IL-25-Induced Activities IL-17RB and IL-17RA in Mediating Identification of Functional Roles for Both

Total Page:16

File Type:pdf, Size:1020Kb

IL-25-Induced Activities IL-17RB and IL-17RA in Mediating Identification of Functional Roles for Both Identification of Functional Roles for Both IL-17RB and IL-17RA in Mediating IL-25-Induced Activities This information is current as Erika A. Rickel, Lori A. Siegel, Bo-Rin Park Yoon, James B. of September 29, 2021. Rottman, David G. Kugler, David A. Swart, Penny M. Anders, Joel E. Tocker, Michael R. Comeau and Alison L. Budelsky J Immunol 2008; 181:4299-4310; ; doi: 10.4049/jimmunol.181.6.4299 Downloaded from http://www.jimmunol.org/content/181/6/4299 References This article cites 30 articles, 16 of which you can access for free at: http://www.jimmunol.org/content/181/6/4299.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 29, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Identification of Functional Roles for Both IL-17RB and IL-17RA in Mediating IL-25-Induced Activities Erika A. Rickel,* Lori A. Siegel,* Bo-Rin Park Yoon,* James B. Rottman,† David G. Kugler,* David A. Swart,* Penny M. Anders,* Joel E. Tocker,* Michael R. Comeau,* and Alison L. Budelsky1* IL-25 (IL-17E) is a unique IL-17 family ligand that promotes Th2-skewed inflammatory responses. Intranasal administration of IL-25 into naive mice induces pulmonary inflammation similar to that seen in patients with allergic asthma, including increases in bronchoalveolar lavage fluid eosinophils, bronchoalveolar lavage fluid IL-5 and IL-13 concentrations, goblet cell hyperplasia, and increased airway hyperresponsiveness. IL-25 has been reported to bind and signal through IL-17RB (IL-17BR, IL-17Rh1). It has been demonstrated recently that IL-17A signals through a heteromeric receptor composed of IL-17RA and IL-17RC. We sought to determine whether other IL-17 family ligands also utilize heteromeric receptor complexes. The required receptor Downloaded from subunits for IL-25 biological activities were investigated in vitro and in vivo using a combination of knockout (KO) mice and antagonistic Abs. Unlike wild-type mice, cultured splenocytes from either IL-17RB KO or IL-17RA KO mice did not produce IL-5 or IL-13 in response to IL-25 stimulation, and both IL-17RB KO and IL-17RA KO mice did not respond to intranasal admin- istration of IL-25. Furthermore, treatment with antagonistic mAbs to either IL-17RB or IL-17RA completely blocked IL-25- induced pulmonary inflammation and airway hyperresponsiveness in naive BALB/c mice, similar to the effects of an antagonistic http://www.jimmunol.org/ Ab to IL-25. Finally, a blocking Ab to human IL-17RA prevented IL-25 activity in a primary human cell-based assay. These data demonstrate for the first time that IL-25-mediated activities require both IL-17RB and IL-17RA and provide another example of an IL-17 family ligand that utilizes a heteromeric receptor complex. The Journal of Immunology, 2008, 181: 4299–4310. nterleukin-25 (also known as IL-17E) is a member of the a soluble IL-17RB.Fc protein or an antagonistic Ab to IL-25 in- structurally related IL-17 family of cytokines that were iden- hibits many of the components of the Ag-induced Th2-type pul- I tified based on sequence homology to IL-17A (1, 2). Unlike monary inflammation (9, 10). the proinflammatory effects associated with IL-17A, IL-25 pro- The biological effects of IL-25 are reported to be mediated motes Th2-type immune responses. For example, transgenic ex- through IL-17RB (also known as IL-17BR or IL-17Rh1), a mem- by guest on September 29, 2021 pression of IL-25 in mice