Molecular Mechanisms of Synergy Between IL-13 and IL-17A In

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Mechanisms of Synergy Between IL-13 and IL-17A In Molecular Mechanisms of Synergy Between IL-13 and IL-17A in Severe Asthma A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Immunology Graduate Program of the College of Medicine by Sara L. Hall M.S. University of Cincinnati 2011 Committee Chair: Ian P. Lewkowich, Ph.D. 1. Abstract Increased IL-17A production has been associated with more severe asthma; however, the mechanisms whereby IL-17A can contribute to IL-13-driven pathology in asthmatic patients remain unclear. In this thesis, we sought to elucidate the molecular mechanisms by which IL- 17A enhances IL-13-dependent airway pathology in patients with severe asthma using in vivo and in vitro systems. We have found that compared to mice given intratracheal (i.t.) IL-13 alone, those co-exposed to IL-13 + IL-17A demonstrate enhanced airway hyperresponsiveness (AHR), mucus production, airway inflammation, and IL-13-induced gene expression. In vitro, IL-17A directly enhanced IL-13-induced gene expression in asthma-relevant murine and human cells. In contrast to the exacerbating effect of IL-17A on IL-13-driven responses, co-treatment with IL-13 diminished IL-17A-driven gene expression in vivo and in vitro. Mechanistically, in vivo and in primary human and murine cells, the IL-17A mediated increase in IL-13-induced gene expression was associated with a rapid increase in IL-13-driven signal transducer and activator of transcription (STAT)6 phosphorylation. Disrupting protein-tyrosine phosphatase function using Na3VO4 abrogated IL-17A- mediated enhancement of IL-13-driven STAT6 phosphorylation, suggesting that the ability of IL-17A to augment IL-13 activity was driven by changes in protein-tyrosine phosphatase activity. Consistent with this, co-exposure to IL-13 + IL-17A triggered a rapid decrease in the phosphorylation of Src homology region 2 domain-containing phosphatase (SHP)-1 and SHP-2, negative regulators of IL-13 signal transduction. Pharmacologic inhibition of SHP-1 but not SHP-2 similarly abrogated IL-17A-mediated enhancement of IL-13-driven STAT6 phosphorylation. However, the ability of IL-17A-driven alterations in protein-tyrosine ii phosphatase activity to enhance cytokine signaling was specific for IL-13, as IL-17A had no effect on IL-6- and IFN-γ-dependent activation of STAT3 and STAT1, respectively. Surprisingly, the enhancement of STAT6 phosphorylation was not sufficient to explain IL-17A-mediated increases in IL-13-driven gene expression. Although IL-13 and IL-17A activate distinct cellular signaling pathways, we have identified specific transcription factors downstream of the IL-17A/Act1/TRAF6 signaling axis that influence transcriptional enhancement between IL-13 and IL-17A. Inhibition of NF-κB or C/EBPβ and C/EBPδ transcription factors partially attenuated IL-17A-mediated enhancement of IL-13-induced gene expression, while the inhibition of p38 mitogen-activated protein kinase (MAPK) completely abrogated the effect of IL-17A in cells co-exposed to IL-13 + IL-17A. However, the inhibition of p38 MAPK did not diminish IL-17A-mediated enhancement of STAT6 phosphorylation, implying that IL-17A signaling differentially regulates the accumulation of IL-13-induced STAT6 activation and gene expression. Collectively, our data suggest that IL-17A contributes to asthma pathophysiology by: 1) Negatively regulating protein-tyrosine phosphatase activity to increase the capacity of IL-13 to activate the STAT6 signaling axis, and 2) Transcriptional cooperation between IL-13-driven STAT6 and IL-17A-induced transcription factors. These data represent the first mechanistic explanation of how IL-17A can directly contribute to the pathogenesis of IL-13-driven pathology in asthma. Further, our results identify multiple novel regulators of IL-13 activity, which may be targeted in future therapies. iii iv 2. Acknowledgements Foremost, I would like to thank my mentor, Dr. Ian Lewkowich, for his patience, support, and guidance during this dissertation. It was an honor to be his first Ph.D. student. I would also like to acknowledge my committee members, Dr. Fred Finkelman, Dr. Senad Divanovic, Dr. Matthew Weirauch, and Dr. Tim Le Cras, for their thoughtful feedback and encouragement over the last five years. I would also like to thank my friends and family. Their contributions to my success, and sanity, cannot be overstated. Last, but never least, I must thank my loving and encouraging husband, James. This dissertation could not have been accomplished without his support, and I look forward to discovering the next chapter together! v Table of Contents 1. Abstract ii 2. Acknowledgements v 3. List of Original Communications xi 4. Aim of the Study 1 4.1 Statement of the Problem 2 4.2 Background and Rationale 2 4.3 Objective 4 5. Review of the Literature 5 5.1 Public Health Implications of Asthma 6 5.1.1 Asthma Pathogenesis and Epidemiology 6 5.1.2 Asthma Treatment 7 5.1.3 Severe Asthma and Corticosteroid Resistance 8 5.2 The Immunopathology of Asthma 8 5.2.1 The Development of Allergic Asthma 8 5.2.2 Innate Immunity in Allergic Inflammation 11 5.2.3 Th2 Cells and Allergic Asthma 12 vi 5.2.4 Th17 Cells and Severe Asthma 14 5.3 The Th2/Th17 Cytokine Milieu 15 5.3.1 Distinct Roles for IL-13 and IL-4 in Allergic Inflammation 15 5.3.2 IL-13 Effector Functions in Asthma 17 5.3.3 IL-13 Signal Transduction and Regulation 19 5.3.4 Distinct Features of IL-17A 22 5.3.5 IL-17A Effector Functions in Asthma 24 5.3.6 IL-17A Signal Transduction and Regulation 26 6. Materials and Methods 30 6.1 Mice 31 6.2 In Vivo Cytokine Treatment Protocol and Analysis of AHR 31 6.3 Determination of Th2 Cytokine and IgE Concentration 32 6.4 Cell Culture 32 6.4.1 Culture Conditions and In Vitro Cytokine Treatment 32 6.4.2 Lung Fibroblast Isolation and Culture 33 6.4.3 CD11c Enrichment of Dendritic Cells 34 6.4.4 Human Subjects and Nasal Epithelial Cell Sampling 34 6.5 DNA Constructs, Promoter Cloning, and Mutagenesis 35 6.6 Luciferase Assay 35 6.7 mRNA Stability