3P26 Deletions FTNW
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Human Chromosome‐Specific Aneuploidy Is Influenced by DNA
Article Human chromosome-specific aneuploidy is influenced by DNA-dependent centromeric features Marie Dumont1,†, Riccardo Gamba1,†, Pierre Gestraud1,2,3, Sjoerd Klaasen4, Joseph T Worrall5, Sippe G De Vries6, Vincent Boudreau7, Catalina Salinas-Luypaert1, Paul S Maddox7, Susanne MA Lens6, Geert JPL Kops4 , Sarah E McClelland5, Karen H Miga8 & Daniele Fachinetti1,* Abstract Introduction Intrinsic genomic features of individual chromosomes can contri- Defects during cell division can lead to loss or gain of chromosomes bute to chromosome-specific aneuploidy. Centromeres are key in the daughter cells, a phenomenon called aneuploidy. This alters elements for the maintenance of chromosome segregation fidelity gene copy number and cell homeostasis, leading to genomic instabil- via a specialized chromatin marked by CENP-A wrapped by repeti- ity and pathological conditions including genetic diseases and various tive DNA. These long stretches of repetitive DNA vary in length types of cancers (Gordon et al, 2012; Santaguida & Amon, 2015). among human chromosomes. Using CENP-A genetic inactivation in While it is known that selection is a key process in maintaining aneu- human cells, we directly interrogate if differences in the centro- ploidy in cancer, a preceding mis-segregation event is required. It was mere length reflect the heterogeneity of centromeric DNA-depen- shown that chromosome-specific aneuploidy occurs under conditions dent features and whether this, in turn, affects the genesis of that compromise genome stability, such as treatments with micro- chromosome-specific aneuploidy. Using three distinct approaches, tubule poisons (Caria et al, 1996; Worrall et al, 2018), heterochro- we show that mis-segregation rates vary among different chromo- matin hypomethylation (Fauth & Scherthan, 1998), or following somes under conditions that compromise centromere function. -
3 Chromosome Chapter
Chromosome 3 ©Chromosome Disorder Outreach Inc. (CDO) Technical genetic content provided by Dr. Iosif Lurie, M.D. Ph.D Medical Geneticist and CDO Medical Consultant/Advisor. Ideogram courtesy of the University of Washington Department of Pathology: ©1994 David Adler.hum_03.gif Introduction The size of chromosome 3 is ~200 Mb. Within this chromosome, there are thousands of genes, many of which are necessary for normal intellectual development or involved in the formation of body organs. Deletions of Chromosome 3 The length of the short arm of chromosome 3 is ~90 Mb. Most known deletions of 3p are caused by the loss of its distal 15 Mb segment (3p25–pter). Deletions of the more proximal segments are relatively rare; there are only ~50 reports on such patients. Therefore, it would be premature to talk about any syndrome related to deletions of the proximal part of 3p. The location of the breakpoints, size of deletion, and reported abnormalities are different in most described patients. However, recurrent aortal stenosis in patients with deletion 3p11p14.2, abnormal lung lobation in patients with deletion 3p12p14.2, agenesis or hypoplasia of the corpus callosum in patients with deletion 3p13, microphthalmia and coloboma in patients with deletion 3p13p21.1, choanal atresia and absent gallbladder in patients with deletion 3p13p21, and hearing loss in patients with deletion 3p14 are all indicators that the above–mentioned segments likely contain genes involved in the formation of these systems. Deletions of 3p Deletion of 3p25–pter The most distal segment of the short arm of chromosome 3 is 3p26 and spans ~8 Mb. -
Supplementary Table 1: Adhesion Genes Data Set
Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like, -
Detailed Genetic and Physical Map of the 3P Chromosome Region Surrounding the Familial Renal Cell Carcinoma Chromosome Translocation, T(3;8)(Pl4.2;Q24.1)1
