¨ur Astronomie, University of Vienna, Austria Abstract. -
Bulletin 132 - November 2007 Node-2 Aloft
B132cover2 11/23/07 11:39 AM Page 1 www.esa.int number 132 - november 2007 Member States Etats membres Austria Allemagne Belgium Autriche Denmark Belgique Finland Danemark France Espagne Germany Finlande Greece France Ireland Grèce Italy Irlande Luxembourg Italie Netherlands Luxembourg Norway Norvège Portugal Pays-Bas SPACE FOR EUROPE Spain Portugal Sweden Royaume-Uni Switzerland Suède United Kingdom Suisse ESA bulletin 132 - november 2007 Node-2 Aloft ESA Communications ESTEC, PO Box 299, 2200 AG Noordwijk, The Netherlands Columbus Next Tel: +31 71 565-3408 Fax: +31 71 565-5433 Visit Publications at http://www.esa.int IFCb132 11/21/07 9:56 AM Page 2 european space agency Editorial/Circulation Office ESA Communications ESTEC, PO Box 299, The European Space Agency was formed out of, and took over the rights and obligations of, the two earlier European space organisations – the 2200 AG Noordwijk European Space Research Organisation (ESRO) and the European Organisation for the Development and Construction of Space Vehicle Launchers The Netherlands (ELDO). The Member States are Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Norway, Tel: +31 71 565-3408 Portugal, Spain, Sweden, Switzerland and the United Kingdom. Canada is a Cooperating State. Editors Andrew Wilson In the words of its Convention: the purpose of the Agency shall be to provide for and to promote for exclusively peaceful purposes, cooperation among Carl Walker European States in space research and technology and their -
(A)ATSR Land Surface Temperature (LST) Product (UOL LST L2) Level 2 User Guide
(A)ATSR Land Surface Temperature (LST) Product (UOL_LST_L2) Level 2 User Guide v 1.0 (A)ATSR LST L2 Product User Guide Version History Version Date Change 0.9 03/12/2013 Initial version for evaluation 1.0 17/12/2013 ESA QC recommendations applied 2 (A)ATSR LST L2 Product User Guide Table of Contents 1 Introduction ............................................................................................................................................................... 4 2 Product Description ................................................................................................................................................ 4 2.1 Scope .................................................................................................................................................................... 4 2.2 Filename Convention .................................................................................................................................... 5 2.3 File contents ..................................................................................................................................................... 6 3 Metadata ...................................................................................................................................................................... 7 3.1 Global attributes ............................................................................................................................................. 8 3.2 Variable Metadata ......................................................................................................................................... -
International Journal Remote Sensing, 2000, Vol. 21, No.17, 3383-3390
int. j. remote sensing, 2000, vol. 21, no. 17, 3383–3390 Developments in the ‘validation’ of satellite sensor products for the study of the land surface C. JUSTICE University of Virginia, Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22903, USA; e-mail: [email protected] A. BELWARD Joint Research Centre, 21020 Ispra, Italy J. MORISETTE Geography Department, University of Maryland, c/o NASA-GSFC, Code 923, Greenbelt, Maryland, 20770, USA P. LEWIS Department of Geography, University of London, 26 Bedford Way, London WC1H 0AP, UK J. PRIVETTE NASA-GSFC, Code 923, Greenbelt, Maryland, 20770, USA and F. BARET INRA Bioclimatology, 84 914 Avignon, France Abstract. Increased availability of global satellite sensor data is resulting in an increase in satellite sensor products for global change research and environmental monitoring. The ensuing research and policy directives that will utilize these satellite products puts a high priority on providing statements of their accuracy. The process of quantifying the accuracy of these geophysical products is herein termed ‘validation’. This Letter provides examples of international land product ‘validation’ research and describes a new international forum for coordination within the Committee on Earth Observation Satellites (CEOS) Calibration and Validation Working Group (CVWG). 