Unconventional Magnetism in All-Carbon Nanofoam

Total Page:16

File Type:pdf, Size:1020Kb

Unconventional Magnetism in All-Carbon Nanofoam PHYSICAL REVIEW B 70, 054407 (2004) Unconventional magnetism in all-carbon nanofoam A. V. Rode,1,*,† E. G. Gamaly,1 A. G. Christy,2 J. G. Fitz Gerald,3 S. T. Hyde,1 R. G. Elliman,1 B. Luther-Davies,1 A. I. Veinger,4 J. Androulakis,5 and J. Giapintzakis5,6,*,‡ 1Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200, Australia 2Department of Earth and Marine Science, Australian National University, Canberra, ACT 0200, Australia 3Research School of Earth Sciences, Australian National University, Canberra, ACT 0200, Australia 4Ioffe Physical-Technical Institute, Polytechnicheskaya 26, St. Petersburg, Russia 5Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Lasers, P.O. Box 1527, Vasilika Vouton, 71110 Heraklion, Crete, Greece 6Department of Materials Science and Technology, University of Crete, P.O. Box 2208, 710 03 Heraklion, Crete, Greece (Received 11 September 2003; revised manuscript received 28 May 2004; published 17 August 2004) We report production of nanostructured magnetic carbon foam by a high-repetition-rate, high-power laser ablation of glassy carbon in Ar atmosphere. A combination of characterization techniques revealed that the system contains both sp2 and sp3 bonded carbon atoms. The material is a form of carbon containing graphite- like sheets with hyperbolic curvature, as proposed for “schwarzite.” The foam exhibits ferromagnetic-like behavior up to 90 K, with a narrow hysteresis curve and a high saturation magnetization. Such magnetic properties are very unusual for a carbon allotrope. Detailed analysis excludes impurities as the origin of the magnetic signal. We postulate that localized unpaired spins occur because of topological and bonding defects associated with the sheet curvature, and that these spins are stabilized due to the steric protection offered by the convoluted sheets. DOI: 10.1103/PhysRevB.70.054407 PACS number(s): 75.75.ϩa, 78.67.Bf, 81.15.Fg, 61.46.ϩw I. INTRODUCTION ferromagnetism16 and tunable electrical conductivity.17–19 The materials science of carbon has proven to be a rich Such effects have attracted enormous attention and already 20 area of discovery and development in the past decades. Until been proposed for commercial applications. relatively recently, the only known polymorphs of carbon A physical property of particular interest regarding all the were graphite, in which sp2 hybridized carbon atoms form aforementioned carbon allotropes is the magnetic suscepti- planar sheets in a two-layer hexagonal stacking, and dia- bility, ␹, since this bulk probe is related to the low energy mond, in which sp3 carbons form a three-dimensional frame- electronic spectrum. In general, all known carbon allotropes work of cubic symmetry. However, in recent years new car- exhibit diamagnetic susceptibility in the range of ␹ bon allotropes have proliferated. A three-layer rhombohedral =−͑10−5–10−7͒ emu/g Oe with the exception of: (i) poly- 1 stacking modification of graphite was reported in 1956 and merized C60 prepared in a two-dimensional rhombohedral lonsdaleite, the two-layer hexagonal polytype of diamond, phase of ␹=+͑0.25−1.3͒ϫ10−3 emu/g Oe (depending on was discovered in shocked rocks in a meteorite crater in the orientation of the magnetic field relative to the polymer- 1967.2 Fibrous sp1-hybridized carbon has been identified in a ized planes) which shows ferromagnetism;16 (ii) the disor- mineral environment;3 similar “carbynes” have been sug- dered glass-like magnetism observed in activated carbon fi- gested to occur in interstellar dust,4 and similar materials bers due to nonbonding ␲ electrons located at edge states;21 have been synthesized by shock compression of graphite.5–9 and (iii) the unusual magnetic behavior observed in single A broad spectrum of “turbostratic graphites” are also known, wall carbon nanohorns ascribed to the Van Vleck paramag- in which individual graphene layers show rotational and tilt netic contribution.22 Although ferromagnetism in polymer- disorder relative to their neighbors. A recent extreme ex- ized C60 is noteworthy, the exceptionally large magnetic sig- ample is provided by cores of carbon spherules in the nal in carbon nanostructures remains a case of special Murchison meteorite, which are aggregates of randomly