[CANCER RESEARCH 53. 3118-3124. July I. 1993] Detailed Genetic and Physical Map of the 3p Chromosome Region Surrounding the Familial Renal Cell Carcinoma Chromosome Translocation, t(3;8)(pl4.2;q24.1)1 Sal LaForgia,2 Jerzy Lasota, Parida Latif, Leslie Boghosian-Sell, Kumar Kastury, Masataka Olita, Teresa Druck, Lakshmi Atchison, Linda A. Cannizzaro, Gilad Barnea, Joseph Schlessinger, William Modi, Igor Kuzmin, Kaiman Tory, Berton Zbar, Carlo M. Croce, Michael Lerman, and Kay Huebner3 Jefferson Cancer Institute. Thomas Jefferson Medical College. Philadelphia, Pennsylvania 19107 (S. L. J. L. L B-S.. K. K.. M. O.. T. D.. L A. C.. C. M. C.. K. H.I: Laboratory of Immunobiology. National Cancer Institute. Frederick Cancer Research and Development Center. Frederick. Maryland 21701 (F. L, l. K.. K. T.. B. Z.. M. L): Biological Carcinogenesis and Development Program. Program Resources Inc./Dyn Corp.. Frederick Cancer Research and Development Center. Frederick. Maryland 21701 1W. M.Õ: Chestnut Hill College. Philadelphia. Pennsylvania 19118 (L A.): and Department oj Pharmacology. New York University. New York. New York 10012 (G. B., J. S.I ABSTRACT location of the critical 3p region(s) harboring the target gene(s) had been hampered by the paucity of well-localized, widely available Extensive studies of loss of heterozygosity of 3p markers in renal cell molecular probes. Recently, efforts to isolate and localize large num carcinomas (RCCs) have established that there are at least three regions bers of 3p molecular probes have been undertaken (25-28). As the critical in kidney tumorigenesis, one most likely coincident with the von Hippel-Lindau gene at 3p25.3, one in 3p21 which may also be critical in probe density on 3p increased, in parallel with recent LOH studies, it small cell lung carcinomas, and one in 3pl3-pl4.2, a region which includes became clear that multiple independent loci on 3p were involved the 3p chromosome translocation break of familial RCC with the t(3;8)- (summarized in Refs. -
Gene Discovery in Developmental Neuropsychiatric Disorders : Clues from Chromosomal Rearrangements Thomas V
Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 2005 Gene discovery in developmental neuropsychiatric disorders : clues from chromosomal rearrangements Thomas V. Fernandez Yale University Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl Recommended Citation Fernandez, Thomas V., "Gene discovery in developmental neuropsychiatric disorders : clues from chromosomal rearrangements" (2005). Yale Medicine Thesis Digital Library. 2578. http://elischolar.library.yale.edu/ymtdl/2578 This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. YALE UNIVERSITY CUSHING/WHITNEY MEDICAL LIBRARY Permission to photocopy or microfilm processing of this thesis for the purpose of individual scholarly consultation or reference is hereby granted by the author. This permission is not to be interpreted as affecting publication of this work or otherwise placing it in the public domain, and the author reserves all rights of ownership guaranteed under common law protection of unpublished manuscripts. Digitized by the Internet Archive in 2017 with funding from The National Endowment for the Humanities and the Arcadia Fund https://archive.org/details/genediscoveryindOOfern Gene discovery in developmental neuropsychiatric disorders: Clues from chromosomal rearrangements A Thesis Submitted to the Yale University School of Medicine In Partial Fulfillment of the Requirements for the Degree of Doctor of Medicine by Thomas V. -
The Human Genome Diversity and the Susceptibility to Autism Spectrum Disorders
