Investigation of Coral Trout (Plectropomus Spp.) Movement Patterns and Resource Use: a Multidisciplinary Approach Using Acoustic Telemetry and Dietary Indicators

Total Page:16

File Type:pdf, Size:1020Kb

Investigation of Coral Trout (Plectropomus Spp.) Movement Patterns and Resource Use: a Multidisciplinary Approach Using Acoustic Telemetry and Dietary Indicators ResearchOnline@JCU This file is part of the following reference: Matley, Jordan Kyle (2017) Investigation of coral trout (Plectropomus spp.) movement patterns and resource use: a multidisciplinary approach using acoustic telemetry and dietary indicators. PhD thesis, James Cook University. Access to this file is available from: http://dx.doi.org/10.4225/28/5a65b3201da33 The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] Investigation of coral trout (Plectropomus spp.) movement patterns and resource use: a multidisciplinary approach using acoustic telemetry and dietary indicators Thesis submitted by Jordan Kyle Matley B.Sc. (Honours) University of Guelph M.Sc. University of Manitoba For the degree of Doctor of Philosophy Centre of Sustainable Tropical Fisheries and Aquaculture College of Science and Engineering James Cook University February 2017 Acknowledgements I am grateful to numerous people for assisting and encouraging me throughout my thesis. First, I thank all the administrative and support staff for helping me directly and indirectly throughout my time at JCU. They have assisted in the office, in the laboratory, at conferences, and in the field; without this network, my project would not have been possible. I am grateful to my friends and family back home for always being supportive while I am off adventuring. They are always hard to leave, but the same great people when I return. To my mates outside the lab, particularly Emma, Dean, Elien, Carlo, Molly, Mike, and Alexia, it has been wonderful to share our experiences. I thank you for giving me a reprieve from work and reminding me there is a world beyond my laptop. I have been incredibly fortunate to work with caring and bright colleagues who have contributed to my research in so many different ways. It has been an honour to work with you and share so many amazing memories. The list is long - Mario, Vinay, Leanne, John, Sam M, Sam S, Elodie, Stacy, Audrey, Merritt, Fernanda, Steve, Leontine, Richard, Karin, Renae, Nick, Ana, Andrew C, Peter, and Madi - I am glad I met you. Never have I been surrounded by so many people eager to work together to make science better. I am especially grateful to my office mate Elodie Lédée. You have suffered my company for over 3 years, always listening to my confused lamentations but tirelessly pointing me in the right direction with your seemingly infinite depository of knowledge – merci. Next, I would like to thank my advisors, Michelle Heupel, Colin Simpfendorfer, and Andrew Tobin. They have supported me throughout my thesis, always taking the time to discuss and take interest in the work I am doing (or aiming to do). It is because of their work ethic, knowledge, and general human decency that I have improved as a scientist and am prepared for the next step of my career. This modern triumvirate is the ideal advisory team, each contributing to different aspects of my gained knowledge, such as critical thinking, project design and organisation, writing, analysis, field work, fisheries, and animal behaviour. Thank you for putting up with yet another Canadian. Finally, a profound thank you to my parents, Don and Debbie. Half the time you have no idea what I am talking about, but you are twice as supportive because of it, and always have been. i Statement of contribution of others Supervision Prof. Colin