ori- interest.23 ented single layers with additional structure defects.10 This Superparamagnetic and/or ferromagnetic-like behavior in particular specimen is among the oldest known naturally oc- carbon-based material has been previously observed in amor- curring material, since it solidified before the condensation phous carbon materials obtained by chemical synthesis or of the Solar System. In contrast, recently synthesized mate- pyrolysis.24,25 The origin of ferromagnetism was suggested rials include many further distinct forms of carbon such as to be attributed to the mixture of carbon atoms with sp2 and fullerenes,11,12 multiwalled carbon nanotubes,13 and single- sp3 bonds and resulted ferromagnetic interaction of spins walled carbon nanotubes,14 which are based on a mixture of separated by sp3 centers.26 An increase in saturated magne- sp2 and sp3 hybridized carbon atoms. The structural phase tization of amorphous-like carbon prepared from different space of carbon between graphite-like and diamond-like hy- hydrogen-rich materials indicated the importance of hydro- bridization states now has many occupants. There is even gen in the formation of the magnetic ordering in more variety in the electronic properties of various carbon graphite.27,28 Very recently, ferro- or ferrimagnetic ordering allotropes, which range from superconductivity15 to was discovered in proton-irradiated spots in highly oriented 1098-0121/2004/70(5)/054407(9)/$22.5070 054407-1 ©2004 The American Physical Society A. V. RODE et al. PHYSICAL REVIEW B 70, 054407 (2004) pyrolytic graphite (HOPG).29 It was demonstrated that pro- with plastic tweezers and placed into a glass vial for further tons implanted in HOPG triggered ferro- (or, ferri-) magnetic analysis. Full details regarding the experimental conditions ordering with a Curie temperature above room temperature. can be found elsewhere.31–33 Here, we briefly explain some To check the importance of hydrogen, spots of similar topog- unique features of the synthesis conditions, which are differ- raphy were produced with helium ion irradiation. Those ent from any previously used nanocluster synthesis method. spots showed no significant magnetic signal in magnetic The carbon vapor temperature in the laser plume, where force microscopy measurements, which stressed the signifi- the formation process takes place, is in the range 1–10 eV cance of hydrogen in the formation of magnetic ordering in ͑10 000–100 000 K͒, i.e., the formation takes place in a graphite. These findings were supported by theoretical partly ionized plasma.38 The high-repetition-rate laser abla- predictions,30 which show that hydrogenated graphite can tion creates an almost continuous inflow of hot carbon atoms display spontaneous magnetization originating from different and ions with an average temperature of ϳ2 eV into the numbers of mono- and double-hydrogenated carbon atoms. experimental chamber. This vapor heats the ambient gas and We have recently synthesized a new form of carbon: increases the partial density of carbon atoms in the chamber. cluster-assembled carbon nanofoam, by laser ablation of The process of formation of carbonaceous clusters begins glassy carbon in an argon-filled chamber using a high- when the carbon density reaches the threshold density, at repetition rate high-power laser.31–33 The synthesis technique which the probability of collisions between carbon atoms is to our knowledge unique. We characterized the carbon becomes sufficiently high. nanofoam by several electron microscopy techniques, which The consumption rate of carbon atoms due to the cluster revealed a web-like structure containing randomly intercon- formation significantly exceeds the evaporation rate by laser nected clusters, 4–9 nm in diameter. The nanofoam exhibits ablation in the experimental conditions of high-repetition- some remarkable physical properties, including ultralow den- rate laser ablation.32,38 Thus, the formation is a nonequilib- sity (ϳ2–10 mg/cm3, the lowest gravimetric density ever rium periodical process. We suggest that the formation pro- reported for a solid), and a large surface area (comparable to cess comprises periodic heating and cluster formation stages, zeolites) of 300–400 m2 /g.31,32 with the time period dependent on the initial Ar density, the Here we report the equally unusual magnetic properties of evaporation rate, and reaction