Assay 36 6.8 Inhibitor Assays 36 vii 6.8.1 Cycloheximide Assay 36 6.8.2 Protein-Tyrosine Phosphatase Inhibitor Assays 37 6.8.3 NF-κB, C/EBP, and MAPK Inhibitor Assays 37 6.9 Flow Cytometry 38 6.10 Immunoblotting and Immunoprecipitation 38 6.11 RNA Purification and Real-Time PCR 39 6.12 Statistical Analysis 39 7. IL-17A Enhances IL-13 Activity by Enhancing IL-13-Induced 41 STAT6 Phosphorylation 7.1 Introduction 42 7.2 Results 43 7.2.1 IL-17A Increases IL-13-Induced Lung Pathology In Vivo 43 7.2.2 Reciprocal Co-Regulation of IL-13- and IL-17A-Induced Genes 44 In Vivo 7.2.3 IL-13Rα2 is not Required for IL-17A-Mediated Enhancement of 45 IL-13 Pathology 7.2.4 Reciprocal Co-Regulation of IL-13- and IL-17A-Induced Genes 46 In Vitro 7.2.5 IL-17A-Mediated Enhancement of IL-13-Induced Gene Express- 46 ion Requires Functional IL-13 and IL-17A Signaling Complexes in the Same Cell 7.2.6 IL-17A does not Enhance the Stability of IL-13-Induced Tran- 47 viii scripts 7.2.7 IL-17A Enhances IL-13-Driven STAT6 Phosphorylation 48 7.2.8 Reciprocal Co-Regulation by IL-13 and IL-17A in Human Cells 50 8. IL-17A-Mediated Inhibition of SHP-1 Enhances IL-13 Signal 69 Transduction 8.1 Introduction 70 8.2 Results 72 8.2.1 TRAF6 and TRAF3 are not Required for IL-17A-Mediated 72 Enhancement of IL-13-Induced STAT6 Phosphorylation 8.2.2 Treatment with IL-13 and IL-17A Augments Tyrosine Kinase 74 Activity Upstream of STAT6 8.2.3 Co-Stimulation with IL-13 and IL-17A Inhibits the Phosphor- 74 ylation of SHP-1 and SHP-2 8.2.4 SHP-1 is Required for IL-17A-Mediated Enhancement of STAT6 76 Phosphorylation 8.2.5 IL-17A does not Enhance STAT3 or STAT1 Phosphorylation 77 9. Identification of Transcriptional Regulators Controlling 85 IL-17A-Mediated Enhancement of IL-13 Activity 9.1 Introduction 86 9.2 Results 86 ix 9.2.1 TRAF6 does not Contribute to the Enhancement of pSTAT6, but 87 is Required for IL-13/IL-17A Transcriptional Synergy 9.2.2 5’-Upstream Elements Mediate Enhanced Arg1 and C3 88 Promoter Activity by IL-13 and IL-17A 9.2.3 Inhibition of C/EBP Transcription Factors Attenuates Transcrip- 89 tional Cooperation Between IL-13 and IL-17A 9.2.4 NF-κB also Contributes to Transcriptional Cooperation Between 91 IL-13 and IL-17A 9.2.5 Erk MAPK Upregulates Gene Expression but not IL-13/IL-17A 91 Synergy 9.2.6 p38 MAPK is Required for Transcriptional Synergy Between 93 IL-13 and IL-17A 10. Discussion 104 10.1 Major Findings of the Study 105 10.2 Directions for Future Research 113 10.3 Conclusion 116 11. Glossary 118 12. Bibliography 121 x 3. List of Original Communications This thesis is based on the following original communications. Some related unpublished results are also included in this thesis. Chapter 7 – Hall SL, Baker T, Lajoie S, Richgels PK, Yang Y, McAlees JW, Van Lier A, Wills-Karp M, Sivaprasad U, Acciani TH, LeCras TD, Biagini Myers J, Butsch Kovacic M, and Lewkowich IP: IL-17A Enhances IL-13 Activity by Enhancing IL-13-Induced Signal Transducer and Activator of Transcription 6 Activation, J Allergy Clin Immunol, 2017 Feb; 139(2):462-471.e14.
