Functionalisation of Graphene/Graphene Oxide and the Application of It and Its Derivatives in Nanomedicine
Total Page:16
File Type:pdf, Size:1020Kb
KAUNAS UNIVERSITY OF TECHNOLOGY NORA ŠLEKIENĖ FUNCTIONALISATION OF GRAPHENE/GRAPHENE OXIDE AND THE APPLICATION OF IT AND ITS DERIVATIVES IN NANOMEDICINE Doctoral Dissertation Technological sciences, Chemical engineering (05T) 2016, KAUNAS UDK 546.26 + 615](043.3) The dissertation was prepared at the Kaunas University of Technology, the Research Centre for Microsystems and Nanotechnology of the Faculty of Mathematics and Natural Sciences during the period of 2012–2016. The studies were supported by the Research Council of Lithuania. Scientific Supervisor: Prof. Habil. Dr Valentinas SNITKA (Kaunas University of Technology, Technological sciences, Chemical engineering, 05T). This doctoral dissertation has been published in: http://ktu.edu English Language Editor: UAB “Synergium” © N. Šlekienė, 2016 ISBN 978-609-02-1284-4 KAUNO TECHNOLOGIJOS UNIVERSITETAS NORA ŠLEKIENĖ GRAFENO / GRAFENO OKSIDO FUNKCIONALIZAVIMAS IR JO BEI JO DARINIŲ TAIKYMAS NANOMEDICINOJE Daktaro disertacija Technologijos mokslai, chemijos inžinerija (05T) 2016, KAUNAS 3 UDK 546.26 + 615](043.3) Disertacija rengta 2012–2016 m. Kauno technologijos universitete, Matematikos ir gamtos mokslų fakultete, Mikrosistemų ir nanotechnologijų mokslo centre. Mokslinius tyrimus rėmė Lietuvos mokslo taryba. Mokslinis vadovas: Prof. habil. dr. Valentinas SNITKA (Kauno technologijos universitetas, technologijos mokslai, chemijos inžinerija, 05T). Interneto svetainės, kurioje skelbiama disertacija, adresas: http://ktu.edu Redagavo: UAB “Synergium” © N. Šlekienė, 2016 ISBN 978-609-02-1284-4 TABLE OF CONTENTS List of abbreviations ................................................................................................... 8 List of figures ........................................................................................................... 9 List of tables ........................................................................................................... 13 1 Introduction ...................................................................................................... 14 2 Review of the literature .................................................................................... 17 2.1 Nanotechnology in medicine..................................................................... 17 2.2 Carbon-based materials ............................................................................. 17 2.2.1 Graphene 19 2.2.2 Graphene functionalisation 20 2.2.3 Graphene oxide 23 2.2.4 Biomedical applications of graphene/graphene oxide 25 2.2.5 Graphene oxide functionalisation with porphyrins 26 2.2.6 Graphene oxide functionalisation with doxorubicin 29 2.3 Lipid membranes ....................................................................................... 30 2.3.1 Bilayer lipid membrane synthesis 31 2.3.2 The analysis methods of lipid membranes 33 2.3.3 Lipid membrane interaction with nanoparticles 35 2.4 Impact of nanoparticles on cells viability ................................................. 38 2.4.1 Nanoparticle and protein corona 39 2.4.2 Impact of graphene on cells viability 41 3 Materials and Research methodology ............................................................... 43 3.1 Materials.................................................................................................... 43 3.2 Methods ..................................................................................................... 45 3.2.1 Preparation of graphene oxide 45 3.2.2 The functionalisation of graphene with meso-tetra (4-sulfonatophenyl) porphyrines 46 3.2.3 The functionalisation of graphene oxide with hematoporphyrin 46 3.2.4 The functionalisation of graphene oxide with meso-tetra (4-pyridyl) porphine 48 5 3.2.5 The functionalisation of graphene oxide with doxorubicin 48 3.2.6 Substrate preparation 48 3.2.7 Preparation of bilayer lipid membrane 48 3.2.8 Preparation of ZnO and TiO2 suspension 49 3.2.9 The preparation of Ag and Au SERS substrates 49 3.2.10 Preparation of cell culture for experiments 50 3.3 Analytical techniques ................................................................................ 51 3.3.1 Raman spectroscopy 51 3.3.2 Atomic force microscopy 52 3.3.3 Supercritical angle fluorescence spectroscopy 52 3.3.4 UV-Vis spectroscopy and emission spectra measurements 54 3.3.5 Fourier transform infrared spectroscopy 55 3.3.6 Scanning electron microscope 55 3.3.7 Light microscopy 55 3.4 Statistical analysis of experimental data ................................................... 55 4 Results and discussion ...................................................................................... 