rate, which in turn is a func- the cluster-assembled nanofoam. The foam shows strong tion of the temperature and density of the atomic carbon. It is positive magnetization, some of which is lost in the first few essential that during the period of cluster formation, short in hours after synthesis, but much of which is persistent. This comparison to the heating period, the argon gas does not cool paper presents a detailed study of one sample, which dis- down, but maintains its high temperature for cluster forma- played a saturation magnetization of Ms = +0.42 emu/g at tion. Hence, the argon (and carbon vapor) temperature from 1.8 K 12 months after synthesis. We assess and eliminate the second formation cycle onward is higher than the forma- impurities as significant contributors to the measured prop- tion threshold temperature, which is
Recommended publications
  • The Raman Spectrum of Amorphous Diamond
    " r / J 1 U/Y/ — f> _ - ^ /lj / AU9715866 THE RAMAN SPECTRUM OF AMORPHOUS DIAMOND S.Prawer, K.W. Nugent, D.N. Jamieson School of Physics and Microanalytical Research Centre University of Melbourne, Parkville, Victoria, Australia, 3052. ABSTRACT: We present the Raman spectrum of an amorphous, fully sp^-bonded carbon network. The reduced Raman spectrum agrees closely with the calculated density of states of diamond. The results have been obtained from nanoclusters produced deep inside a single crystal diamond irradiated with MeV He ions. The deep implantation creates amorphous sp3 bonded C clusters along the ion tracks, within a largely intact diamond matrix. The matrix maintains the clusters under high pressure, preventing the relaxation to sp% bonded structures. Sharp peaks associated with defect structures unique to MeV ion implantation are observed at 1422, 1447, 1467, 1496, 1540, 1563, 1631, 1649, 1683 and 1726 cm'1. We also observe a shoulder in the reduced Raman spectrum at about 1120 cm'1 which we tentatively attribute to quantum confinement effects in the carbon nanoclusters. The results provide the Raman signature that might be expected from tetrahedrally bonded amorphous carbon films with no graphite-like amorphous components. 2 Tetrahedrally bonded amorphous (‘diamond-like ’) carbon has attracted a great deal of both experimental and theoretical interest of the past few years [1]. There have been numerous efforts to model the vibrational spectrum of sp3 bonded amorphous carbon networks, but until now there has been no experimental confirmation, in the form of a Raman spectrum, to test the accuracy of these model calculations. This is primarily because most sp3 rich amorphous carbon films contain a minimum of 5-15% of sp2 bonded carbon.
    [Show full text]
  • Closed Network Growth of Fullerenes
    ARTICLE Received 9 Jan 2012 | Accepted 18 Apr 2012 | Published 22 May 2012 DOI: 10.1038/ncomms1853 Closed network growth of fullerenes Paul W. Dunk1, Nathan K. Kaiser2, Christopher L. Hendrickson1,2, John P. Quinn2, Christopher P. Ewels3, Yusuke Nakanishi4, Yuki Sasaki4, Hisanori Shinohara4, Alan G. Marshall1,2 & Harold W. Kroto1 Tremendous advances in nanoscience have been made since the discovery of the fullerenes; however, the formation of these carbon-caged nanomaterials still remains a mystery. Here we reveal that fullerenes self-assemble through a closed network growth mechanism by incorporation of atomic carbon and C2. The growth processes have been elucidated through experiments that probe direct growth of fullerenes upon exposure to carbon vapour, analysed by state-of-the-art Fourier transform ion cyclotron resonance mass spectrometry. Our results shed new light on the fundamental processes that govern self-assembly of carbon networks, and the processes that we reveal in this study of fullerene growth are likely be involved in the formation of other carbon nanostructures from carbon vapour, such as nanotubes and graphene. Further, the results should be of importance for illuminating astrophysical processes near carbon stars or supernovae that result in C60 formation throughout the Universe. 1 Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, USA. 2 Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA. 3 Institut des Matériaux Jean Rouxel, CNRS UMR 6502, Université de Nantes, BP32229 Nantes, France. 4 Department of Chemistry and Institute for Advanced Research, Nagoya University, Nagoya 464-8602, Japan.