Human Neuroplasticity and Education Pontifical Academy of Sciences, Scripta Varia 117, Vatican City 2011 www.pas.va/content/dam/accademia/pdf/sv117/sv117-bourgeron.pdf The Human Genome Diversity and the Susceptibility to Autism Spectrum Disorders Thomas Bourgeron1 Introduction The diagnosis of autism is based on impairments in reciprocal social communication and stereotyped behaviors. The term “autism spectrum dis- orders” (ASD) is used to refer to any patient that meets these diagnostic criteria. But beyond this unifying definition lies an extreme degree of clin- ical heterogeneity, ranging from profound to moderate impairments. In- deed, autism is not a single entity, but rather a complex phenotype thought to be caused by different types of defects in common pathways, producing similar behavioral phenotypes. The prevalence of ASD overall is about 1/100, but closer to 1/300 for typical autism [1]. ASD are more common in males than females with a 4:1 ratio [2, 3]. The first twin and family studies performed in last quarter of the 20th cen- tury conclusively described ASD as the most ‘genetic’ of neuropsychiatric disorders, with concordance rates of 82-92% in monozygotic (MZ) twins versus 1-10% in dizygotic (DZ) twins; sibling recurrence risk is 6% [2, 3]. However, recent studies have indicated that the concordance for ASD in DZ twins might be higher (>20%) than previously reported [4]. Furthermore the concordance for ASD in MZ could also be lower than originally suggested [5, 6]. All these studies pointed at a larger part of the environment and/or epigenetic factors in the susceptibility to ASD. -
De Novo Centromere Formation on a Chromosome Fragment in Maize
De novo centromere formation on a chromosome fragment in maize Shulan Fua,1, Zhenling Lva,1, Zhi Gaob,1, Huajun Wuc, Junling Pangc, Bing Zhanga, Qianhua Donga, Xiang Guoa, Xiu-Jie Wangc, James A. Birchlerb,2, and Fangpu Hana,2 aState Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; bDivision of Biological Science, University of Missouri, Columbia, MO 65211-7400; and cState Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China Contributed by James A. Birchler, March 1, 2013 (sent for review February 3, 2013) The centromere is the part of the chromosome that organizes the been described for a barley chromosome (14) and a maize chro- kinetochore, which mediates chromosome movement during mito- mosome fragment in oat (15). Here we provide evidence that a sis and meiosis. A small fragment from chromosome 3, named small chromosome fragment in maize, which was recovered from Duplication 3a (Dp3a), was described from UV-irradiated materials UV irradiation decades ago, lacks CentC and CRM sequences but by Stadler and Roman in the 1940s [Stadler LJ, Roman H (1948) Ge- nevertheless has a de novo site with centromere function through- netics 33(3):273–303]. The genetic behavior of Dp3a is reminiscent of out the life cycle. This small chromosome fragment has a 350-kb a ring chromosome, but fluoresecent in situ hybridization detected CENH3-binding region, which is involved in new centromere for- telomeres at both ends, suggesting a linear structure. -
Nanomechanics of Ig-Like Domains of Human Contactin (BIG-2)
J Mol Model (2011) 17:2313–2323 DOI 10.1007/s00894-011-1010-y ORIGINAL PAPER Nanomechanics of Ig-like domains of human contactin (BIG-2) Karolina Mikulska & Łukasz Pepłowski & Wiesław Nowak Received: 1 October 2010 /Accepted: 6 February 2011 /Published online: 29 March 2011 # The Author(s) 2011. This article is published with open access at Springerlink.com Abstract Contactins are modular extracellular cell matrix Abbreviations proteins that are present in the brain, and they are responsible AFM Atomic force microscope for the proper development and functioning of neurons. They Big-2 Contactin 4 contain six immunoglobulin-like IgC2 domains and four CNTN4 Contactin 4 fibronectin type III repeats. The interactions of contactin with FnIII Fibronectin type III-like domain other proteins are poorly understood. The mechanical prop- IgC2 Immunoglobulin-like C2-type domain erties of all IgC2 domains of human contactin 4 were studied PDB Protein data bank using a steered molecular dynamics approach and CHARMM MD Molecular dynamics force field with an explicit TIP3P water environment on a 10- SMD Steered molecular dynamics ns timescale. Force spectra of all domains were determined NHb Total number of hydrogen bonds computationally and the