results in increased blood eosinophilia, ber of the IL-17R family of cytokine receptors (1, 2). IL-25 binds serum IgE, IgG1, IL-13, and IL-5 concentrations and gene expres- with high affinity to and activates signaling pathways through IL- sion of IL-4, IL-5, IL-10, and IL-13 in multiple tissues (3, 4). In 17RB (11–14). It has, however, recently been reported that IL-17A contrast, IL-25 knockout (KO)2 mice exhibit an impaired Th2 re- and IL-17F signal through a heteromeric receptor complex con- sponse to infection by the parasitic helminthes Nippostrongylus taining IL-17RA and IL-17RC (15). In light of this information, brasiliensis and Trichuris muris, resulting in increased suscepti- we investigated the receptor subunits required for IL-25 activities bility to infection and chronic inflammation (5, 6). using a combination of KO mice and antagonistic Abs. The roles The effects of IL-25 specifically in the lung have also been in- for both IL-17RB and IL-17RA in mediating IL-25-induced events vestigated. Intranasal administration of either IL-25-expressing ad- were first investigated using IL-17RB KO and IL-17RA KO mice. enovirus or rIL-25 protein increases bronchoalveolar lavage fluid KO mouse experiments were validated by studies using antago- (BALF) and lung tissue eosinophilia, airway hyperresponsiveness, nistic Abs to these receptors. Finally, the mouse data were fol- mucus secretion, and lung mRNA levels of IL-4, IL-5, IL-13, and lowed up by examining the role for IL-17RA in IL-25-mediated CCL11/eotaxin (7, 8). In an OVA-induced pulmonary inflamma- activity in a human primary cell-based assay. Taken together, these tion model, IL-25 mRNA expression increases in the lung after data provide compelling evidence that IL-25 biological activities aerosolized OVA challenge, and antagonism of IL-25 using either require both IL-17RB and IL-17RA, identifying IL-25 as another IL-17 family cytokine that utilizes IL-17RA in a heteromeric re- *Department of Inflammation Research, Amgen, Seattle, WA 98119; and †Depart- ceptor complex. ment of Pathology, Amgen, Cambridge, MA 02139 Received for publication March 17, 2008. Accepted for publication July 20, 2008. The costs of publication of this article were defrayed in part by the payment of page Materials and Methods charges. This article must therefore be hereby marked advertisement in accordance Mice with 18 U.S.C. Section 1734 solely to indicate this fact. 1 Address correspondence and reprint requests to Dr. Alison Budelsky, Amgen, 1201 C57BL/6 and BALB/c wild-type (WT) mice were obtained from Charles Ϫ/Ϫ Amgen Court West, Seattle, WA 98119. E-mail address: alisonb@amgen.com River Laboratories and Taconic Farms. The generation of IL-17RA 2 (IL-17RA KO) mice has been described previously (16), and the IL-17RA Abbreviations used in this paper: KO, knockout; WT, wild type; BALF, bronchoal- Ϫ/Ϫ veolar lavage fluid; BAL, bronchoalveolar lavage; AHR, airway hyperresponsiveness; KO mouse breeding colony is maintained at Taconic Farms. IL-17RB MCh, methacholine; PAS, periodic acid-Schiff; TSLP, thymic stromal lymphopoietin; (IL-17RB KO) mice were generated as follows. A gene targeting vector i.n. ϭ intranasal; PENH, enhanced pause; TRAF6, TNFR-associated factor 6. was constructed with a 2107-bp 5Ј arm of homology and a 5889-bp 3Ј arm of homology flanking a neomycin resistance cassette. A thymidine kinase Copyright © 2008 by The American Association of Immunologists, Inc. 0022-1767/08/$2.00 cassette was inserted into the 5Ј end of the vector. The targeting vector was www.jimmunol.org 4300 IL-17RB AND IL-17RA ARE REQUIRED FOR IL-25 ACTIVITIES designed to remove a region of exon 3 of the murine IL-17RB gene en- Intranasal cytokine challenge protocol coding aa H38-R73. 