    [Show full text]
  • Evidence for Glass Behavior in Amorphous Carbon
    Journal of C Carbon Research Article Evidence for Glass Behavior in Amorphous Carbon Steven Best , Jake B. Wasley, Carla de Tomas, Alireza Aghajamali , Irene Suarez-Martinez * and Nigel A. Marks * Department of Physics and Astronomy, Curtin University, Perth, WA 6102, Australia; [email protected] (S.B.); [email protected] (J.B.W.); [email protected] (C.d.T.); [email protected] (A.A.) * Correspondence: [email protected] (I.S.-M.); [email protected] (N.A.M.) Received: 15 July 2020; Accepted: 24 July 2020; Published: 30 July 2020 Abstract: Amorphous carbons are disordered carbons with densities of circa 1.9–3.1 g/cc and a mixture of sp2 and sp3 hybridization. Using molecular dynamics simulations, we simulate diffusion in amorphous carbons at different densities and temperatures to investigate the transition between amorphous carbon and the liquid state. Arrhenius plots of the self-diffusion coefficient clearly demonstrate that there is a glass transition rather than a melting point. We consider five common carbon potentials (Tersoff, REBO-II, AIREBO, ReaxFF and EDIP) and all exhibit a glass transition. Although the glass-transition temperature (Tg) is not significantly affected by density, the choice of potential can vary Tg by up to 40%. Our results suggest that amorphous carbon should be interpreted as a glass rather than a solid. Keywords: amorphous carbon; liquid carbon; glass-transition temperature; molecular dynamics 1. Introduction Amorphous carbons are often described as one of the allotropes of carbon, along with graphite, diamond and fullerenes.
    [Show full text]
  • Mechanical Measurements of Ultra-Thin Amorphous Carbon Membranes Using Scanning Atomic Force Microscopy
    CARBON 50 (2012) 2220– 2225 Available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/carbon Mechanical measurements of ultra-thin amorphous carbon membranes using scanning atomic force microscopy Ji Won Suk, Shanthi Murali, Jinho An, Rodney S. Ruoff * Department of Mechanical Engineering and the Materials Science and Engineering Program, The University of Texas at Austin, One University Station C2200, Austin, TX 78712-0292, United States ARTICLE INFO ABSTRACT Article history: The elastic modulus of ultra-thin amorphous carbon films was investigated by integrating Received 21 October 2011 atomic force microscopy (AFM) imaging in contact mode with finite element analysis (FEA). Accepted 11 January 2012 Carbon films with thicknesses of 10 nm and less were deposited on mica by electron beam Available online 20 January 2012 evaporation and transferred onto perforated substrates for mechanical characterization. The deformation of these ultra-thin membranes was measured by recording topography images at different normal loads using contact mode AFM. The obtained force-distance relationship at the center of membranes was analyzed to evaluate both the Young’s modulus and pre-stress by FEA. From these measurements, Young’s moduli of 178.9 ± 32.3, 193.4 ± 20.0, and 211.1 ± 44.9 GPa were obtained for 3.7 ± 0.08, 6.8 ± 0.12, and 10.4 ± 0.17 nm thick membranes, respectively. Raman spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy were used for characterizing the chemical and structural properties of the films, including the content of sp2 and sp3 hybrid- ized carbon atoms. Ó 2012 Elsevier Ltd. All rights reserved.
    [Show full text]
  • Curved Carbon Nanotubes: from Unique Geometries to Novel Properties and Peculiar Applications
    Nano Research 2014, 7(5): 626–657 DOI 10.1007/s12274-014-0431-1 Curved carbon nanotubes: From unique geometries to novel properties and peculiar applications Lizhao Liu1,2, Feng Liu2 (), and Jijun Zhao1 () 1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China 2 Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA Received: 26 November 2013 ABSTRACT Revised: 15 February 2014 Incorporating pentagons and heptagons into the hexagonal networks of Accepted: 17 February 2014 pristine carbon nanotubes (CNTs) can form various CNT-based nanostructures, as pentagons and heptagons will bend or twist the CNTs by introducing © Tsinghua University Press positive and negative curvature, respectively. Some typical so-made CNT-based and Springer-Verlag Berlin nanostructures are reviewed in this article, including zero-dimensional toroidal Heidelberg 2014 CNTs, and one-dimensional kinked and coiled CNTs. Due to the presence of non-hexagonal rings and curved geometries, such nanostructures possess rather KEYWORDS different structural, physical and chemical properties from their pristine CNT pentagon, counterparts, which are reviewed comprehensively in this article. Additionally, heptagon, their synthesis, modelling studies, and potential applications are discussed. toroidal CNTs, kinked CNTs, coiled CNTs 1 Introduction the pentagons and heptagons can bend and twist the CNTs into a variety of different shapes, extending CNTs The discovery of carbon nanotubes (CNTs) can be into a variety of CNT-based nanostructures, including considered a prominent landmark of nanomaterials finite CNTs (such as carbon nanocaps, carbon nanotips, and nanotechnology. In geometry, CNTs can be formed and carbon nanocones) [1–3], toroidal CNTs [4], kinked by rolling up perfect graphene sheets.
