Computer Worm Ecology in Encounter-Based Networks

Total Page:16

File Type:pdf, Size:1020Kb

Computer Worm Ecology in Encounter-Based Networks Computer Worm Ecology in Encounter-based Networks (Invited Paper) Sapon Tanachaiwiwat Ahmed Helmy Ming Hsieh Department of Electrical Engineering Computer and Information Science and Engineering University of Southern California, CA University of Florida, FL [email protected] [email protected] Abstract — Encounter-based network is a frequently- to disease spreading. disconnected wireless ad-hoc network requiring immediate neighbors to store and forward aggregated data for information Using traditional approaches such as gateways or disseminations. Using traditional approaches such as gateways firewalls for deterring worm propagation in encounter-based or firewalls for deterring worm propagation in encounter-based networks is inappropriate. Because this type of network is networks is inappropriate. Because this type of network is highly highly dynamic and has no specific boundary, a fully dynamic and has no specific boundary, we need a fully distributed counter-worm mechanism is needed. We propose distributed security response mechanism. We propose the worm to investigate the worm interaction approach that relies upon interaction approach that relies upon automated beneficial automated beneficial worm generation [1]. This approach uses worm generation aiming to alleviate problems of worm an automatic generated beneficial worm to terminate propagations in such networks. This work is motivated by the ‘War of the Worms’ of the Internet worms between competing malicious worms and patch vulnerable hosts. worms such as NetSky, Bagle and MyDoom. To understand the Our work is motivated by competitions of these Internet dynamic of worm interactions and its performance, we worms. In 2004, majority of worm outbreaks are caused by mathematically model several classes of worms and interactions the “War of the Worms” between NetSky, Bagle and using ordinary differential equations and analyze their behaviors. MyDoom. In this paper, we try to answer following questions: How is the war of the worms affects the worm propagation in I. INTRODUCTION encounter-based networks? What are the possible variants of wars of the worms? and how can we incorporate the An encounter-based network is a frequently-disconnected encounter characteristics to the worm propagations. wireless ad-hoc networks requiring close proximity of This scenario is described as “worm interactions” in neighbors, i.e., encounter, to disseminate information. Hence, which one or multiple types of worm terminate or patch other we call this the “encounter-based network” which can be types of worms. In this paper, we show that the interaction considered as a terrestrial delay-and-disruptive-tolerant causes significant change in the traditional one-type network. It is an emerging technology that is suitable for propagation pattern. Furthermore different types of applications in highly dynamic wireless networks. interactions show entirely different patterns. Originally Most previous work on worm propagation has focused propagation patterns of worms follow variants of phase on modeling single worm type in well-connected wired transition patterns. Hence, we develop a comprehensive novel network. However, many new worms are targeting wireless worm ecology model extending the epidemic model [7] for mobile phones. The characteristics of worms in mobile several classes of worm interactions based on their behaviors, networks are different from random-scan network worms. capabilities and strategies. Our worm ecology model consists Worm propagations in mobile networks depend heavily on of aggressive one-sided, conservative one-sided, aggressive user encounter patterns. Many of those worms rely on two-sided and, two-group aggressive one-sided worm Bluetooth to broadcast their replications to vulnerable phones, interactions. Our worm interaction models focus on worm e.g., Cabir and ComWar.M [14]. Since Bluetooth radios have behaviors and group behavior in encounter-based networks very short range around 10-100 meters, the worms need neighbors in close proximity to spread out their replications. Our main contribution in this paper is our proposed new Hence, we call this “encounter-based worms”. This worm comprehensive Worm Interaction Model categorizing worm spreading pattern is very similar to spread of packet interactions by worm types, sidedness, aggressiveness, and replications in delay tolerant networks [16, 20], i.e., flooding group. This worm interaction model can be extended to the copies of messages to all close neighbors. An earlier study support more complicated current and future worm in encounter-based networks actually used the term “ epidemic interactions in encounter-based networks. routing ” [16] to describe the similarity of this routing protocol Next we discuss related work in Section II. Then, in Section III, we explain worms’ behaviors in our model and Much of this work was performed at the University of Southern California their parameters in details. We