129-derived embryonic stem cells were electroporated Mice were intranasally dosed with 0.5 ␮g of murine IL-25 (Amgen), 0.5 with the targeting vector and selected in the presence of G418 and ganci- ␮ ␮ clovir as previously described (17). Embryonic stem cell clones carrying g of murine IL-13 (Biosystems), 0.5 g of murine IL-17F (R&D Sys- tems), or an equal volume (50 ␮l) of vehicle. Cytokines were diluted in the targeted insertion in IL-17RB were identified by a combination of PCR ␮ and genomic Southern blot analyses and were injected into Swiss Black PBS (Life Technologies) containing 10 g/ml mouse serum albumin blastocysts. PCR genotyping was performed using primers 3291-82 (5Ј- (Sigma-Aldrich) or in PBS alone. IL-25, IL-13, and IL-17F intranasal chal- CCAGGATCCAGGAGTTTAGCTT-3Ј) and 3291-83 (5Ј-CCCTATGTC lenge was performed once daily for 4 consecutive days. All mice were analyzed 24 h after the final intranasal challenge. CTTCCCGTTTCTA-3Ј) that produce a 336-bp product for the WT allele and a 280-bp product for the KO allele. Male chimeras were crossed to Ab treatment protocol Swiss Black females to generate mice heterozygous for the IL-17RB mu- tation (IL-17RBϩ/Ϫ). IL-17RBϩ/Ϫ mice were subsequently intercrossed to BALB/c mice were injected i.p. once daily for 4 consecutive days with 250 generate IL-17RBϪ/Ϫ mice (IL-17RB KO). IL-17RB KO mice were ␮g of anti-IL-25 mAb (Amgen), 250 ␮g of anti-IL-17RB mAb (Amgen), moved to a C57BL/6 background using Marker-Assisted Accelerated 200 ␮g of anti-IL-17RA-mAb (Amgen), 200 ␮g of anti-IL-17A mAb (Am- Backcrossing (MAX-BAXSM) technology at Charles River Laboratories.
Recommended publications
  • Cytokines and Their Genetic Polymorphisms Related to Periodontal Disease
    Journal of Clinical Medicine Review Cytokines and Their Genetic Polymorphisms Related to Periodontal Disease Małgorzata Kozak 1, Ewa Dabrowska-Zamojcin 2, Małgorzata Mazurek-Mochol 3 and Andrzej Pawlik 4,* 1 Chair and Department of Dental Prosthetics, Pomeranian Medical University, Powsta´nców Wlkp 72, 70-111 Szczecin, Poland; gosia-ko@o2.pl 2 Department of Pharmacology, Pomeranian Medical University, Powsta´nców Wlkp 72, 70-111 Szczecin, Poland; dabewa@vp.pl 3 Department of Periodontology, Pomeranian Medical University, Powsta´nców Wlkp 72, 70-111 Szczecin, Poland; malgorzata.mazurek@poczta.onet.pl 4 Department of Physiology, Pomeranian Medical University, Powsta´nców Wlkp 72, 70-111 Szczecin, Poland * Correspondence: pawand@poczta.onet.pl Received: 24 October 2020; Accepted: 10 December 2020; Published: 14 December 2020 Abstract: Periodontal disease (PD) is a chronic inflammatory disease caused by the accumulation of bacterial plaque biofilm on the teeth and the host immune responses. PD pathogenesis is complex and includes genetic, environmental, and autoimmune factors. Numerous studies have suggested that the connection of genetic and environmental factors induces the disease process leading to a response by both T cells and B cells and the increased synthesis of pro-inflammatory mediators such as cytokines. Many studies have shown that pro-inflammatory cytokines play a significant role in the pathogenesis of PD. The studies have also indicated that single nucleotide polymorphisms (SNPs) in cytokine genes may be associated with risk and severity of PD. In this narrative review, we discuss the role of selected cytokines and their gene polymorphisms in the pathogenesis of periodontal disease. Keywords: periodontal disease; cytokines; polymorphism 1.