Simpfendorfer – Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, Townsville, Australia Dr. Michelle Heupel – Australian Institute of Marine Science, Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, Townsville, Australia Dr. Andrew Tobin – Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, Townsville, Australia Financial support Project funding National Environmental Research Program (awarded to Prof. Colin Simpfendorfer and Dr. Michelle Heupel) Australian Research Council (awarded to Dr Michelle Heupel) James Cook University Graduate Research School, School of Earth and Environmental Sciences, and College for Marine and Environmental Sciences (research grants) ii Project funding (continued) AIMS@JCU Pilot Research funding Australian Coral Reef Society Research Award Ph.D. stipends James Cook University International Research Scholar Natural Sciences and Engineering Research Council Postgraduate Scholarship Travel and conference funding James Cook University Graduate Research School, School of Earth and Environmental Sciences, and College for Marine and Environmental Sciences (travel grants) AIMS@JCU Travel Awards iii Travel and conference funding (continued) The Fisheries Society of the British Isles Travel Grant Australian Society for Fish Biology Congress Travel Awards Australian Coral Reef Society Travel Award Data Collection Orpheus Island: Orpheus Island Research Station and staff, IMOS Animal Tracking Facility, Steve Moore, Jacob Eurich, Jonathan Smart, Pasang Tenzing, Vanessa Messmer, Elodie Lédée, Vinay Udyawer, and Audrey Schlaff Townsville Reefs: RV James Kirby and crew, Steve Moore, Fernanda de Faria, Peter Yates, Catalina Aguilar Hurtado, Gemma Molinaro, Samantha Sherman, Franz Fingerlos, Cameron Murchie, Mario Espinoza, and Elodie Lédée Marine Aquaculture Research Facility Unit (MARFU): MARFU and staff, Merritt Adkins, Vanessa Messmer, Leanne Currey, Peter Yates, Nick Hill, Elodie Lédée, and Liana Houston iv Statistical, analytical, and editorial support Colin Simpfendorfer, Michelle Heupel, Andrew Tobin, Aaron Fisk, Elodie Lédée, Leanne Currey, Mario Espinoza, Vinay Udyawer, Murray Logan, Anna Hussey, Katelynn Johnson, Great Lakes Institute for Environmental Research (University of Windsor), and journal editors/reviewers for submitted chapters Administrative and IT support Beth Moore, Glen Connolly, Rebecca Steele, Melissa Crawford, Debbie Berry, Andrew Norton, Malcolm Goon Chew, Courtney MacSween, Glen Ewels, Phillip Osmond, and Jane Webb Cover image Photo credit: Alexia Graba-Landry Copyright and collaboration To the best of my knowledge and belief, the thesis contains no material previously published by any other person except where due acknowledgment has been made. Permission from external copyright holders and collaborators has been obtained when necessary. Ethics and approvals All research activities were conducted within the confines of Great Barrier Reef Marine Park Authority (G12/35236.1 and G14/36624.1) and Queensland Department of Primary Industries and Fisheries (GFP144482) permits. The research presented and reported in this thesis was conducted in compliance with the National Health and Medical Research Council (NHMRC) Australian Code of Practice for the Care and Use of Animals for Scientific Purposes, 7th Edition, 2004 and the Qld Animal Care and Protection Act, 2001. The proposed research study received animal ethics approval from the JCU Animal Ethics Committee Approval Number A1933. v Publications arising from this thesis Matley JK, Fisk AT, Tobin AJ, Heupel MR, Simpfendorfer CA (2016) Diet-tissue discrimination factors and turnover of carbon and nitrogen stable isotopes in tissues of an adult predatory