    [Show full text]
  • Hydrogenated Amorphous Carbon (A-C:H) Vs
    A&A 492, 127–133 (2008) Astronomy DOI: 10.1051/0004-6361:200810622 & c ESO 2008 Astrophysics Carbonaceous dust in interstellar shock waves: hydrogenated amorphous carbon (a-C:H) vs. graphite L. Serra Díaz-Cano and A. P. Jones Institut d’Astrophysique Spatiale (IAS), Bâtiment 121, Université Paris-Sud 11 and CNRS, 91405 Orsay, France e-mail: [email protected] Received 16 July 2008 / Accepted 13 October 2008 ABSTRACT Context. Observations of regions of the interstellar medium affected by shock waves indicate gas phase abundances of carbon that are close to solar. In quiescent regions less than half of the carbon is in the gas phase. Aims. We propose that hydrogenated amorphous carbon (a-C:H), in its many guises, is the most probable form of carbonaceous grain material in the interstellar medium and study its erosion in shock waves. Methods. We have used the physical properties typical of a-C:H materials, rather than graphite/amorphous carbon, to study a-C:H ero- sion during ion irradiation and fragmentation in grain-grain collisions. Using SRIM we study material-, surface- and size-dependent sputtering effects and introduce these effects into a shock model. Results. We find significantly greater destruction for a-C:H, than for graphite, a result that brings the models into better agreement with existing observations of shocked regions of the ISM. Carbon grain erosion in shock waves therefore appears to be much more efficient than predicted by existing models. Conclusions. Interstellar hydrogenated amorphous carbon dust is, apparently, rather easily destroyed in shocks and must therefore be more rapidly re-cycled and re-formed during its journey through the interstellar medium than previously-thought.
    [Show full text]
  • The R3-Carbon Allotrope
    The R3-carbon allotrope: a pathway towards glassy carbon under high SUBJECT AREAS: MECHANICAL pressure PROPERTIES ELECTRONIC MATERIALS Xue Jiang1,2, Cecilia A˚ rhammar3, Peng Liu1, Jijun Zhao2 & Rajeev Ahuja1,4 STRUCTURE OF SOLIDS AND LIQUIDS 1Department of Materials and Engineering, Royal Institute of Technology, 10044 Stockholm, Sweden, 2Key Laboratory of Materials ELECTRONIC STRUCTURE Modification by Laser, Ion and Electron Beams Dalian University of Technology, Ministry of Education, Dalian 116024, China, 3Sandvik Coromant, Lerkrogsv. 13, S-126 80 Stockholm, Sweden, 4Department of Physics and Astronomy, Box 516, Uppsala University, 75120, Uppsala, Sweden. Received 8 November 2012 Pressure-induced bond type switching and phase transformation in glassy carbon (GC) has been simulated Accepted by means of Density Functional Theory (DFT) calculations and the Stochastic Quenching method (SQ) in a 25 April 2013 wide range of pressures (0–79 GPa). Under pressure, the GC experiences a hardening transition from sp- and sp2-type to sp3-type bonding, in agreement with previous experimental results. Moreover, a new Published crystalline carbon allotrope possessing R3 symmetry (R3-carbon) is predicted using the stochastic SQ 23 May 2013 method. The results indicate that R3-carbon can be regarded as an allotrope similar to that of amorphous GC. A very small difference in the heat of formation and the coherence of the radial and angular distribution functions of GC and the R3-carbon structure imply that small perturbations to this crystalline carbon Correspondence and allotrope may provide another possible amorphization pathway of carbon besides that of quenching the liquid melt or gas by ultra-fast cooling. requests for materials should be addressed to J.Z.