    [Show full text]
  • Interleukin-25 Is Upregulated in Patients with Systemic Lupus
    International Immunopharmacology 74 (2019) 105680 Contents lists available at ScienceDirect International Immunopharmacology journal homepage: www.elsevier.com/locate/intimp Interleukin-25 is upregulated in patients with systemic lupus erythematosus T and ameliorates murine lupus by inhibiting inflammatory cytokine production Yongsheng Lia, Rui Wangb, Shanshan Liua, Juan Liua, Wenyou Pana, Fang Lia, Ju Lia, ⁎ Deqian Menga, a Department of Rheumatology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 6 West Road, Huai'an, Beijing 223300,China b Department of Hematology, Lianshui County People's Hospital, No. 6 Hongri Road, Lianshui, Huai'an 224600, China ARTICLE INFO ABSTRACT Keywords: Interleukin-25 (IL-25), an anti-inflammatory member of the IL-17 family of cytokines, has been extensively Interleukin-25 investigated in multiple autoimmune and inflammatory diseases. However, its pathogenic role in systemic lupus Systemic lupus erythematosus erythematosus (SLE) remains largely unknown. This study aimed to explore the expression and clinical sig- Disease activity nificance of IL-25 in patients with SLE as well as its pathogenic role in lupus-prone MRL/lpr mice.Theresults Inflammatory cytokine showed that IL-25 mRNA and serum levels were increased in patients with SLE compared with those in healthy controls. Higher IL-25 mRNA and serum levels were found in patients with an active disease. IL-25 levels were positively associated with SLEDAI, anti-dsDNA, and IgG but negatively associated with C3 and C4. Ex vivo assay showed that IL-25 could inhibit the production of the inflammatory cytokines IL-1β, IL-17, IL-6, and IFN-γ as well as TNF-α in the peripheral blood mononuclear cells in patients with SLE.
    [Show full text]
  • The Interleukin 22 Pathway Interacts with Mutant KRAS to Promote Poor Prognosis in Colon Cancer
    Author Manuscript Published OnlineFirst on May 19, 2020; DOI: 10.1158/1078-0432.CCR-19-1086 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. The interleukin 22 pathway interacts with mutant KRAS to promote poor prognosis in colon cancer Authors: Sarah McCuaig1, David Barras,2, Elizabeth Mann1, Matthias Friedrich1, Samuel Bullers1, Alina Janney1, Lucy C. Garner1, Enric Domingo3, Viktor Hendrik Koelzer3,4,5, Mauro Delorenzi2,6,7, Sabine Tejpar8, Timothy Maughan9, Nathaniel R. West1, Fiona Powrie1 Affiliations: 1 Kennedy Institute of Rheumatology, University of Oxford, Oxford UK. 2 SIB Swiss Institute of Bioinformatics, Bioinformatics Core Facility, Lausanne, Switzerland. 3Department of Oncology, University of Oxford, Oxford UK. 4Nuffield Department of Medicine, University of Oxford, Oxford UK. 5Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich Switzerland. 6 Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland. 7 Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne Switzerland. 8 Molecular Digestive Oncology, KU Leuven, Belgium. 9 CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK. Downloaded from clincancerres.aacrjournals.org on September 26, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on May 19, 2020; DOI: 10.1158/1078-0432.CCR-19-1086 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Correspondence to: Professor Fiona Powrie; Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7YF, UK. Email: fiona.powrie@kennedy.ox.ac.uk Conflicts of Interest: S.M., N.R.W., and F.P.