coral reef fish, Plectropomus leopardus. Rapid Commun Mass Spectrom 30:29–44 doi:10.1002/rcm.7406 (Chapter 3) Matley JK, Tobin AJ, Simpfendorfer CA, Fisk AT, Heupel MR (2017) Trophic niche and spatio-temporal changes in the feeding ecology of two sympatric species of coral trout (Plectropomus leopardus and P. laevis). Mar Ecol Prog Ser 563:197-210 doi:10.3354/meps11971 (Chapter 4) Matley JK, Tobin AJ, Lédée EJI, Heupel MR, Simpfendorfer CA (2016) Contrasting patterns of vertical and horizontal space use of two sympatric coral reef fish. Mar Biol 163: 253 doi:10.1007/s00227-016-3023-7 (Chapter 5) Matley JK, Heupel MR, Fisk AT, Simpfendorfer CA, Tobin AJ (2016) Niche overlap between co-occurring Plectropomus spp. using acoustic telemetry and stable isotopes. Mar Freshw Res doi:10.1071/MF16120 (Chapter 6) *For all manuscripts, MR Heupel, CA Simpfendorfer, AJ Tobin, and JK Matley co-developed the research questions and study design. All co-authors contributed to sample collection and processing, data analysis, and manuscript revisions. JK Matley wrote the first drafts and was responsible for co-ordinating journal submission and revisions. vi Associated publications during candidature Matley JK, Heupel MR, Simpfendorfer CA (2015) Depth and space use of leopard coralgrouper (Plectropomus leopardus) using passive acoustic tracking. Mar Ecol Prog Ser 521: 201-216 doi:10.3354/meps11122 vii Conference and meeting presentations during candidature Matley JK, Simpfendorfer CA, Fisk AT, Tobin AJ, Heupel MR (2016) Using complimentary sampling methods to address similar questions: resource and habitat use of sympatric coral trout. International Coral Reef Symposium, Honolulu, Hawaii, U.S.A. (Oral presentation) Matley JK, Simpfendorfer CA, Fisk AT, Tobin AJ, Heupel MR (2015) Niche partitioning of sympatric coral trout indicated by movement and dietary patterns. Australian Society for Fish Biology Congress, Sydney, NSW, Australia (Oral presentation) Matley JK, Simpfendorfer CA, Tobin AJ, Heupel MR (2015) Niche partitioning of sympatric reef fish using passive acoustic telemetry. International Conference
Recommended publications
  • Download Book (PDF)
    e · ~ e t · aI ' A Field Guide to Grouper and Snapper Fishes of Andaman and Nicobar Islands (Family: SERRANIDAE, Subfamily: EPINEPHELINAE and Family: LUTJANIDAE) P. T. RAJAN Andaman & Nicobar Regional Station Zoological Survey of India Haddo, Port Blair - 744102 Edited by the Director, Zoological Survey of India, Kolkata Zoological Survey of India Kolkata CITATION Rajan, P. T. 2001. Afield guide to Grouper and Snapper Fishes of Andaman and Nicobar Islands. (Published - Director, Z.5.1.) Published : December, 2001 ISBN 81-85874-40-9 Front cover: Roving Coral Grouper (Plectropomus pessuliferus) Back cover : A School of Blue banded Snapper (Lutjanus lcasmira) © Government of India, 2001 ALL RIGHTS RESERVED • No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publisher. • This book is sold subject to the condition that it shall not, by way of trade, be lent, re-sold, hired out or otherwise disposed of without the publisher'S consent, in any form of binding or cover other than that in which it is published. • The correct price of this publication is the price printed on this page. Any revised price indicated by a rubber stamp or by a sticker or by any other means is incorrect and should be unacceptable. PRICE Indian Rs. 400.00 Foreign $ 25; £ 20 Published at the Publication Division by the Director, Zoological Survey of India, 234/4, AJe Bose Road, 2nd MSO Building, (13th Floor), Nizam Palace, Calcutta-700 020 after laser typesetting by Computech Graphics, Calcutta 700019 and printed at Power Printers, New Delhi - 110002.