56 4.1 The functionalisation of graphene/graphene oxide with organic molecules and characterisation .............................................................................................. 56 4.1.1 Characterisation of graphene oxide 56 4.1.2 Graphene functionalisation with meso-tetra (4-sulfonatophenyl) porphines 59 4.1.3 Graphene oxide functionalisation with hematoporphyrin 66 4.2 Synthesis of supramolecular structures using graphene oxide .................. 79 4.2.1 Graphene oxide functionalisation with doxorubicin 79 4.2.2 Graphene oxide functionalisation with cationic mesa-tetra (4-pyridyl) porphine 84 4.3 Nanoparticles interaction with lipid membranes, as a model for graphene- based materials interaction with bio-membranes ................................................. 90 4.3.1 Formation and characterisation of lipid membranes 90 4.3.2 The interaction of nanoparticles with bilayer lipid membranes 96 4.4 The introduction into the living cell and the toxicity of graphene oxide in different cell lines ............................................................................................... 103 6 4.4.1 Influence of GO on mouse hepatoma MH-22A and CHO cell viability 103 4.4.2 Distribution of GO in mouse hepatoma MH-22A and CHO cells 108 4.4.3 Conclusions 110 5 General conclusions ........................................................................................ 111 6 Literature ........................................................................................................ 113 List of published works on the topic of the dissertation ......................................... 131 Conferences ............................................................................................................ 132 Acknowledgements ................................................................................................ 133 7 LIST OF ABBREVIATIONS AFM- atom force microscopy BLM- bilayer lipid membrane BSA- bovine serum albumin CHO- Chinese hamster ovary CNT- carbon nanotubes CVD- chemical vapour deposition DLS- dynamic light scattering DOPC-1,2-dioleoyl-sn-glycero-3-phosphocholine DOPE- 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine DOPS-1,2-dioleoyl-sn-glycero-3-phospho-L-serine DOX- doxorubicin EDX- energy dispersive X-Ray spectroscopy FCS- fluorescence correlation spectroscopy FeTPPS4- iron meso-tetra (4-sulfonatophenyl) porphine FTIR- Fourier transform infrared spectroscopy G- graphene GO- graphene oxide HOMO- highest occupied molecular orbital HP- hematoporphyrin LM- lipid membrane LOM- light optical microscopy LUMO- lowest unoccupied molecular orbital MH-22A- mouse hepatoma MH-22A MWCNT- multi-walled carbon nanotubes NP-nanoparticle PdI- polydispersity index PBS- phosphate-buffered saline SA- sulphuric acid SAF- supercritical angle fluorescence SAM- self-assembled monolayers SEM- scanning electron microscopy SERS- surface-enhanced Raman spectroscopy SPM- scanning probe microscopy SWCNT- single-walled carbon nanotubes TERS- tip-enhanced Raman spectroscopy TPyP- meso-tetra (4-pyridyl) porphine TPPS4- 5,10,15,20-tetrakis (4-sulfonatophenyl) porphine UAF- undercritical angle fluorescence 8 LIST OF FIGURES Fig. 2.1.The phase diagram for diamond and graphite ............................................. 18 Fig. 2.2. Annual number of graphene functionalisation-related publications .......... 20 Fig. 2.3. Structure of graphene oxide molecule ....................................................... 23 Fig. 2.4. The synthesis of GO by Hummers’ method ............................................... 24 Fig. 2.5. Promising applications of graphene oxide ................................................. 24 Fig. 2.6. The structure of porphyrins ........................................................................ 27 Fig. 2.7. The porphyrin synthesis by Rothemund method ....................................... 27 Fig. 2.8. Structure of doxorubicin ............................................................................ 29 Fig. 2.9. Structure of phospholipid molecule ........................................................... 31 Fig. 2.10. Scheme of methods used for preparing BLMs for atomic force microscopy analysis: (a) Langmuir-Blodgett technique and (b) fusion of lipid vesicles ..................................................................................................................... 32 Fig. 2.11. Liquid drop on a solid surface .................................................................. 33 Fig. 2.12. Bilayer membrane formation on: a) hydrophilic surfaces. b) alkyl-SAM terminated surfaces ................................................................................................... 33 Fig. 2.13. Modes of interaction between cell membranes and graphene microsheets .................................................................................................................................. 36 Fig. 2.14. The trajectories of