    [Show full text]
  • Evolutionary Divergence and Functions of the Human Interleukin (IL) Gene Family Chad Brocker,1 David Thompson,2 Akiko Matsumoto,1 Daniel W
    UPDATE ON GENE COMPLETIONS AND ANNOTATIONS Evolutionary divergence and functions of the human interleukin (IL) gene family Chad Brocker,1 David Thompson,2 Akiko Matsumoto,1 Daniel W. Nebert3* and Vasilis Vasiliou1 1Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA 2Department of Clinical Pharmacy, University of Colorado Denver, Aurora, CO 80045, USA 3Department of Environmental Health and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH 45267–0056, USA *Correspondence to: Tel: þ1 513 821 4664; Fax: þ1 513 558 0925; E-mail: dan.nebert@uc.edu; vasilis.vasiliou@ucdenver.edu Date received (in revised form): 22nd September 2010 Abstract Cytokines play a very important role in nearly all aspects of inflammation and immunity. The term ‘interleukin’ (IL) has been used to describe a group of cytokines with complex immunomodulatory functions — including cell proliferation, maturation, migration and adhesion. These cytokines also play an important role in immune cell differentiation and activation. Determining the exact function of a particular cytokine is complicated by the influence of the producing cell type, the responding cell type and the phase of the immune response. ILs can also have pro- and anti-inflammatory effects, further complicating their characterisation. These molecules are under constant pressure to evolve due to continual competition between the host’s immune system and infecting organisms; as such, ILs have undergone significant evolution. This has resulted in little amino acid conservation between orthologous proteins, which further complicates the gene family organisation. Within the literature there are a number of overlapping nomenclature and classification systems derived from biological function, receptor-binding properties and originating cell type.
    [Show full text]
  • Urinary Proteomics for the Early Diagnosis of Diabetic Nephropathy in Taiwanese Patients Authors
    Urinary Proteomics for the Early Diagnosis of Diabetic Nephropathy in Taiwanese Patients Authors: Wen-Ling Liao1,2, Chiz-Tzung Chang3,4, Ching-Chu Chen5,6, Wen-Jane Lee7,8, Shih-Yi Lin3,4, Hsin-Yi Liao9, Chia-Ming Wu10, Ya-Wen Chang10, Chao-Jung Chen1,9,+,*, Fuu-Jen Tsai6,10,11,+,* 1 Graduate Institute of Integrated Medicine, China Medical University, Taichung, 404, Taiwan 2 Center for Personalized Medicine, China Medical University Hospital, Taichung, 404, Taiwan 3 Division of Nephrology and Kidney Institute, Department of Internal Medicine, China Medical University Hospital, Taichung, 404, Taiwan 4 Institute of Clinical Medical Science, China Medical University College of Medicine, Taichung, 404, Taiwan 5 Division of Endocrinology and Metabolism, Department of Medicine, China Medical University Hospital, Taichung, 404, Taiwan 6 School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan 7 Department of Medical Research, Taichung Veterans General Hospital, Taichung, 404, Taiwan 8 Department of Social Work, Tunghai University, Taichung, 404, Taiwan 9 Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, 404, Taiwan 10 Human Genetic Center, Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404, Taiwan 11 Department of Health and Nutrition Biotechnology, Asia University, Taichung, 404, Taiwan + Fuu-Jen Tsai and Chao-Jung Chen contributed equally to this work. Correspondence: Fuu-Jen Tsai, MD, PhD and Chao-Jung Chen, PhD FJ Tsai: Genetic Center, China Medical University Hospital, No.2 Yuh-Der Road, 404 Taichung, Taiwan; Telephone: 886-4-22062121 Ext. 2041; Fax: 886-4-22033295; E-mail: d0704@mail.cmuh.org.tw CJ Chen: Graduate Institute of Integrated Medicine, China Medical University, No.91, Hsueh-Shih Road, 404, Taichung, Taiwan; Telephone: 886-4-22053366 Ext.