    [Show full text]
  • Academic Paper on “Restricting the Size of Groupers (Serranidae
    ACADEMIC PAPER ON “RESTRICTING THE SIZE OF GROUPERS (SERRANIDAE) EXPORTED FROM INDONESIA IN THE LIVE REEF FOOD FISH TRADE” Coastal and Marine Resources Management in the Coral Triangle-Southeast Asia (TA 7813-REG) Tehcnical Report ACADEMIC PAPER ON RESTRICTING THE SIZE OFLIVE GROUPERS FOR EXPORT ACADEMIC PAPER ON “RESTRICTING THE SIZE OF GROUPERS (SERRANIDAE) EXPORTED FROM INDONESIA IN THE LIVE REEF FOOD FISH TRADE” FINAL VERSION COASTAL AND MARINE RESOURCES MANAGEMENT IN THE CORAL TRIANGLE: SOUTHEAST ASIA, INDONESIA, MALAYSIA, PHILIPPINES (TA 7813-REG) ACADEMIC PAPER ON RESTRICTING THE SIZE OFLIVE GROUPERS FOR EXPORT Page i FOREWORD Indonesia is the largest exporter of live groupers for the live reef fish food trade. This fisheries sub-sector plays an important role in the livelihoods of fishing communities, especially those living on small islands. As a member of the Coral Triangle Initiative (CTI), in partnership with the Asian Development Bank (ADB) under RETA [7813], Indonesia (represented by a team from Hasanuddin University) has compiled this academic paper as a contribution towards sustainable management of live reef fish resources in Indonesia. Challenges faced in managing the live grouper fishery and trade in Indonesia include the ongoing activities and practices which damage grouper habitat; the lack of protection for grouper spawning sites; overfishing of groupers which have not yet reached sexual maturity/not reproduced; and the prevalence of illegal and unreported fishing for live groupers. These factors have resulted in declining wild grouper stocks. The Aquaculture sector is, at least as yet, unable to replace or enable a balanced wild caught fishery, and thus there is still a heavy reliance on wild-caught groupers.
    [Show full text]
  • PP-4. Monitoring of Fish Supply to Resorts and Setting up of an Ecolabel Certification
    PP-4. Monitoring of Fish Supply to Resorts and Setting up of an Ecolabel Certification 1) Report on Survey on Reef Fish Landings to Tourist Resorts 2) Guidelines on Best Fishing and Fish Handling Practices 3) Overview of reef fish sampling in K. Dhiffushi – Nov-Dec 2016 REPORT ON SURVEY ON REEF FISH LANDINGS TO TOURIST RESORTS May 2016 Muawin YOOSUF, Ministry of Fisheries and Agriculture with the technical assistance of Bernard ADRIEN, MASPLAN This survey was carried out as part of a Pilot Project under the Project for the Formulation of Master Plan for Sustainable Fisheries (MASPLAN), a technical cooperation project of the Japan International Cooperation Agency (JICA). All pictures taken by Bernard Adrien. REPORT ON SURVEY ON REEF FISH LANDINGS TO RESORTS – MAY 2016 1 Table of Contents 1 INTRODUCTION .................................................................................................................................3 2 METHOD ..............................................................................................................................................4 3 RESULTS & ANALYSIS .....................................................................................................................5 3.1 Estimates on reef fish production ..................................................................................................5 Estimate of Annual Reef Fish Landings to Resorts from the present survey ................................5 Comparison on Annual Reef Fish Landings to Resorts with previous surveys ............................5
    [Show full text]
  • Demography of a Large Grouper, Epinephelus Fuscoguttatus, from Australia’S Great Barrier Reef: Implications for Fishery Management
    MARINE ECOLOGY PROGRESS SERIES Vol. 307: 259–272, 2006 Published January 24 Mar Ecol Prog Ser Demography of a large grouper, Epinephelus fuscoguttatus, from Australia’s Great Barrier Reef: implications for fishery management Rachel J. Pears1, 2,*, J. Howard Choat1, Bruce D. Mapstone2, 3, Gavin A. Begg2 1School of Marine Biology, and 2CRC Reef Research Centre, James Cook University, Queensland 4811, Australia 3Antarctic Climate and Ecosystems CRC, University of Tasmania, Private Bag 80, Tasmania 7001, Australia ABSTRACT: Epinephelus fuscoguttatus is widespread throughout the Indo-Pacific and features strongly in regional fisheries, including the live reef fish trade. We investigated age-specific demo- graphic and reproductive characteristics of E. fuscoguttatus from the Great Barrier Reef, Australia, and examined implications for resource management. Age, growth, longevity, and the relationships between size or age and female sexual maturity and the recruitment of males into the study popula- tion were examined. Age validation using both oxytetracycline marking and edge-type analysis demonstrated that a single annulus formed each year. This grouper is long-lived (>40 yr) and relatively slow-growing. The size and age distributions of the sexes strongly suggested protogynous hermaphroditism. Histological data suggested infrequent spawning in small mature females. Females contribute very little to reproductive output until about 566 mm fork length and 9 yr of age. Larger females make important reproductive contributions during their 30+ yr reproductive lifespan. Their relatively long lifespan, restriction of males to large size groups, and the disproportionate contribution of large females to reproduction have important implications for the harvest of E. fuscoguttatus. For example, current Queensland size regulations are poorly matched to the spe- cies’ biology because they do not protect the reproductive elements of populations.