Recommended publications
  • Cancer-Associated Fibroblasts Promote Prostate Tumor Growth And
    Neuwirt et al. Cell Communication and Signaling (2020) 18:11 https://doi.org/10.1186/s12964-019-0505-5 RESEARCH Open Access Cancer-associated fibroblasts promote prostate tumor growth and progression through upregulation of cholesterol and steroid biosynthesis Hannes Neuwirt1, Jan Bouchal2, Gvantsa Kharaishvili2, Christian Ploner3, Karin Jöhrer4,5, Florian Pitterl6, Anja Weber7, Helmut Klocker7 and Iris E. Eder7* Abstract Background: Androgen receptor targeted therapies have emerged as an effective tool to manage advanced prostate cancer (PCa). Nevertheless, frequent occurrence of therapy resistance represents a major challenge in the clinical management of patients, also because the molecular mechanisms behind therapy resistance are not yet fully understood. In the present study, we therefore aimed to identify novel targets to intervene with therapy resistance using gene expression analysis of PCa co-culture spheroids where PCa cells are grown in the presence of cancer-associated fibroblasts (CAFs) and which have been previously shown to be a reliable model for antiandrogen resistance. Methods: Gene expression changes of co-culture spheroids (LNCaP and DuCaP seeded together with CAFs) were identified by Illumina microarray profiling. Real-time PCR, Western blotting, immunohistochemistry and cell viability assays in 2D and 3D culture were performed to validate the expression of selected targets in vitro and in vivo. Cytokine profiling was conducted to analyze CAF-conditioned medium. Results: Gene expression analysis of co-culture spheroids revealed that CAFs induced a significant upregulation of cholesterol and steroid biosynthesis pathways in PCa cells. Cytokine profiling revealed high amounts of pro- inflammatory, pro-migratory and pro-angiogenic factors in the CAF supernatant. In particular, two genes, 3-hydroxy- 3-methylglutaryl-Coenzyme A synthase 2 (HMGCS2) and aldo-keto reductase family 1 member C3 (AKR1C3), were significantly upregulated in PCa cells upon co-culture with CAFs.
    [Show full text]
  • Intra- and Inter-Cellular Rewiring of the Human Colon During Ulcerative Colitis
    Intra- and Inter-cellular Rewiring of the Human Colon during Ulcerative Colitis The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Smillie, Christopher S. et al. “Intra- and Inter-cellular Rewiring of the Human Colon during Ulcerative Colitis.” Cell, 178, 3 (July 2019): 714–730.e22 © 2019 The Author(s) As Published 10.1016/J.CELL.2019.06.029 Publisher Elsevier BV Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/126822 Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/ HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Cell. Author Manuscript Author manuscript; Manuscript Author available in PMC 2020 July 25. Published in final edited form as: Cell. 2019 July 25; 178(3): 714–730.e22. doi:10.1016/j.cell.2019.06.029. Cellular and inter-cellular rewiring of the human colon during ulcerative colitis Christopher S. Smillie1,19, Moshe Biton1,2,19, José Ordovas-Montañes1,3,4,5,6,7,19, Keri M. Sullivan8, Grace Burgin1, Daniel B. Graham2,8,9,10,11, Rebecca H. Herbst1,12, Noga Rogel1, Michal Slyper1, Julia Waldman1, Malika Sud1, Elizabeth Andrews8, Gabriella Velonias8, Adam L. Haber1, Karthik Jagadeesh1, Sanja Vickovic1, Junmei Yao14, Christine Stevens9, Danielle Dionne1, Lan T. Nguyen1, Alexandra-Chloé Villani1,13, Matan Hofree1, Elizabeth A. Creasey14, Hailiang Huang15,16, Orit Rozenblatt-Rosen1, John J. Garber8, Hamed Khalili8, A. Nicole Desch9,14, Mark J. Daly15,16,17, Ashwin N. Ananthakrishnan8,*, Alex K. Shalek1,3,4,5,6,*, Ramnik J.