nanomechanical unfolding process is PTPRG Protein tyrosine phosphatase, receptor type, described. The domains show different mechanical stabilities. gamma The calculated maxima of the unfolding force are in the range PTPRZ Protein tyrosine phosphatase, receptor type, zeta of 900–1700 pN at a loading rate of 7 N/s. Our data indicate DSCAM Down’s syndrome cell adhesion molecule that critical regions of IgC2 domains 2 and 3, which are APP Amyloid precursor protein responsible for interactions with tyrosine phosphatases and CAM Cell adhesion molecule are important in nervous system development, are affected by even weak mechanical stretching. -
Arabidopsis MZT1 Homologs GIP1 and GIP2 Are Essential for Centromere Architecture
Arabidopsis MZT1 homologs GIP1 and GIP2 are essential for centromere architecture Morgane Batzenschlagera, Inna Lermontovab, Veit Schubertb, Jörg Fuchsb, Alexandre Berra, Maria A. Koinic, Guy Houlnéa, Etienne Herzoga, Twan Ruttenb, Abdelmalek Aliouaa, Paul Franszc, Anne-Catherine Schmita, and Marie-Edith Chaboutéa,1 aInstitut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France; bLeibniz Institute of Plant Genetics and Crop Plant Research OT Gatersleben, D-06466 Stadt Seeland, Germany; and cSwammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands Edited by James A. Birchler, University of Missouri, Columbia, MO, and approved May 12, 2015 (received for review April 2, 2015) Centromeres play a pivotal role in maintaining genome integrity Previously, we characterized the γ-tubulin complex protein 3- by facilitating the recruitment of kinetochore and sister-chromatid interacting proteins (GIPs), GIP1 and GIP2 (Table S1), as es- cohesion proteins, both required for correct chromosome segre- sential for the recruitment of γ-tubulin complexes at microtubule gation. Centromeres are epigenetically specified by the presence (MT) organizing centers in Arabidopsis (7, 8). This function seems of the histone H3 variant (CENH3). In this study, we investigate the conserved in the human and Schizosaccharomyces pombe GIP role of the highly conserved γ-tubulin complex protein 3-interact- homologs named mitotic spindle organizing protein 1 (MZT1) ing proteins (GIPs) in Arabidopsis centromere regulation. We show (9–11). More recently, we localized GIPs at the nucleoplasm pe- that GIPs form a complex with CENH3 in cycling cells. GIP depletion riphery, close to chromocenters, where they modulate the nuclear in the gip1gip2 knockdown mutant leads to a decreased CENH3 architecture (12, 13). -
Genomic Portrait of a Sporadic Amyotrophic Lateral Sclerosis Case in a Large Spinocerebellar Ataxia Type 1 Family
Journal of Personalized Medicine Article Genomic Portrait of a Sporadic Amyotrophic Lateral Sclerosis Case in a Large Spinocerebellar Ataxia Type 1 Family Giovanna Morello 1,2, Giulia Gentile 1 , Rossella Spataro 3, Antonio Gianmaria Spampinato 1,4, 1 2 3 5, , Maria Guarnaccia , Salvatore Salomone , Vincenzo La Bella , Francesca Luisa Conforti * y 1, , and Sebastiano Cavallaro * y 1 Institute for Research and Biomedical Innovation (IRIB), Italian National Research Council (CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; [email protected] (G.M.); [email protected] (G.G.); [email protected] (A.G.S.); [email protected] (M.G.) 2 Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; [email protected] 3 ALS Clinical Research Center and Neurochemistry Laboratory, BioNeC, University of Palermo, 90127 Palermo, Italy; [email protected] (R.S.); [email protected] (V.L.B.) 4 Department of Mathematics and Computer Science, University of Catania, 95123 Catania, Italy 5 Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Rende, Italy * Correspondence: [email protected] (F.L.C.); [email protected] (S.C.); Tel.: +39-0984-496204 (F.L.C.); +39-095-7338111 (S.C.); Fax: +39-0984-496203 (F.L.C.); +39-095-7338110 (S.C.) F.L.C. and S.C. are co-last authors on this work. y Received: 6 November 2020; Accepted: 30 November 2020; Published: 2 December 2020 Abstract: Background: Repeat expansions in the spinocerebellar ataxia type 1 (SCA1) gene ATXN1 increases the risk for amyotrophic lateral sclerosis (ALS), supporting a relationship between these disorders. -