    [Show full text]
  • Phylogeny of the Epinephelinae (Teleostei: Serranidae)
    BULLETIN OF MARINE SCIENCE, 52(1): 240-283, 1993 PHYLOGENY OF THE EPINEPHELINAE (TELEOSTEI: SERRANIDAE) Carole C. Baldwin and G. David Johnson ABSTRACT Relationships among epinepheline genera are investigated based on cladistic analysis of larval and adult morphology. Five monophyletic tribes are delineated, and relationships among tribes and among genera of the tribe Grammistini are hypothesized. Generic com- position of tribes differs from Johnson's (1983) classification only in the allocation of Je- boehlkia to the tribe Grammistini rather than the Liopropomini. Despite the presence of the skin toxin grammistin in the Diploprionini and Grammistini, we consider the latter to be the sister group of the Liopropomini. This hypothesis is based, in part, on previously un- recognized larval features. Larval morphology also provides evidence of monophyly of the subfamily Epinephelinae, the clade comprising all epinepheline tribes except Niphonini, and the tribe Grammistini. Larval features provide the only evidence of a monophyletic Epine- phelini and a monophyletic clade comprising the Diploprionini, Liopropomini and Gram- mistini; identification of larvae of more epinephelines is needed to test those hypotheses. Within the tribe Grammistini, we propose that Jeboehlkia gladifer is the sister group of a natural assemblage comprising the former pseudogrammid genera (Aporops, Pseudogramma and Suttonia). The "soapfishes" (Grammistes, Grammistops, Pogonoperca and Rypticus) are not monophyletic, but form a series of sequential sister groups to Jeboehlkia, Aporops, Pseu- dogramma and Suttonia (the closest of these being Grammistops, followed by Rypticus, then Grammistes plus Pogonoperca). The absence in adult Jeboehlkia of several derived features shared by Grammistops, Aporops, Pseudogramma and Suttonia is incongruous with our hypothesis but may be attributable to paedomorphosis.
    [Show full text]
  • BIOT Field Report
    ©2015 Khaled bin Sultan Living Oceans Foundation. All Rights Reserved. Science Without Borders®. All research was completed under: British Indian Ocean Territory, The immigration Ordinance 2006, Permit for Visit. Dated 10th April, 2015, issued by Tom Moody, Administrator. This report was developed as one component of the Global Reef Expedition: BIOT research project. Citation: Global Reef Expedition: British Indian Ocean Territory. Field Report 19. Bruckner, A.W. (2015). Khaled bin Sultan Living Oceans Foundation, Annapolis, MD. pp 36. The Khaled bin Sultan Living Oceans Foundation (KSLOF) was incorporated in California as a 501(c)(3), public benefit, Private Operating Foundation in September 2000. The Living Oceans Foundation is dedicated to providing science-based solutions to protect and restore ocean health. For more information, visit http://www.lof.org and https://www.facebook.com/livingoceansfoundation Twitter: https://twitter.com/LivingOceansFdn Khaled bin Sultan Living Oceans Foundation 130 Severn Avenue Annapolis, MD, 21403, USA [email protected] Executive Director Philip G. Renaud Chief Scientist Andrew W. Bruckner, Ph.D. Images by Andrew Bruckner, unless noted. Maps completed by Alex Dempsey, Jeremy Kerr and Steve Saul Fish observations compiled by Georgia Coward and Badi Samaniego Front cover: Eagle Island. Photo by Ken Marks. Back cover: A shallow reef off Salomon Atoll. The reef is carpeted in leather corals and a bleached anemone, Heteractis magnifica, is visible in the fore ground. A school of giant trevally, Caranx ignobilis, pass over the reef. Photo by Phil Renaud. Executive Summary Between 7 March 2015 and 3 May 2015, the Khaled bin Sultan Living Oceans Foundation conducted two coral reef research missions as components of our Global Reef Expedition (GRE) program.