    [Show full text]
  • ( 12 ) United States Patent ( 10 ) Patent No .: US 10,837,019 B2 Kochenderfer ( 45 ) Date of Patent : * Nov
    US010837019B2 ( 12 ) United States Patent ( 10 ) Patent No .: US 10,837,019 B2 Kochenderfer ( 45 ) Date of Patent : * Nov . 17 , 2020 ( 54 ) CHIMERIC ANTIGEN RECEPTORS ( 56 ) References Cited TARGETING B - CELL MATURATION ANTIGEN U.S. PATENT DOCUMENTS 4,235,871 A 11/1980 Papahadjopoulos et al . ( 71 ) Applicant: The United States of America , as 4,501,728 A 2/1985 Geho et al . represented by the Secretary, 4,837,028 A 6/1989 Allen 5,019,369 A 5/1991 Presant et al . Department of Health and Human 5,087,616 A 2/1992 Myers et al . Services, Bethesda, MD (US ) 5,122,464 A 6/1992 Wilson et al . 5,464,758 A 11/1995 Gossen et al . ( 72 ) Inventor: James N. Kochenderfer , Bethesda , 5,770,359 A 6/1998 Wilson et al . 5,814,618 A 9/1998 Bujard et al. MD ( US ) 7,112,715 B2 9/2006 Chambon et al . 9,765,342 B2 9/2017 Kochenderfer ( 73 ) Assignee : The United States of America , as 2007/0009518 A1 1/2007 Novobrantseva et al . represented by the Secretary, 2009/0093024 A1 4/2009 Bowers et al . Department of Health and Human 2011/0020343 Al 1/2011 Senter et al . 2011/0135639 Al 6/2011 Yu et al . Services , Bethesda, MD (US ) 2012/0148552 A1 6/2012 Jensen 2013/0280221 A1 10/2013 Schonfeld et al . ( * ) Notice : Subject to any disclaimer , the term of this 2013/0287748 A1 10/2013 June et al . patent is extended or adjusted under 35 2018/0051292 A1 * 2/2018 Kochenderfer .. CO7K 14/70517 U.S.C.
    [Show full text]
  • The Interleukin 22 Pathway Interacts with Mutant KRAS to Promote Poor Prognosis in Colon Cancer
    Author Manuscript Published OnlineFirst on May 19, 2020; DOI: 10.1158/1078-0432.CCR-19-1086 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. The interleukin 22 pathway interacts with mutant KRAS to promote poor prognosis in colon cancer Authors: Sarah McCuaig1, David Barras,2, Elizabeth Mann1, Matthias Friedrich1, Samuel Bullers1, Alina Janney1, Lucy C. Garner1, Enric Domingo3, Viktor Hendrik Koelzer3,4,5, Mauro Delorenzi2,6,7, Sabine Tejpar8, Timothy Maughan9, Nathaniel R. West1, Fiona Powrie1 Affiliations: 1 Kennedy Institute of Rheumatology, University of Oxford, Oxford UK. 2 SIB Swiss Institute of Bioinformatics, Bioinformatics Core Facility, Lausanne, Switzerland. 3Department of Oncology, University of Oxford, Oxford UK. 4Nuffield Department of Medicine, University of Oxford, Oxford UK. 5Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich Switzerland. 6 Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland. 7 Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne Switzerland. 8 Molecular Digestive Oncology, KU Leuven, Belgium. 9 CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK. Downloaded from clincancerres.aacrjournals.org on September 26, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on May 19, 2020; DOI: 10.1158/1078-0432.CCR-19-1086 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Correspondence to: Professor Fiona Powrie; Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7YF, UK. Email: [email protected] Conflicts of Interest: S.M., N.R.W., and F.P.
    [Show full text]
  • Modulation of the IL-33/IL-13 Axis in Obesity by IL-13Rα2
    Modulation of the IL-33/IL-13 Axis in Obesity by IL-13R α2 Jennifer Duffen, Melvin Zhang, Katherine Masek-Hammerman, Angela Nunez, Agnes Brennan, Jessica This information is current as E. C. Jones, Jeffrey Morin, Karl Nocka and Marion Kasaian of September 29, 2021. J Immunol published online 5 January 2018 http://www.jimmunol.org/content/early/2018/01/05/jimmun ol.1701256 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2018/01/05/jimmunol.170125 Material 6.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 29, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2018 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published January 5, 2018, doi:10.4049/jimmunol.1701256 The Journal of Immunology Modulation of the IL-33/IL-13 Axis in Obesity by IL-13Ra2 Jennifer Duffen,* Melvin Zhang,* Katherine Masek-Hammerman,† Angela Nunez,‡ Agnes Brennan,* Jessica E. C. Jones,x Jeffrey Morin,‡ Karl Nocka,* and Marion Kasaian* In obesity, IL-13 overcomes insulin resistance by promoting anti-inflammatory macrophage differentiation in adipose tissue.