1. Introduction Researchers have long been concerned with the need to quantify the accuracy of remotely sensed land cover classi cations at the local scale but with the increase in data sets from coarse resolution sensing systems, attention has turned to the challenge of global product ‘validation’ (Justice and Townshend 1994, Robinson 1996, Justice et al. 1998a). ‘Validation’ is the process of assessing by independent means the accuracy of the data products derived from the system outputs, ‘validation’ is disting- uished from calibration which is the process of quantitatively de ning the system response to known, controlled signal inputs (WWW 1). -
Aatsr Handbook
AATSR Product Handbook ! "" #$ """"" %% $ % & $ ' $ ( ) ' '' *$ #$ + , '/ ''' )$ % - . '5 '''' . )$ % - . '5 ''' % # % '7 '''/ #% .$ - . '7 '''0 #$ ' '' & 1 ' ''' ' '' . 2 3 '8 ''/ #$ #% .$ - . ' ''/ % & - . ''/' $ . ''/ !%$ 2 5 ''0 )$ % # 7 ''0' . 4 $ 7 ''0 2 # % ''5 % ! & @ ''5' 2 # % @ ''5 + % 64 @ ''5/ #% 8 ''50 !%% ' 8 ''7 .. & % 8 ' 4 /" '' &4 % /' ''' ) % % /' '' 64 / ''/ . & &4 % // '/ !$ /0 '0 . ) %% /7 '0' %% )% % . '88/ / '0 +& 1 9% / '0/ - 1 : /@ '00 $ . /8 '05 3 $ -% 0' '07 1 & $ $%& 0/ %$. 00 ' 05 '' + # 05 ' + &4 05 '/ 05 2 & 07 ' ;6 2 07 2 08 / % $ 14 5' / +& # 5 /' +& 5 / # 50 0 % 5 5 3% " 58 5' . 58 5 +&& 14 7" 5/ < 2 1 + 7' 50 $ 3% " 7' 50' =;3=2 7' 55 % % 7 7 3% '1 %$. 7 7' %$. 70 7'' =2 =' 70 7''' 75 7'' & #$ % % 75 7''' & # % 77 7'''' $ % :& 77 7''''' 24 77 7'''' + 7@ 7''''/ && & % $ % " 7''''0 +. & $ % && ' 7''''5 % #$ % # % / 7''''7 + % / 7'''' + & $ % % 0 7''' %$. + 5 7'''/ 7''/ 6% #$ % # % 7''0 %% . # % @ 7''5 )% @ 7''5' . >% )% @ 7''5'' $ % :& @ 7''5''' # & $ >% 8 7''5'' 3 & $ $ %% & & . @' 7''5''' . @ 7''5'' . . % . @/ 7''5''/ &. @5 7''5' %$. + @8 7''5'' .. @8 7''5' %$. +& @8 7''5'/ % 8 7''5'/ 8 7''5 . >% )% 8/ 7''5' $ % :& 8/ 7''5'' $ . # & 8/ 7''5' ). % % $ $ %% 80 7''5'' $ & %% 80 7''5' 3 $ 9.$ $ %% 8 -
Vénus Les Transits De Vénus L’Exploration De Vénus Par Les Sondes Iconographie, Photos Et Additifs
VVÉÉNUSNUS Introduction - Généralités Les caractéristiques de Vénus Les transits de Vénus L’exploration de Vénus par les sondes Iconographie, photos et additifs GAP 47 • Olivier Sabbagh • Février 2015 Vénus I Introduction – Généralités Vénus est la deuxième des huit planètes du Système solaire en partant du Soleil, et la sixième par masse ou par taille décroissantes. La planète Vénus a été baptisée du nom de la déesse Vénus de la mythologie romaine. Symbolisme La planète Vénus doit son nom à la déesse de l'amour et de la beauté dans la mythologie romaine, Vénus, qui a pour équivalent Aphrodite dans la mythologie grecque. Cythère étant une épiclèse homérique d'Aphrodite, l'adjectif « cythérien » ou « cythéréen » est parfois utilisé en astronomie (notamment dans astéroïde cythérocroiseur) ou en science-fiction (les Cythériens, une race de Star Trek). Par extension, on parle d'un Vénus à propos d'une très belle femme; de manière générale, il existe en français un lexique très développé mêlant Vénus au thème de l'amour ou du plaisir charnel. L'adjectif « vénusien » a remplacé « vénérien » qui a une connotation moderne péjorative, d'origine médicale. Les cultures chinoise, coréenne, japonaise et vietnamienne désignent Vénus sous le nom d'« étoile d'or », et utilisent les mêmes caractères (jīnxīng en hanyu, pinyin en hiragana, kinsei en romaji, geumseong en hangeul), selon la « théorie » des cinq éléments. Vénus était connue des civilisations mésoaméricaines; elle occupait une place importante dans leur conception du cosmos et du temps. Les Nahuas l'assimilaient au dieu Quetzalcoatl, et, plus précisément, à Tlahuizcalpantecuhtli (« étoile du matin »), dans sa phase ascendante et à Xolotl (« étoile du soir »), dans sa phase descendante. -