    [Show full text]
  • The Interleukin 22 Pathway Interacts with Mutant KRAS to Promote Poor Prognosis in Colon Cancer
    Author Manuscript Published OnlineFirst on May 19, 2020; DOI: 10.1158/1078-0432.CCR-19-1086 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. The interleukin 22 pathway interacts with mutant KRAS to promote poor prognosis in colon cancer Authors: Sarah McCuaig1, David Barras,2, Elizabeth Mann1, Matthias Friedrich1, Samuel Bullers1, Alina Janney1, Lucy C. Garner1, Enric Domingo3, Viktor Hendrik Koelzer3,4,5, Mauro Delorenzi2,6,7, Sabine Tejpar8, Timothy Maughan9, Nathaniel R. West1, Fiona Powrie1 Affiliations: 1 Kennedy Institute of Rheumatology, University of Oxford, Oxford UK. 2 SIB Swiss Institute of Bioinformatics, Bioinformatics Core Facility, Lausanne, Switzerland. 3Department of Oncology, University of Oxford, Oxford UK. 4Nuffield Department of Medicine, University of Oxford, Oxford UK. 5Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich Switzerland. 6 Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland. 7 Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne Switzerland. 8 Molecular Digestive Oncology, KU Leuven, Belgium. 9 CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK. Downloaded from clincancerres.aacrjournals.org on September 30, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on May 19, 2020; DOI: 10.1158/1078-0432.CCR-19-1086 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Correspondence to: Professor Fiona Powrie; Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7YF, UK. Email: fiona.powrie@kennedy.ox.ac.uk Conflicts of Interest: S.M., N.R.W., and F.P.
    [Show full text]
  • ABD-Derived Protein Blockers of Human IL-17 Receptor a As Non-Igg Alternatives for Modulation of IL-17-Dependent Pro-Inflammatory Axis
    International Journal of Molecular Sciences Article ABD-Derived Protein Blockers of Human IL-17 Receptor A as Non-IgG Alternatives for Modulation of IL-17-Dependent Pro-Inflammatory Axis Marie Hlavniˇcková 1, Milan Kuchaˇr 1, Radim Osiˇcka 2, Lucie Vaˇnková 1, Hana Petroková 1, Michal Malý 1, Jiˇrí Cernˇ ý 3 , Petr Arenberger 4 and Petr Malý 1,* 1 Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, v. v. i., BIOCEV Research Center, Pru˚myslová 595, 252 50 Vestec, Czech Republic; marie.hlavnickova@ibt.cas.cz (M.H.); milan.kuchar@ibt.cas.cz (M.K.); lucie.vankova@ibt.cas.cz (L.V.); hana.petrokova@ibt.cas.cz (H.P.); michal.maly@ibt.cas.cz (M.M.) 2 Laboratory of Molecular Biology of the Bacterial Pathogens, Institute of Microbiology, Czech Academy of Sciences, v. v. i., Vídeˇnská 1083, 142 20 Prague, Czech Republic; osicka@biomed.cas.cz 3 Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, v. v. i., BIOCEV Research Center, Pru˚myslová 595, 252 50 Vestec, Czech Republic; jiri.cerny@ibt.cas.cz 4 Department of Dermatology and Venereology, Faculty Hospital of Královské Vinohrady, Šrobárova 50, 100 34 Prague, Czech Republic; petr.arenberger@fnkv.cz * Correspondence: petr.maly@ibt.cas.cz; Tel.: +420-325-873-763 Received: 10 September 2018; Accepted: 6 October 2018; Published: 9 October 2018 Abstract: Interleukin 17 (IL-17) and its cognate receptor A (IL-17RA) play a crucial role in Th17 cells-mediated pro-inflammatory pathway and pathogenesis of several autoimmune disorders including psoriasis.