    [Show full text]
  • Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association Between BMI and Adult-Onset Non- Atopic
    Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association between BMI and Adult-Onset Non- Atopic Asthma Ayoung Jeong 1,2, Medea Imboden 1,2, Akram Ghantous 3, Alexei Novoloaca 3, Anne-Elie Carsin 4,5,6, Manolis Kogevinas 4,5,6, Christian Schindler 1,2, Gianfranco Lovison 7, Zdenko Herceg 3, Cyrille Cuenin 3, Roel Vermeulen 8, Deborah Jarvis 9, André F. S. Amaral 9, Florian Kronenberg 10, Paolo Vineis 11,12 and Nicole Probst-Hensch 1,2,* 1 Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; [email protected] (A.J.); [email protected] (M.I.); [email protected] (C.S.) 2 Department of Public Health, University of Basel, 4001 Basel, Switzerland 3 International Agency for Research on Cancer, 69372 Lyon, France; [email protected] (A.G.); [email protected] (A.N.); [email protected] (Z.H.); [email protected] (C.C.) 4 ISGlobal, Barcelona Institute for Global Health, 08003 Barcelona, Spain; [email protected] (A.-E.C.); [email protected] (M.K.) 5 Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain 6 CIBER Epidemiología y Salud Pública (CIBERESP), 08005 Barcelona, Spain 7 Department of Economics, Business and Statistics, University of Palermo, 90128 Palermo, Italy; [email protected] 8 Environmental Epidemiology Division, Utrecht University, Institute for Risk Assessment Sciences, 3584CM Utrecht, Netherlands; [email protected] 9 Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College, SW3 6LR London, UK; [email protected] (D.J.); [email protected] (A.F.S.A.) 10 Division of Genetic Epidemiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; [email protected] 11 MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, W2 1PG London, UK; [email protected] 12 Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy * Correspondence: [email protected]; Tel.: +41-61-284-8378 Int.
    [Show full text]
  • Conserved Transcriptomic Profile Between Mouse and Human Colitis
    ARTICLE https://doi.org/10.1038/s41467-019-10769-x OPEN Conserved transcriptomic profile between mouse and human colitis allows unsupervised patient stratification Paulo Czarnewski1, Sara M. Parigi1, Chiara Sorini 1, Oscar E. Diaz 1, Srustidhar Das1, Nicola Gagliani1,2,3 & Eduardo J. Villablanca 1,3 1234567890():,; Clinical manifestations and response to therapies in ulcerative colitis (UC) are hetero- geneous, yet patient classification criteria for tailored therapies are currently lacking. Here, we present an unsupervised molecular classification of UC patients, concordant with response to therapy in independent retrospective cohorts. We show that classical clustering of UC patient tissue transcriptomic data sets does not identify clinically relevant profiles, likely due to associated covariates. To overcome this, we compare cross-sectional human data sets with a newly generated longitudinal transcriptome profile of murine DSS-induced colitis. We show that the majority of colitis risk-associated gene expression peaks during the inflammatory rather than the recovery phase. Moreover, we achieve UC patient clustering into two distinct transcriptomic profiles, differing in neutrophil-related gene activation. Notably, 87% of patients in UC1 cluster are unresponsive to two most widely used biological therapies. These results demonstrate that cross-species comparison enables stratification of patients undistinguishable by other molecular approaches. 1 Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, 17176 Stockholm, Sweden. 2 Department of Medicine and Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany. 3These authors jointly supervised this work: Nicola Gagliani, Eduardo J. Villablanca. Correspondence and requests for materials should be addressed to E.J.V.