    [Show full text]
  • 1. Dewi Shinta Ahmad 19389-63048-1-CE 56-60
    Aceh Journal of Animal Science (2021) 6 (2): 34 - 38 Aceh Journal of Animal Science Journal homepage: www.jurnal.unsyiah.ac.id/AJAS A preliminary study on the size structure and sex ratio of orange-spotted grouper (Epinephelus coioides Hamilton, 1822) harvested from Kwandang Bay, Sulawesi Sea, Indonesia Dewi Shinta Achmad1,*, Muh. Saleh Nurdin2, Indri Afriani Yasin1, Merita Ayu Indrianti1, Meity M Mokoginta1, Fahrullah1, Dewa Oka Suparwata1, Yusriyah Atikah Gobel1, Moh. Muchlis Djibran1, Susan Mokoolang1 1 Faculty of Science and Technology Muhammadiyah University of Gorontalo, Gorontalo Province, Indonesia. 2 Faculty of Animal Husbandry and Fishery Tadulako University, Central Sulawesi Province, Indonesia. ARTICEL INFO ABSTRACT Keywords: Orange-spotted grouper is one of the coral reef fish has the economic value and exploited by local fisherman. Information about the Kwandang Bay size structure and sex ratio are urgent to formulate a policy for sustainability. This research aims to analyze the size structure and Orange-Spotted Grouper sex ratio of the orange-spotted grouper in Kwandang Bay. The research was conducted from December 2016 to November 2017. Sex Rasio Sampling is carried out twice a month for one year. The total sample of orange-spotted grouper used for the analysis of the sex ratio Size was 149 individuals. Sample of orange-spotted grouper collected from fish landed and middlemen (grouper traders) at the Kwandang Fishing Port. Data analysis applying chi-square. The results show that males bigger than females. The sex ratio of orange-spotted Received: 9 January 2021 grouper is 87.25 % female, 7.38 % male, and 5.37 % hermaphrodites. Orange-spotted grouper dominated by females and undergoes Accepted: 16 March 2021 a gonad differentiation to male (protogynous hermaphrodite).
    [Show full text]
  • National Prioritization of Key Vulnerable Reef Fish Species for Fiji, for Targeted Research
    National prioritization of key vulnerable reef fish species for Fiji, for targeted research Coral reef fish and invertebrates sold at the Suva market. Photo by: Sangeeta Mangubhai/WCS Introduction The majority of Fiji’s population is coastal and therefore highly reliant on inshore fisheries for their subsistence and local economic needs (Hunt 1999). At least 33 percent of all animal protein consumed in Fiji comes from fish, and subsistence and artisanal fisheries contribute at least US$59.1 million to Fiji’s annual GDP (Gillett 2009). There is growing concerns for the impacts of present day harvesting rates and methods, especially for vulnerable fish and invertebrate species in Fiji. This is resulting in a progressive decline in fish belonging to higher trophic (feeding) groups, a pattern that is termed “fishing down food webs” (Pauly et al. 1998). Coral reef fish vary in their vulnerability to fishing pressure, and how well they can recover, if fishing is stopped or significantly reduced. Recovery potential relates to the rate at which a species can replace the individuals that are lost to natural mortality and to fishing. In general, the medium to larger carnivorous fish high in the food chain are thought to be more vulnerable to fishing (e.g. groupers) requiring in decades to recover, while smaller fish (e.g. herbivores such as rabbitfish) are thought be less vulnerable (Abesamis et al. 2014). Certain life history characteristics of fish species together can be good predictors of vulnerability at the population level to fishing pressure, including: (a) maximum size; (b) body growth rate; (c) lifespan; (d) natural mortality rates; (e) age at maturity; and (f) length at maturity (Abesamis et al.