    [Show full text]
  • Graphitization at Interface Between Amorphous Carbon and Liquid Gallium for Fabricating Large Area Graphene Sheets
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Tsukuba Repository Graphitization at interface between amorphous carbon and liquid gallium for fabricating large area graphene sheets 著者 Fujita Jun-ichi, Ueki Ryuuichi, Miyazawa Yousuke, Ichihashi Toshinari journal or Journal of vacuum science & technology B publication title volume 27 number 6 page range 3063-3066 year 2009-12 権利 (C)2009 American Vacuum Society URL http://hdl.handle.net/2241/104340 doi: 10.1116/1.3253542 Graphitization at Interface between Amorphous Carbon and Liquid Gallium for Fabricating Large Area Graphene Sheets Jun-ichi Fujita1,2, Ryuuichi Ueki1,2, Yousuke Miyazawa1,2, and Toshinari Ichihashi3 1PRESTO JST, Japan Science and Technology Co., Kawaguchi, Saitama 332-0012, Japan 2Institute of Applied Physics, University of Tsukuba, Tsukuba 305-8573, Japan 3NEC Nanoelectronics Laboratory, 34-Miyukiga-oka 305-8501, Japan Abstract We have found that liquid gallium exhibits as a good graphitizing catalyst for a large area graphene sheet. While gallium and carbon are known to be an insoluble system, however, we have found that the catalytic reaction occurs at a very narrow interfacial region between amorphous carbon and liquid gallium. Amorphous carbon film was transformed into graphite layer composed of a few layers of graphene sheet. These thin graphene film can be easily transferred into silicon substrate through the intermediation of PDMS rubber stamping. Keyword: graphitization, Ga, catalyst, resistivity Corresponding Author: Jun-ichi fujita, [email protected] 1 1. Introduction Since the discovery of the stable existence of graphene[1-3], which has characteristic structure of two dimensional carbon honeycomb network, many of amazing electronic property was discovered; quantum hale effect[4] that was explained well with Dirac fermions, tunable band gap[5,6] depending on the channel width, and a possible candidate for the spintronics devices combined with spin localization at the zigzag edge state[7-9].
    [Show full text]
  • Advanced Current Collectors with Carbon Nanofoams for Electrochemically Stable Lithium—Sulfur Cells
    nanomaterials Article Advanced Current Collectors with Carbon Nanofoams for Electrochemically Stable Lithium—Sulfur Cells Shu-Yu Chen 1 and Sheng-Heng Chung 1,2,* 1 Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan; [email protected] 2 Hierarchical Green-Energy Materials Research Center, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan * Correspondence: [email protected] Abstract: An inexpensive sulfur cathode with the highest possible charge storage capacity is attractive for the design of lithium-ion batteries with a high energy density and low cost. To promote existing lithium–sulfur battery technologies in the current energy storage market, it is critical to increase the electrochemical stability of the conversion-type sulfur cathode. Here, we present the adoption of a carbon nanofoam as an advanced current collector for the lithium–sulfur battery cathode. The carbon nanofoam has a conductive and tortuous network, which improves the conductivity of the sulfur cathode and reduces the loss of active material. The carbon nanofoam cathode thus enables the development of a high-loading sulfur cathode (4.8 mg cm−2) with a high discharge capacity that approaches 500 mA·h g−1 at the C/10 rate and an excellent cycle stability that achieves 90% capacity retention over 100 cycles. After adopting such an optimal cathode configuration, we superficially coat the carbon nanofoam with graphene and molybdenum disulfide (MoS2) to amplify the fast charge transfer and strong polysulfide-trapping capabilities, respectively. The highest charge storage −1 Citation: Chen, S.-Y.; Chung, S.-H.
    [Show full text]
  • Thickness and Optical Constants of Amorphous Carbon Coatings
    SE23 Thickness and Optical Constants of Amorphous Carbon Coatings Measured by Spectroscopic Ellipsometry Céline Eypert, Mélanie Gaillet, Application Scientists HORIBA Scientific Amorphous (a-C) and hydrogenated amorphous carbon (a-C:H) films have many useful physical prop- erties such as hardness, low friction, electrical insulation, chemical inertness, optical transparency, bio- logical compatibility, ability to absorb photons selectively, smoothness, and resistance to wear. For a number of years these technologically attractive properties have drawn tremendous interest towards these coatings. They are widely used to modify surfaces of materials and improve their tribological properties. Control of their layer thickness and optical constants are important properties for optimising the coatings for R&D and industrial purposes. The characterization of amorphous carbon coatings by spectroscopic ellipsometry enables the simultaneous measurement of these properties as well as further information about surface roughness and the proportion of sp2 and sp3 bonds in many cases. Furthermore the tech- nique can provide information about the adherence of the coating where an interface is found between the substrate and the coating. Properties of diamond and DLC materials What is Spectroscopic Ellipsometry? Carbon films with very high hardness, high resistivity and Spectroscopic Ellipsometry (SE) is an optical technique dielectric optical properties, are described as diamond- mainly used to determine film thickness and optical con- like carbon or DLC (table 1). stants (n,k) for structures composed of single layer or mul- tilayers. A wide variety of objects are now being coated, ranging from small items, to large dies and moulds. The rapidly SE is based on the measurement of polarized light.