The Land Surface Temperature Synergistic Processor in BEAM: a Prototype Towards Sentinel-3
data Article The Land Surface Temperature Synergistic Processor in BEAM: A Prototype towards Sentinel-3 Ana Belen Ruescas *, Olaf Danne, Norman Fomferra and Carsten Brockmann Brockmann Consult GmbH, Max-Plack Str.2, 21502 Geesthacht, Germany; [email protected] (O.D.); [email protected] (N.F.); [email protected] (C.B.) * Correspondence: [email protected]; Tel.: +49-415-288-9300 Academic Editor: Juan C. Jiménez-Muñoz Received: 5 July 2016; Accepted: 1 October 2016; Published: 21 October 2016 Abstract: Land Surface Temperature (LST) is one of the key parameters in the physics of land-surface processes on regional and global scales, combining the results of all surface-atmosphere interactions and energy fluxes between the surface and the atmosphere. With the advent of the European Space Agency (ESA) Sentinel 3 (S3) satellite, accurate LST retrieval methodologies are being developed by exploiting the synergy between the Ocean and Land Colour Instrument (OLCI) and the Sea and Land Surface Temperature Radiometer (SLSTR). In this paper we explain the implementation in the Basic ENVISAT Toolbox for (A)ATSR and MERIS (BEAM) and the use of one LST algorithm developed in the framework of the Synergistic Use of The Sentinel Missions For Estimating And Monitoring Land Surface Temperature (SEN4LST) project. The LST algorithm is based on the split-window technique with an explicit dependence on the surface emissivity. Performance of the methodology is assessed by using MEdium Resolution Imaging Spectrometer/Advanced Along-Track Scanning Radiometer (MERIS/AATSR) pairs, instruments with similar characteristics than OLCI/ SLSTR, respectively. The LST retrievals were properly validated against in situ data measured along one year (2011) in three test sites, and inter-compared to the standard AATSR level-2 product with satisfactory results. -
Technical Report on Developing More Efficient and Accurate Methods for the Use of Remote Sensing in Agricultural Statistics
Technical Report on Developing More Efficient and Accurate Methods for the Use of Remote Sensing in Agricultural Statistics Publication prepared in the framework of the Global Strategy to improve Agricultural and Rural Statistics September 2014 Technical Report on Developing More Efficient and Accurate Methods for the Use of Remote Sensing in Agricultural Statistics Table of contents Preface 6 Acknowledgments 8 1. Introduction 9 2. New technologies of remote sensing 17 2.1 A note on the use of high resolution images 33 3. Methods for using remote sensing data at the design level 35 3.1 Introduction 35 3.2 Multivariate auxiliaries in π ps sampling 38 3.3 Optimal stratification 48 3.4 Spatially balanced samples 54 3.5 Auxiliary and survey variables 65 4. Extension of calibration estimator 70 4.1 Introduction 70 4.2 The calibration approach to estimation 72 4.3 Extension of calibration estimators 78 4.4 Model calibration 79 4.4.1 Nonparametric model assisted estimator 86 4.4.2 Model assisted estimator of spatially 88 autocorrelated data 4.4.3 Model assisted estimator for geographical 91 local – stationary data 4.4.4 Model – assisted estimator for 95 zero inflated – data 4.4.5 Endogenous post – stratification 97 4.5 Calibration on complex auxiliary information 99 4.6 Calibration for non- response adjustment 100 4.7 Missing values in auxiliary spatial variables 102 4.8 Computational issues 105 5. Benchmarking the estimators adopted for producing 107 agricultural and rural statistics 6. Comparison of regression and calibration estimators with 113 small area estimators 6.1 Introduction 113 6.2 Models for small area estimation 115 6.3 Area level models 116 6.4 Unit level models 119 6.5 Extension of Area – level model for the analysis of 121 spatially autocorrelated data 6.6 Small area estimation under a zero – inflated model 123 6.7 Local stationarity in small area estimation models 124 7.