discuss multi-group aggressive with support from NSF awards: CAREER 0134650, ACQUIRE 0435505 and one-sided interaction in Section IV. In Section IV, we Intel. conclude our work and discuss the future work. Authorized licensed use limited to: University of Florida. Downloaded on November 28, 2008 at 22:47 from IEEE Xplore. Restrictions apply. Worm Interactions Types Sidedness Aggressiveness Group Single Multiple One-sided Two-sided Aggressive Conservative Single Multiple Fig.1. Worm Interaction Classification automatic patching was also investigated in [17]. Their work II RELATED WORK assumes a patch server and overlay network architecture. We Worm-like message propagation or epidemic routing has provide the mathematical model that can explain the behavior been studied for delay tolerant network applications [16, 20]. of automatic-generated beneficial worm and automatic patch As in worm propagation, a sender in this routing protocol distribution using one-sided worm interaction. In [17] authors spreads messages to all nodes in close proximity, and those assume patch blocking by worms after infection, and hence nodes repeatedly spread the copies of messages until the this scenario yields aggressive two-sided worm interaction messages reach a destination, similarly to generic flooding but which we model in this paper. Our work aims to understand without producing redundant messages. Performance and evaluate automated worm (with patch) generation but we modeling for epidemic routing in delay tolerant networks [20] do not address details of vulnerabilities nor related software based on ODE is proposed to evaluate the delivery delay, loss engineering techniques to generate patches or worms. Active probability and power consumption. They also propose the defense using beneficial worms is also mathematically concept of anti-packet to stop unnecessary overhead from modeled in [10]; however, the work focuses only on one- forwarding extra packets copies after the destination has sided worm interaction for delay-limited worms. Our work in received the packets. This can be considered as a special case [13] focuses more on aggressive one-sided worm interaction of non-zero delay of aggressive one-sided interaction which and impact on networks infrastructure while this work consider in our model. concentrates on worm behaviors resulting from comprehensive worm interactions in encounter-based Epidemic model and its variance, a set of ordinary networks. differential equations, were earlier used to describe the contagious disease spread including SI, SIS, SIR SIRS, SEIR III. W ORM INTERACTION MODEL and SEIRS models [3, 7, 15] in which S, I, E, R stand for We aim to build a fundamental worm propagation model Susceptible, Infected, Exposed and Recovered state that captures worm interaction as a key factor in uniform respectively. We can see the pattern similarity of computer encounter-based networks. Furthermore, our proposed model worm infection and the disease spread in which both of them addresses and analyzes dynamics of susceptible and infected depending on node’s status, i.e., vulnerable, infected or hosts over the course of time. recovered) and encounter pattern. For the Internet worms, numerous worm propagation models have been investigated Because the constant removal rate in basic SIR model in earlier work [5, 6, 8, 21]. However, only few works [1, 10, and its variance [7] cannot directly portray such interactions 12, 13] consider worm interaction among different worm impact on multi-type worm propagations, our model builds types. Our work is focusing more on understanding of how upon and extends beyond the conventional epidemic model to we can systemically categorize and model worm propagation accommodate the notion of interaction. and interaction among each other in encounter-based Basic operation of a worm is to find susceptible nodes to networks. be infected and the main goal of attackers is to have their In [1], the authors suggested modifying existing worms worms infect the largest amount of hosts in the least amount such as Code Red, Slammer and Blaster to terminate the of time, and if possible, undetected by antivirus or intrusion original worm types. The modified code will retain portion of detection systems. Our beneficial worm, on the other hand, attacking method so it would choose and attack the same set aims to eliminate opposing worms or limit the scope of of susceptible hosts. In this paper, we model this as aggressive opposing worms’ infection. We want to investigate the worm one-sided worm interaction. Other active defense
Recommended publications
  • Botnets, Cybercrime, and Cyberterrorism: Vulnerabilities and Policy Issues for Congress