    [Show full text]
  • Large-Scale Synthesis of Carbon Nanomaterials by Catalytic Chemical Vapor Deposition: a Review of the Effects of Synthesis Parameters and Magnetic Properties
    Materials 2010, 3, 4142-4174; doi:10.3390/ma3084142 OPEN ACCESS materials ISSN 1996–1944 www.mdpi.com/journal/materials Review Large-Scale Synthesis of Carbon Nanomaterials by Catalytic Chemical Vapor Deposition: A Review of the Effects of Synthesis Parameters and Magnetic Properties Xiaosi Qi 1, Chuan Qin 1, Wei Zhong 1,*, Chaktong Au 2,*, Xiaojuan Ye 1and Youwei Du 1 1 Nanjing National Laboratory of Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093, China; E-Mails: [email protected] (X.S.Q.); [email protected] (C.Q.); [email protected] (X.J.Y.); [email protected] (Y.W.D.) 2 Chemistry Department, Hong Kong Baptist University, Hong Kong, China * Authors to whom correspondence should be addressed; E-Mails: [email protected] (W.Z.); [email protected] (C.T.A.); Tel.: +86-25-83621200; Fax: +86-25-83595535. Received: 26 June 2010 / Accepted: 26 July 2010 / Published: 30 July 2010 Abstract: The large-scale production of carbon nanomaterials by catalytic chemical vapor deposition is reviewed in context with their microwave absorbing ability. Factors that influence the growth as well as the magnetic properties of the carbon nanomaterials are discussed. Keywords: carbon nanomaterials; catalytic chemical vapor deposition; magnetic properties; microwave absorbing ability 1. Introduction Since the landmark paper of Ijima [1], carbon nanotubes (CNTs) have been studied widely [2-4]. The unique physical and chemical properties of CNTs suggests that the materials can potentially be utilized in areas such as field emission display [5], microelectronic devices [6-12], hydrogen storage [13] and composite material additives [14].
    [Show full text]
  • Amorphous Graphene: a Constituent Part of Low Density Amorphous Carbon† Cite This: Phys
    PCCP PAPER Amorphous graphene: a constituent part of low density amorphous carbon† Cite this: Phys. Chem. Chem. Phys., 2018, 20, 19546 Bishal Bhattarai, a Parthapratim Biswas,b Raymond Atta-Fynnc and D. A. Drabold *d In this paper, we provide evidence that low density nano-porous amorphous carbon (a-C) consists of interconnected regions of amorphous graphene (a-G). We include experimental information in producing models, while retaining the power and accuracy of ab initio methods with no biasing assumptions. Our Received 21st April 2018, models are highly disordered with predominant sp2 bonding and ring connectivity mainly of sizes 5–8. Accepted 5th July 2018 The structural, dynamical and electronic signatures of our 3-D amorphous graphene are similar to those DOI: 10.1039/c8cp02545b of monolayer amorphous graphene. We predict an extended x-ray absorption fine structure (EXAFS) signature of amorphous graphene. Electronic density of states calculations for 3-D amorphous graphene rsc.li/pccp reveal similarity to monolayer amorphous graphene and the system is non conducting. 1 Introduction are readily available. The reverse Monte Carlo (RMC) method is used to determine the structure of complex materials by Amorphous graphene (a-G), an idealized 2-D structure consisting inverting experimental diffraction data. This method often of 5-6-7 polygons with predominant sp2 bonding, has presented leads to unsatisfactory and unphysical results, as scattering a challenge for extraction. This has been achieved by exposure of data lack sufficient information
    [Show full text]