    [Show full text]
  • Epinephelus Lanceolatus (Bloch, 1790)
    230 Capture-based aquaculture: global overview Epinephelus lanceolatus (Bloch, 1790) FIGURE 19 Giant grouper (Epinephelus lanceolatus) FAO TABLE 10 Characteristics of the giant grouper, Epinephelus lanceolatus Common names: Giant grouper, Queensland grouper Size and age: 270 cm TL; max. published weight: 455.0 kg Environment: Reef-associated; brackish; marine; depth range 1–100 m Climate: Tropical; 28°N - 39°S, 24°E - 122°W Importance: Important in subsistence fisheries, commercial aquaculture, recreational gamefish. Cultured in Taiwan PC. In live reef fish markets. Juveniles sold in ornamental trade as “bumblebee grouper”. Resilience: Very low, minimum population doubling time more than 14 years. Biology and ecology: The largest bony fish found in coral reefs. Common in shallow waters. Found in caves or wrecks; also in estuaries, from shore and in harbours. Juveniles secretive in reefs and rarely seen. Feeds on spiny lobsters, fishes, including small sharks and batoids, and juvenile sea turtles and crustaceans. Nearly wiped out in heavily fished areas. Large individuals may be ciguatoxic. Source: Modified from FishBase (Froese and Pauly, 2007). FIGURE 20 Distribution of Epinephelus lanceolatus (FishBase, 2007) Capture-based aquaculture of groupers 231 Epinephelus malabaricus (Bloch and Schneider, 1801) FIGURE 21 Malabar grouper (Epinephelus malabaricus) IRST COURTESY COURTESY OF D. F TABLE 11 Characteristics of the Malabar grouper, Epinephelus malabaricus Common names: Malabar grouper, estuary grouper, green grouper Size and age: 234 cm TL; max. published weight: 150.0 kg Environment: Reef-associated; amphidromous; brackish; marine; depth range 0–150 m Climate: Tropical; 30°N - 32°S, 29°E - 173°W Importance: High value commercial and recreational fisheries and aquaculture.
    [Show full text]
  • Ensuring Seafood Identity: Grouper Identification by Real-Time Nucleic
    Food Control 31 (2013) 337e344 Contents lists available at SciVerse ScienceDirect Food Control journal homepage: www.elsevier.com/locate/foodcont Ensuring seafood identity: Grouper identification by real-time nucleic acid sequence-based amplification (RT-NASBA) Robert M. Ulrich a, David E. John b, Geran W. Barton c, Gary S. Hendrick c, David P. Fries c, John H. Paul a,* a College of Marine Science, MSL 119, University of South Florida, 140 Seventh Ave. South, St. Petersburg, FL 33701, USA b Department of Biological Sciences, University of South Florida St. Petersburg, 140 Seventh Ave. S., St. Petersburg, FL 33701, USA c EcoSystems Technology Group, College of Marine Science, University of South Florida, 140 Seventh Ave. S., St. Petersburg, FL 33701, USA article info abstract Article history: Grouper are one of the most economically important seafood products in the state of Florida and their Received 19 September 2012 popularity as a high-end restaurant dish is increasing across the U.S. There is an increased incidence rate Accepted 3 November 2012 of the purposeful, fraudulent mislabeling of less costly and more readily available fish species as grouper in the U.S., particularly in Florida. This is compounded by commercial quotas on grouper becoming Keywords: increasingly more restrictive, which continues to drive both wholesale and restaurant prices higher each RT-NASBA year. Currently, the U.S. Food and Drug Administration recognize 56 species of fish that can use “grouper” FDA seafood list as an acceptable market name for interstate commerce. This group of fish includes species from ten Grouper fi fi Mislabeling different genera, making accurate taxonomic identi cation dif cult especially if distinguishing features such as skin, head, and tail have been removed.