    Order Code RL32114 Botnets, Cybercrime, and Cyberterrorism: Vulnerabilities and Policy Issues for Congress Updated January 29, 2008 Clay Wilson Specialist in Technology and National Security Foreign Affairs, Defense, and Trade Division Botnets, Cybercrime, and Cyberterrorism: Vulnerabilities and Policy Issues for Congress Summary Cybercrime is becoming more organized and established as a transnational business. High technology online skills are now available for rent to a variety of customers, possibly including nation states, or individuals and groups that could secretly represent terrorist groups. The increased use of automated attack tools by cybercriminals has overwhelmed some current methodologies used for tracking Internet cyberattacks, and vulnerabilities of the U.S. critical infrastructure, which are acknowledged openly in publications, could possibly attract cyberattacks to extort money, or damage the U.S. economy to affect national security. In April and May 2007, NATO and the United States sent computer security experts to Estonia to help that nation recover from cyberattacks directed against government computer systems, and to analyze the methods used and determine the source of the attacks.1 Some security experts suspect that political protestors may have rented the services of cybercriminals, possibly a large network of infected PCs, called a “botnet,” to help disrupt the computer systems of the Estonian government. DOD officials have also indicated that similar cyberattacks from individuals and countries targeting economic,
    [Show full text]
  • Synthesizing Near-Optimal Malware Specifications from Suspicious
    Synthesizing Near-Optimal Malware Specifications from Suspicious Behaviors Somesh Jha∗, Matthew Fredrikson∗, Mihai Christodoresu†, Reiner Sailer‡, Xifeng Yan§ ∗University of Wisconsin–Madison, †Qualcomm Research Silicon Valley, ‡IBM T.J Watson Research Center, §University of California–Santa Barbara Abstract—Behavior-based detection techniques are a promis- and errors. ing solution to the problem of malware proliferation. However, We make the observation that behavioral specifications they require precise specifications of malicious behavior that do not result in an excessive number of false alarms, while still are best viewed as a form of discriminative specification.A remaining general enough to detect new variants before tradi- discriminative specification describes the unique properties tional signatures can be created and distributed. In this paper, of a given class, in contrast to the properties exhibited by we present an automatic technique for extracting optimally discriminative specifications a second mutually-exclusive class. This paper presents an , which uniquely identify a class automated technique that combines program analysis, graph of programs. Such a discriminative specification can be used by a behavior-based malware detector. Our technique, based mining, and stochastic optimization to synthesize malware on graph mining and stochastic optimization, scales to large behavior specifications. We represent program behaviors as classes of programs. When this work was originally published, graphs that are mined for discriminative patterns. As there the technique yielded favorable results on malware targeted are many ways in which malware can accomplish the same towards workstations (~86% detection rates on new malware). goal, we use these patterns as building blocks for construct- We believe that it can be brought to bear on emerging malware- based threats for new platforms, and discuss several promising ing discriminative specifications that are general across vari- avenues for future work in this direction.
    [Show full text]
  • Cyber Warfare a “Nuclear Option”?
    CYBER WARFARE A “NUCLEAR OPTION”? ANDREW F. KREPINEVICH CYBER WARFARE: A “NUCLEAR OPTION”? BY ANDREW KREPINEVICH 2012 © 2012 Center for Strategic and Budgetary Assessments. All rights reserved. About the Center for Strategic and Budgetary Assessments The Center for Strategic and Budgetary Assessments (CSBA) is an independent, nonpartisan policy research institute established to promote innovative thinking and debate about national security strategy and investment options. CSBA’s goal is to enable policymakers to make informed decisions on matters of strategy, secu- rity policy and resource allocation. CSBA provides timely, impartial, and insight- ful analyses to senior decision makers in the executive and legislative branches, as well as to the media and the broader national security community. CSBA encour- ages thoughtful participation in the development of national security strategy and policy, and in the allocation of scarce human and capital resources. CSBA’s analysis and outreach focus on key questions related to existing and emerging threats to US national security. Meeting these challenges will require transforming the national security establishment, and we are devoted to helping achieve this end. About the Author Dr. Andrew F. Krepinevich, Jr. is the President of the Center for Strategic and Budgetary Assessments, which he joined following a 21-year career in the U.S. Army. He has served in the Department of Defense’s Office of Net Assessment, on the personal staff of three secretaries of defense, the National Defense Panel, the Defense Science Board Task Force on Joint Experimentation, and the Defense Policy Board. He is the author of 7 Deadly Scenarios: A Military Futurist Explores War in the 21st Century and The Army and Vietnam.