    [Show full text]
  • IL-25-Induced Activities IL-17RB and IL-17RA in Mediating Identification of Functional Roles for Both
    Identification of Functional Roles for Both IL-17RB and IL-17RA in Mediating IL-25-Induced Activities This information is current as Erika A. Rickel, Lori A. Siegel, Bo-Rin Park Yoon, James B. of September 29, 2021. Rottman, David G. Kugler, David A. Swart, Penny M. Anders, Joel E. Tocker, Michael R. Comeau and Alison L. Budelsky J Immunol 2008; 181:4299-4310; ; doi: 10.4049/jimmunol.181.6.4299 Downloaded from http://www.jimmunol.org/content/181/6/4299 References This article cites 30 articles, 16 of which you can access for free at: http://www.jimmunol.org/content/181/6/4299.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 29, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Identification of Functional Roles for Both IL-17RB and IL-17RA in Mediating IL-25-Induced Activities Erika A.
    [Show full text]
  • Strategies to Address Chimeric Antigen Receptor Tonic Signaling Adam Ajina1,2 and John Maher1,2,3,4
    Review Molecular Cancer Therapeutics Strategies to Address Chimeric Antigen Receptor Tonic Signaling Adam Ajina1,2 and John Maher1,2,3,4 Abstract Adoptive cell transfer using chimeric antigen receptors Here, we review the mechanisms underpinning CAR tonic (CAR) has emerged as one of the most promising new ther- signaling and highlight the wide variety of effects that can apeutic modalities for patients with relapsed or refractory B- emerge after making subtle structural changes or altering the cell malignancies. Thus far, results in patients with advanced methodology of CAR transduction. We highlight strategies to solid tumors have proven disappointing. Constitutive tonic prevent unconstrained tonic signaling and address its delete- signaling in the absence of ligand is an increasingly recognized rious consequences. We also frame this phenomenon in the complication when deploying these synthetic fusion receptors context of endogenous TCR tonic signaling, which has been and can be a cause of poor antitumor efficacy, impaired shown to regulate peripheral tolerance, facilitate the targeting survival, and reduced persistence in vivo. In parallel, ligand- of foreign antigens, and suggest opportunities to coopt ligand- dependent tonic signaling can mediate toxicity and promote T- dependent CAR tonic signaling to facilitate in vivo persistence cell anergy, exhaustion, and activation-induced cell death. and efficacy. Mol Cancer Ther; 17(9); 1795–815. Ó2018 AACR. Background subtle differences in CAR design can have amplified effects both in vitro and particularly in vivo and that the optimal selection of the Adoptive cell transfer (ACT), utilizing autologous T cells engi- CAR's extracellular targeting moiety, hinge, spacer, transmem- neered to express chimeric antigen receptors (CAR), has proven to brane domain (TMD), and intracellular costimulatory domain(s) be a highly efficacious strategy for the management of patients (ICD) is crucial.
    [Show full text]
  • The Interleukin 22 Pathway Interacts with Mutant KRAS to Promote Poor Prognosis in Colon Cancer
    Author Manuscript Published OnlineFirst on May 19, 2020; DOI: 10.1158/1078-0432.CCR-19-1086 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. The interleukin 22 pathway interacts with mutant KRAS to promote poor prognosis in colon cancer Authors: Sarah McCuaig1, David Barras,2, Elizabeth Mann1, Matthias Friedrich1, Samuel Bullers1, Alina Janney1, Lucy C. Garner1, Enric Domingo3, Viktor Hendrik Koelzer3,4,5, Mauro Delorenzi2,6,7, Sabine Tejpar8, Timothy Maughan9, Nathaniel R. West1, Fiona Powrie1 Affiliations: 1 Kennedy Institute of Rheumatology, University of Oxford, Oxford UK. 2 SIB Swiss Institute of Bioinformatics, Bioinformatics Core Facility, Lausanne, Switzerland. 3Department of Oncology, University of Oxford, Oxford UK. 4Nuffield Department of Medicine, University of Oxford, Oxford UK. 5Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich Switzerland. 6 Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland. 7 Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne Switzerland. 8 Molecular Digestive Oncology, KU Leuven, Belgium. 9 CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK. Downloaded from clincancerres.aacrjournals.org on September 30, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on May 19, 2020; DOI: 10.1158/1078-0432.CCR-19-1086 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Correspondence to: Professor Fiona Powrie; Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7YF, UK. Email: [email protected] Conflicts of Interest: S.M., N.R.W., and F.P.