    [Show full text]
  • 5-Review-Fish-Habita
    United Nations UNEP/GEF South China Sea Global Environment Environment Programme Project Facility UNEP/GEF/SCS/RWG-F.8/5 Date: 12th October 2006 Original: English Eighth Meeting of the Regional Working Group for the Fisheries Component of the UNEP/GEF Project: “Reversing Environmental Degradation Trends in the South China Sea and Gulf of Thailand” Bangka Belitung Province, Indonesia 1st - 4th November 2006 INFORMATION COLLATED BY THE FISHERIES AND HABITAT COMPONENTS OF THE SOUTH CHINA SEA PROJECT ON SITES IMPORTANT TO THE LIFE- CYCLES OF SIGNIFICANT FISH SPECIES UNEP/GEF/SCS/RWG-F.8/5 Page 1 IDENTIFICATION OF FISHERIES REFUGIA IN THE GULF OF THAILAND It was discussed at the Sixth Meeting of the Regional Scientific and Technical Committee (RSTC) in December 2006 that the Regional Working Group on Fisheries should take the following two-track approach to the identification of fisheries refugia: 1. Review known spawning areas for pelagic and invertebrate species, with the aim of evaluating these sites as candidate spawning refugia. 2. Evaluate each of the project’s habitat demonstration sites as potential juvenile/pre-recruit refugia for significant demersal species. Rationale for the Two-Track Approach to the Identification of Fisheries Refugia The two main life history events for fished species are reproduction and recruitment. It was noted by the RSTC that both of these events involve movement between areas, and some species, often pelagic fishes, migrate to particular spawning areas. It was also noted that many species also utilise specific coastal habitats such as coral reefs, seagrass, and mangroves as nursery areas. In terms of the effects of fishing, most populations of fished species are particularly vulnerable to the impacts of high levels of fishing effort in areas and at times where there are high abundances of (a) stock in spawning condition, (b) juveniles and pre-recruits, or (c) pre-recruits migrating to fishing grounds.
    [Show full text]
  • Plectropomus Leopardus (Lacepède, 1802) (Pisces: Serranidae), an Addition to the Indian Ichthyofauna K
    Short Communication Available online at: www.mbai.org.in doi: 10.6024/jmbai.2012.54.1.01669-16 Plectropomus leopardus (Lacepède, 1802) (Pisces: Serranidae), an addition to the Indian ichthyofauna K. Sujatha* and K.V.L. Shrikanya Department of Marine Living Resources, Andhra University, Visakhapatnam-530003, India *Correspondence e-mail: [email protected] Received: 20 Jan 2011, Accepted: 08 Feb 2012, Published: 15 Mar 2012 Original Article Abstract Leopard coral grouper Plectropomus leopardus (Lacepède, Visakhapatnam, middle east coast of India, we have come 1802) is being reported from Indian waters for the first time, its across a specimen of Plectropomus leopardus which agree earlier record being from the western Pacific, from southern with the brief description and figure of the specimen in Japan to Australia (Queensland and Western Australia) and Cuvier in Cuv. and Val., (1828), Fowler and Bean (1930), eastward to the Caroline Islands and Fiji, Hongkong, Vietnam, Katayama (1960), Fischer and Bianchi (1984) and Heemstra Philippines, Indonesia, Palau Islands, Papua New Guinea, New Caledonia and Tonga. Body measurements are compared with and Randall (1993). This is commonly called as ‘leopard coral specimens from other locations. grouper’. Plectropomus leopardus was not so far included to date among serranid species reported from Visakhapatnam Keywords: Plectropomus leopardus, Grouper, new record, (Sujatha, 2004). This is the first occurrence of the leopard coral Indian waters. grouper in Indian waters. Introduction This species is rare in the catches at Visakhapatnam, only one species was encountered on 10th January 2011 in trawl In describing serranid species, Plectropomus leopardus catches. Body measurements and meristic data were taken (Lacepède, 1802) Heemstra and Randall (1993), Randall et al.
    [Show full text]