    [Show full text]
  • The Botnet Chronicles a Journey to Infamy
    The Botnet Chronicles A Journey to Infamy Trend Micro, Incorporated Rik Ferguson Senior Security Advisor A Trend Micro White Paper I November 2010 The Botnet Chronicles A Journey to Infamy CONTENTS A Prelude to Evolution ....................................................................................................................4 The Botnet Saga Begins .................................................................................................................5 The Birth of Organized Crime .........................................................................................................7 The Security War Rages On ........................................................................................................... 8 Lost in the White Noise................................................................................................................. 10 Where Do We Go from Here? .......................................................................................................... 11 References ...................................................................................................................................... 12 2 WHITE PAPER I THE BOTNET CHRONICLES: A JOURNEY TO INFAMY The Botnet Chronicles A Journey to Infamy The botnet time line below shows a rundown of the botnets discussed in this white paper. Clicking each botnet’s name in blue will bring you to the page where it is described in more detail. To go back to the time line below from each page, click the ~ at the end of the section. 3 WHITE
    [Show full text]
  • GQ: Practical Containment for Measuring Modern Malware Systems
    GQ: Practical Containment for Measuring Modern Malware Systems Christian Kreibich Nicholas Weaver Chris Kanich ICSI & UC Berkeley ICSI & UC Berkeley UC San Diego [email protected] [email protected] [email protected] Weidong Cui Vern Paxson Microsoft Research ICSI & UC Berkeley [email protected] [email protected] Abstract their behavior, sometimes only for seconds at a time (e.g., to un- Measurement and analysis of modern malware systems such as bot- derstand the bootstrapping behavior of a binary, perhaps in tandem nets relies crucially on execution of specimens in a setting that en- with static analysis), but potentially also for weeks on end (e.g., to ables them to communicate with other systems across the Internet. conduct long-term botnet measurement via “infiltration” [13]). Ethical, legal, and technical constraints however demand contain- This need to execute malware samples in a laboratory setting ex- ment of resulting network activity in order to prevent the malware poses a dilemma. On the one hand, unconstrained execution of the from harming others while still ensuring that it exhibits its inher- malware under study will likely enable it to operate fully as in- ent behavior. Current best practices in this space are sorely lack- tended, including embarking on a large array of possible malicious ing: measurement researchers often treat containment superficially, activities, such as pumping out spam, contributing to denial-of- sometimes ignoring it altogether. In this paper we present GQ, service floods, conducting click fraud, or obscuring other attacks a malware execution “farm” that uses explicit containment prim- by proxying malicious traffic.
    [Show full text]
  • The Blaster Worm: Then and Now
    Worms The Blaster Worm: Then and Now The Blaster worm of 2003 infected at least 100,000 Microsoft Windows systems and cost millions in damage. In spite of cleanup efforts, an antiworm, and a removal tool from Microsoft, the worm persists. Observing the worm’s activity can provide insight into the evolution of Internet worms. MICHAEL n Wednesday, 16 July 2003, Microsoft and continued to BAILEY, EVAN Security Bulletin MS03-026 (www. infect new hosts COOKE, microsoft.com/security/incident/blast.mspx) more than a year later. By using a wide area network- FARNAM O announced a buffer overrun in the Windows monitoring technique that observes worm infection at- JAHANIAN, AND Remote Procedure Call (RPC) interface that could let tempts, we collected observations of the Blaster worm DAVID WATSON attackers execute arbitrary code. The flaw, which the during its onset in August 2003 and again in August 2004. University of Last Stage of Delirium (LSD) security group initially This let us study worm evolution and provides an excel- Michigan uncovered (http://lsd-pl.net/special.html), affected lent illustration of a worm’s four-phase life cycle, lending many Windows operating system versions, including insight into its latency, growth, decay, and persistence. JOSE NAZARIO NT 4.0, 2000, and XP. Arbor When the vulnerability was disclosed, no known How the Blaster worm attacks Networks public exploit existed, and Microsoft made a patch avail- The initial Blaster variant’s decompiled source code re- able through their Web site. The CERT Coordination veals its unique behavior (http://robertgraham.com/ Center and other security organizations issued advisories journal/030815-blaster.c).
    [Show full text]
  • Iptrust Botnet / Malware Dictionary This List Shows the Most Common Botnet and Malware Variants Tracked by Iptrust
    ipTrust Botnet / Malware Dictionary This list shows the most common botnet and malware variants tracked by ipTrust. This is not intended to be an exhaustive list, since new threat intelligence is always being added into our global Reputation Engine. NAME DESCRIPTION Conficker A/B Conficker A/B is a downloader worm that is used to propagate additional malware. The original malware it was after was rogue AV - but the army's current focus is undefined. At this point it has no other purpose but to spread. Propagation methods include a Microsoft server service vulnerability (MS08-067) - weakly protected network shares - and removable devices like USB keys. Once on a machine, it will attach itself to current processes such as explorer.exe and search for other vulnerable machines across the network. Using a list of passwords and actively searching for legitimate usernames - the ... Mariposa Mariposa was first observed in May 2009 as an emerging botnet. Since then it has infected an ever- growing number of systems; currently, in the millions. Mariposa works by installing itself in a hidden location on the compromised system and injecting code into the critical process ͞ĞdžƉůŽƌĞƌ͘ĞdžĞ͘͟/ƚŝƐknown to affect all modern Windows versions, editing the registry to allow it to automatically start upon login. Additionally, there is a guard that prevents deletion while running, and it automatically restarts upon crash/restart of explorer.exe. In essence, Mariposa opens a backdoor on the compromised computer, which grants full shell access to ... Unknown A botnet is designated 'unknown' when it is first being tracked, or before it is given a publicly- known common name.