    [Show full text]
  • ABD-Derived Protein Blockers of Human IL-17 Receptor a As Non-Igg Alternatives for Modulation of IL-17-Dependent Pro-Inflammatory Axis
    International Journal of Molecular Sciences Article ABD-Derived Protein Blockers of Human IL-17 Receptor A as Non-IgG Alternatives for Modulation of IL-17-Dependent Pro-Inflammatory Axis Marie Hlavniˇcková 1, Milan Kuchaˇr 1, Radim Osiˇcka 2, Lucie Vaˇnková 1, Hana Petroková 1, Michal Malý 1, Jiˇrí Cernˇ ý 3 , Petr Arenberger 4 and Petr Malý 1,* 1 Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, v. v. i., BIOCEV Research Center, Pru˚myslová 595, 252 50 Vestec, Czech Republic; [email protected] (M.H.); [email protected] (M.K.); [email protected] (L.V.); [email protected] (H.P.); [email protected] (M.M.) 2 Laboratory of Molecular Biology of the Bacterial Pathogens, Institute of Microbiology, Czech Academy of Sciences, v. v. i., Vídeˇnská 1083, 142 20 Prague, Czech Republic; [email protected] 3 Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, v. v. i., BIOCEV Research Center, Pru˚myslová 595, 252 50 Vestec, Czech Republic; [email protected] 4 Department of Dermatology and Venereology, Faculty Hospital of Královské Vinohrady, Šrobárova 50, 100 34 Prague, Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +420-325-873-763 Received: 10 September 2018; Accepted: 6 October 2018; Published: 9 October 2018 Abstract: Interleukin 17 (IL-17) and its cognate receptor A (IL-17RA) play a crucial role in Th17 cells-mediated pro-inflammatory pathway and pathogenesis of several autoimmune disorders including psoriasis.
    [Show full text]
  • Expression of Interleukin-13 Receptor A2 in Glioblastoma Multiforme: Implications for Targeted Therapies
    Priority Report Expression of Interleukin-13 Receptor A2 in Glioblastoma Multiforme: Implications for Targeted Therapies John S. Jarboe,1 Kory R. Johnson,2 Yong Choi,1 Russell R. Lonser,3 and John K. Park1 1Surgical and Molecular Neuro-oncology Unit, 2Bioinformatics Group, Intramural Information Technology Program, Division of Intramural Research, and 3Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland Abstract quantities of IL4, an effect referred to as IL4-independent IL13 Glioblastoma multiforme is the most common primary binding (2–5). The cell surface expression of a monomeric 42-kDa malignant brain tumor and despite treatment with surgery, receptor capable of binding IL13 but not IL4, termed IL13 receptor a2 (IL13Ra2), was used to explain this effect (6). It was also initially radiation, and chemotherapy, the median survival of patients a with glioblastoma multiforme is f1 year. Glioblastoma multi- reported that significant IL13R 2 expression, as assessed by Northern blotting, occurs exclusively in the testes and in malignant forme explants and cell lines have been reported to over- a express the interleukin-13 receptor A2 subunit (IL13RA2) glioma tissues (7). The putative relative restriction of IL13R 2 relative to nonneoplastic brain. Based on this finding, a expression to glioma cells was subsequently used as a rationale for recombinant cytotoxin composed of IL13 ligand and a trun- the development of several IL13-based treatment strategies including a recombinant cytotoxin composed of IL13 and a cated form of Pseudomonas aeruginosa exotoxin A (IL13- PE38QQR) was developed for the targeted treatment of truncated form of Pseudomonas aeruginosa exotoxin A (IL13- glioblastoma multiforme tumors.
    [Show full text]