Supplementary Information Contents
Supplementary Information Contents Supplementary Methods: Additional methods descriptions Supplementary Results: Biology of suicidality-associated loci Supplementary Figures Supplementary Figure 1: Flow chart of UK Biobank participants available for primary analyses (Ordinal GWAS and PRS analysis) Supplementary Figure 2: Flow chart of UK Biobank participants available for secondary analyses. The flow chart of participants is the same as Supplementary Figure 1 up to the highlighted box. Relatedness exclusions were applied for A) the DSH GWAS considering the categories Controls, Contemplated self-harm and Actual self-ham and B) the SIA GWAS considering the categories Controls, Suicidal ideation and attempted suicide. Supplementary Figure 3: Manhattan plot of GWAS of ordinal DSH in UK Biobank (N=100 234). Dashed red line = genome wide significance threshold (p<5x10-5). Inset: QQ plot for genome-wide association with DSH. Red line = theoretical distribution under the null hypothesis of no association. Supplementary Figure 4: Manhattan plot of GWAS of ordinal SIA in UK Biobank (N=108 090). Dashed red line = genome wide significance threshold (p<5x10-5). Inset: QQ plot for genome-wide association with SIA. Red line = theoretical distribution under the null hypothesis of no association. Supplementary Figure 5: Manhattan plot of gene-based GWAS of ordinal suicide in UK Biobank (N=122 935). Dashed red line = genome wide significance threshold (p<5x10-5). Inset: QQ plot for genome-wide association with suicidality in UK Biobank. Red line = theoretical distribution under the null hypothesis of no association. Supplementary Figure 6: Manhattan plot of gene-based GWAS of ordinal DSH in UK Biobank (N=100 234). -
Mutagen Exposures and Chromosome 3 Aberrations in Acute Myelocytic Leukemia R Lindquist1, AM Forsblom1,ÅO¨ St2 and G Gahrton1
Leukemia (2000) 14, 112–118 2000 Macmillan Publishers Ltd All rights reserved 0887-6924/00 $15.00 www.nature.com/leu Mutagen exposures and chromosome 3 aberrations in acute myelocytic leukemia R Lindquist1, AM Forsblom1,ÅO¨ st2 and G Gahrton1 1Department of Hematology, Karolinska Institutet at Huddinge University Hospital, Huddinge; and 2Department of Pathology and Cytology, Karolinska Institutet and Medilab, Stockholm, Sweden Thirteen patients with acute myelocytic leukemia (AML) and have had such exposures or other exposures of mutagens such with clonal aberrations involving chromosome 3 were studied. as previous therapies with antineoplastic agents and/or Three patients had monosomy 3, four had trisomy 3, and six had structural aberrations of chromosome 3. In the majority of radiation. cases chromosome 3 aberrations were parts of complex kary- otypes, but in two patients, the abnormalities appeared as sin- gle aberrations, one as an interstitial deletion del(3)(p13p21) Materials and methods and the other as monosomy 3. All breakpoints of chromosome 3 were found in the fragile site regions 3p14.2, 3q21 and 3q26– Patients 27. All patients with monosomy 3 or structural aberrations of chromosome 3 and one of the four patients with trisomy 3 had been exposed to mutagens, such as occupational exposures Thirteen patients with AML and chromosome 3 aberrations to organic solvents and/or petroleum products or treatments were investigated; six males and seven females. The median with irradiation or antineoplastic agents. The association age was 62 years (range 16–84) (Table 1). The patients partici- among mutagen exposure, structural chromosome 3 aber- pated in prospective treatment studies within the Leukemia rations and fragile sites in AML may indicate that targeting of Group of Middle Sweden (LGMS).19,20 Almost all patients with the mutagens to these sites is of importance for the etiology of the disease.