    [Show full text]
  • Computer Security Fundamentals Third Edition
    Computer Security Fundamentals Third Edition Chuck Easttom 800 East 96th Street, Indianapolis, Indiana 46240 USA Computer Security Fundamentals, Third Edition Executive Editor Brett Bartow Copyright © 2016 by Pearson Education, Inc. All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or Acquisitions Editor transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, Betsy Brown without written permission from the publisher. No patent liability is assumed with respect Development Editor to the use of the information contained herein. Although every precaution has been taken in Christopher Cleveland the preparation of this book, the publisher and author assume no responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the use of the information Managing Editor contained herein. Sandra Schroeder ISBN-13: 978-0-7897-5746-3 ISBN-10: 0-7897-5746-X Senior Project Editor Tonya Simpson Library of Congress control number: 2016940227 Copy Editor Printed in the United States of America Gill Editorial Services First Printing: May 2016 Indexer Brad Herriman Trademarks All terms mentioned in this book that are known to be trademarks or service marks have Proofreader been appropriately capitalized. Pearson IT Certification cannot attest to the accuracy of this Paula Lowell information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark. Technical Editor Dr. Louay Karadsheh Warning and Disclaimer Publishing Coordinator Every effort has been made to make this book as complete and as accurate as possible, but Vanessa Evans no warranty or fitness is implied.
    [Show full text]
  • Emerging Threats and Attack Trends
    Emerging Threats and Attack Trends Paul Oxman Cisco Security Research and Operations PSIRT_2009 © 2009 Cisco Systems, Inc. All rights reserved. Cisco Public 1 Agenda What? Where? Why? Trends 2008/2009 - Year in Review Case Studies Threats on the Horizon Threat Containment PSIRT_2009 © 2009 Cisco Systems, Inc. All rights reserved. Cisco Public 2 What? Where? Why? PSIRT_2009 © 2009 Cisco Systems, Inc. All rights reserved. Cisco Public 3 What? Where? Why? What is a Threat? A warning sign of possible trouble Where are Threats? Everywhere you can, and more importantly cannot, think of Why are there Threats? The almighty dollar (or euro, etc.), the underground cyber crime industry is growing with each year PSIRT_2009 © 2009 Cisco Systems, Inc. All rights reserved. Cisco Public 4 Examples of Threats Targeted Hacking Vulnerability Exploitation Malware Outbreaks Economic Espionage Intellectual Property Theft or Loss Network Access Abuse Theft of IT Resources PSIRT_2009 © 2009 Cisco Systems, Inc. All rights reserved. Cisco Public 5 Areas of Opportunity Users Applications Network Services Operating Systems PSIRT_2009 © 2009 Cisco Systems, Inc. All rights reserved. Cisco Public 6 Why? Fame Not so much anymore (more on this with Trends) Money The root of all evil… (more on this with the Year in Review) War A battlefront just as real as the air, land, and sea PSIRT_2009 © 2009 Cisco Systems, Inc. All rights reserved. Cisco Public 7 Operational Evolution of Threats Emerging Threat Nuisance Threat Threat Evolution Unresolved Threat Policy and Process Reactive Process Socialized Process Formalized Process Definition Reaction Mitigation Technology Manual Process Human “In the Automated Loop” Response Evolution Burden Operational End-User “Help-Desk” Aware—Know End-User No End-User Increasingly Self- Awareness Knowledge Enough to Call Burden Reliant Support PSIRT_2009 © 2009 Cisco Systems, Inc.