    [Show full text]
  • Anti-Alarmins in Asthma: Targeting the Airway Epithelium with Next-Generation Biologics
    REVIEW | ASTHMA Anti-alarmins in asthma: targeting the airway epithelium with next-generation biologics Celeste M. Porsbjerg1, Asger Sverrild1, Clare M. Lloyd 2, Andrew N. Menzies-Gow3 and Elisabeth H. Bel4 Affiliations: 1Dept of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark. 2National Heart and Lung Institute, Imperial College London, London, UK. 3Royal Brompton Hospital, London, UK. 4Dept of Respiratory Medicine, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. Correspondence: Celeste M. Porsbjerg, Dept of Respiratory Medicine, Bispebjerg Hospital, Bispebjerg Bakke 23, 2400 Copenhagen, Denmark. E-mail: Celeste.Porsbjerg@regionh.dk @ERSpublications Blocking epithelial alarmins, upstream mediators triggered early in the asthma inflammatory response that orchestrate broad inflammatory effects, is a promising alternative approach to asthma treatment, which may be effective in a broad patient population https://bit.ly/2zqoXAw Cite this article as: Porsbjerg CM, Sverrild A, Lloyd CM, et al. Anti-alarmins in asthma: targeting the airway epithelium with next-generation biologics. Eur Respir J 2020; 56: 2000260 [https://doi.org/10.1183/ 13993003.00260-2020]. ABSTRACT Monoclonal antibody therapies have significantly improved treatment outcomes for patients with severe asthma; however, a significant disease burden remains. Available biologic treatments, including anti-immunoglobulin (Ig)E, anti-interleukin (IL)-5, anti-IL-5Rα and anti-IL-4Rα, reduce exacerbation rates in study populations by approximately 50% only. Furthermore, there are currently no effective treatments for patients with severe, type 2-low asthma. Existing biologics target immunological pathways that are downstream in the type 2 inflammatory cascade, which may explain why exacerbations are only partly abrogated. For example, type 2 airway inflammation results from several inflammatory signals in addition to IL-5.
    [Show full text]
  • The Innate Cytokines IL-25, IL-33, and TSLP Cooperate in the Induction Of
    The Innate Cytokines IL-25, IL-33, and TSLP Cooperate in the Induction of Type 2 Innate Lymphoid Cell Expansion and Mucous Metaplasia in Rhinovirus-Infected This information is current as Immature Mice of September 29, 2021. Mingyuan Han, Charu Rajput, Jun Y. Hong, Jing Lei, Joanna L. Hinde, Qian Wu, J. Kelley Bentley and Marc B. Hershenson J Immunol 2017; 199:1308-1318; Prepublished online 12 Downloaded from July 2017; doi: 10.4049/jimmunol.1700216 http://www.jimmunol.org/content/199/4/1308 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2017/07/12/jimmunol.170021 Material 6.DCSupplemental References This article cites 64 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/199/4/1308.full#ref-list-1 by guest on September 29, 2021 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606.
    [Show full text]
  • IL-17RA-Signaling Modulates CD8+ T Cell Survival and Exhaustion During 2 Trypanosoma Cruzi Infection
    bioRxiv preprint doi: https://doi.org/10.1101/314336; this version posted May 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 IL-17RA-signaling modulates CD8+ T cell survival and exhaustion during 2 Trypanosoma cruzi infection 3 Jimena Tosello Boari1,2, Cintia L. Araujo Furlan1,2, Facundo Fiocca Vernengo1,2, Constanza 4 Rodriguez1,2, María C. Ramello1,2, María C. Amezcua Vesely1,2, Melisa Gorosito Serrán1,2, 5 Nicolás G. Nuñez3,4, Wilfrid Richer3,4, Eliane Piaggio3,4, Carolina L. Montes1,2, Adriana 6 Gruppi1,2, Eva V. Acosta Rodríguez1,2*. 7 1 Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad 8 Nacional de Córdoba, Córdoba, X5000HUA. Argentina. 9 2 Centro de Investigaciones en Bioquímica Clínica e Inmunología. CONICET. Córdoba, 10 X5000HUA. Argentina. 11 3 SiRIC TransImm «Translational Immunotherapy Team», Translational Research 12 Department, Research Center, PSL Research University, INSERM U932, Institut Curie, 13 Paris, 75005. France. 14 4 Centre d’Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, 75005. 15 France. 16 Running title: IL-17RA signaling regulates CD8+ T cell responses to T. cruzi 17 *Corresponding autor: 18 Eva V. Acosta Rodríguez 19 eacosta@fcq.unc.edu.ar 20 1 bioRxiv preprint doi: https://doi.org/10.1101/314336; this version posted May 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Il-17 Receptor Composition 1995)