    [Show full text]
  • Containing Conficker to Tame a Malware
    &#4#5###4#(#%#5#6#%#5#&###,#'#(#7#5#+#&#8##9##:65#,-;/< Know Your Enemy: Containing Conficker To Tame A Malware The Honeynet Project http://honeynet.org Felix Leder, Tillmann Werner Last Modified: 30th March 2009 (rev1) The Conficker worm has infected several million computers since it first started spreading in late 2008 but attempts to mitigate Conficker have not yet proved very successful. In this paper we present several potential methods to repel Conficker. The approaches presented take advantage of the way Conficker patches infected systems, which can be used to remotely detect a compromised system. Furthermore, we demonstrate various methods to detect and remove Conficker locally and a potential vaccination tool is presented. Finally, the domain name generation mechanism for all three Conficker variants is discussed in detail and an overview of the potential for upcoming domain collisions in version .C is provided. Tools for all the ideas presented here are freely available for download from [9], including source code. !"#$%&'()*+&$(% The big years of wide-area network spreading worms were 2003 and 2004, the years of Blaster [1] and Sasser [2]. About four years later, in late 2008, we witnessed a similar worm that exploits the MS08-067 server service vulnerability in Windows [3]: Conficker. Like its forerunners, Conficker exploits a stack corruption vulnerability to introduce and execute shellcode on affected Windows systems, download a copy of itself, infect the host and continue spreading. SRI has published an excellent and detailed analysis of the malware [4]. The scope of this paper is different: we propose ideas on how to identify, mitigate and remove Conficker bots.
    [Show full text]
  • THE CONFICKER MYSTERY Mikko Hypponen Chief Research Officer F-Secure Corporation Network Worms Were Supposed to Be Dead. Turns O
    THE CONFICKER MYSTERY Mikko Hypponen Chief Research Officer F-Secure Corporation Network worms were supposed to be dead. Turns out they aren't. In 2009 we saw the largest outbreak in years: The Conficker aka Downadup worm, infecting Windows workstations and servers around the world. This worm infected several million computers worldwide - most of them in corporate networks. Overnight, it became as large an infection as the historical outbreaks of worms such as the Loveletter, Melissa, Blaster or Sasser. Conficker is clever. In fact, it uses several new techniques that have never been seen before. One of these techniques is using Windows ACLs to make disinfection hard or impossible. Another is infecting USB drives with a technique that works *even* if you have USB Autorun disabled. Yet another is using Windows domain rights to create a remote jobs to infect machines over corporate networks. Possibly to most clever part is the communication structure Conficker uses. It has an algorithm to create a unique list of 250 random domain names every day. By precalcuting one of these domain names and registering it, the gang behind Conficker could take over any or all of the millions of computers they had infected. Case Conficker The sustained growth of malicious software (malware) during the last few years has been driven by crime. Theft – whether it is of personal information or of computing resources – is obviously more successful when it is silent and therefore the majority of today's computer threats are designed to be stealthy. Network worms are relatively "noisy" in comparison to other threats, and they consume considerable amounts of bandwidth and other networking resources.
    [Show full text]
  • Modeling of Computer Virus Spread and Its Application to Defense
    University of Aizu, Graduation Thesis. March, 2005 s1090109 1 Modeling of Computer Virus Spread and Its Application to Defense Jun Shitozawa s1090109 Supervised by Hiroshi Toyoizumi Abstract 2 Two Systems The purpose of this paper is to model a computer virus 2.1 Content Filtering spread and evaluate content filtering and IP address blacklisting with a key parameter of the reaction time R. Content filtering is a containment system that has a We model the Sasser worm by using the Pure Birth pro- database of content signatures known to represent par- cess in this paper. Although our results require a short ticular worms. Packets containing one of these signa- reaction time, this paper is useful to obviate the outbreak tures are dropped when a containment system member of the new worms having high reproduction rate λ. receives the packets. This containment system is able to stop computer worm outbreaks immediately when the systems obtain information of content signatures. How- 1 Introduction ever, it takes too much time to create content signatures, and this system has no effect on polymorphic worms In recent years, new computer worms are being created at a rapid pace with around 5 new computer worms per a [10]. A polymorphic worm is one whose code is trans- day. Furthermore, the speed at which the new computer formed regularly, so no single signature identifies it. worms spread is amazing. For example, Symantec [5] 2.2 The IP Address Blacklisting received 12041 notifications of an infection by Sasser.B in 7 days. IP address blacklisting is a containment system that has Computer worms are a kind of computer virus.
    [Show full text]