    RESEARCH HIGHLIGHTS Nature Reviews Immunology | Published online 23 November 2015; doi:10.1038/nri.2015.2 shown to signal through IL-17RA, of the IL-17 family, whereas IL-17RC Journal club which was also unrelated to other seems to be specific for IL-17 and known cytokine receptors (Yao et al., IL-17F. Nonetheless, there are few IL-17 RECEPTOR COMPOSITION 1995). However, it was unclear how phenotypic differences between mice IL-17RA operated at a molecular level. lacking IL-17RA or IL-17RC, and It has now been a decade since the Toy et al. approached this issue by patients with null mutations in either paradigm-shifting discovery of T helper reconstituting fibroblasts from Il17ra–/– subunit also have remarkably similar 17 (TH17) cells in 2005 forced everyone mice with human IL-17RA. They defects, with their major phenotype working on effector CD4+ T cells to observed that IL-17-induced signalling being chronic mucosal candidiasis reinterpret their findings in the context could only be restored in these (Puel et al., 2011; Ling et al., 2015). of this interleukin-17 (IL-17)-producing fibroblasts upon co-expression of Thus, this important study by Toy et al. TH cell population. We now know that human IL-17RC with human IL-17RA, clarified the constituents of the IL-17 IL-17-induced signalling has a crucial but not upon co-expression of other receptor complex, which set the stage role in immunity to extracellular IL-17R family members. As the Il17ra–/– for a deeper understanding of its microorganisms, particularly to fungal cells expressed endogenous mouse biological activities.
    [Show full text]
  • Human Cytokine Response Profiles
    Comprehensive Understanding of the Human Cytokine Response Profiles A. Background The current project aims to collect datasets profiling gene expression patterns of human cytokine treatment response from the NCBI GEO and EBI ArrayExpress databases. The Framework for Data Curation already hosted a list of candidate datasets. You will read the study design and sample annotations to select the relevant datasets and label the sample conditions to enable automatic analysis. If you want to build a new data collection project for your topic of interest instead of working on our existing cytokine project, please read section D. We will explain the cytokine project’s configurations to give you an example on creating your curation task. A.1. Cytokine Cytokines are a broad category of small proteins mediating cell signaling. Many cell types can release cytokines and receive cytokines from other producers through receptors on the cell surface. Despite some overlap in the literature terminology, we exclude chemokines, hormones, or growth factors, which are also essential cell signaling molecules. Meanwhile, we count two cytokines in the same family as the same if they share the same receptors. In this project, we will focus on the following families and use the member symbols as standard names (Table 1). Family Members (use these symbols as standard cytokine names) Colony-stimulating factor GCSF, GMCSF, MCSF Interferon IFNA, IFNB, IFNG Interleukin IL1, IL1RA, IL2, IL3, IL4, IL5, IL6, IL7, IL9, IL10, IL11, IL12, IL13, IL15, IL16, IL17, IL18, IL19, IL20, IL21, IL22, IL23, IL24, IL25, IL26, IL27, IL28, IL29, IL30, IL31, IL32, IL33, IL34, IL35, IL36, IL36RA, IL37, TSLP, LIF, OSM Tumor necrosis factor TNFA, LTA, LTB, CD40L, FASL, CD27L, CD30L, 41BBL, TRAIL, OPGL, APRIL, LIGHT, TWEAK, BAFF Unassigned TGFB, MIF Table 1.
    [Show full text]