Initial End-To-End Performance Evaluation of 10-Gigabit Ethernet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
End-To-End Performance of 10-Gigabit Ethernet on Commodity Systems
END-TO-END PERFORMANCE OF 10-GIGABIT ETHERNET ON COMMODITY SYSTEMS INTEL’SNETWORK INTERFACE CARD FOR 10-GIGABIT ETHERNET (10GBE) ALLOWS INDIVIDUAL COMPUTER SYSTEMS TO CONNECT DIRECTLY TO 10GBE ETHERNET INFRASTRUCTURES. RESULTS FROM VARIOUS EVALUATIONS SUGGEST THAT 10GBE COULD SERVE IN NETWORKS FROM LANSTOWANS. From its humble beginnings as such performance to bandwidth-hungry host shared Ethernet to its current success as applications via Intel’s new 10GbE network switched Ethernet in local-area networks interface card (or adapter). We implemented (LANs) and system-area networks and its optimizations to Linux, the Transmission anticipated success in metropolitan and wide Control Protocol (TCP), and the 10GbE area networks (MANs and WANs), Ethernet adapter configurations and performed sever- continues to evolve to meet the increasing al evaluations. Results showed extraordinari- demands of packet-switched networks. It does ly higher throughput with low latency, so at low implementation cost while main- indicating that 10GbE is a viable intercon- taining high reliability and relatively simple nect for all network environments. (plug and play) installation, administration, Justin (Gus) Hurwitz and maintenance. Architecture of a 10GbE adapter Although the recently ratified 10-Gigabit The world’s first host-based 10GbE adapter, Wu-chun Feng Ethernet standard differs from earlier Ether- officially known as the Intel PRO/10GbE LR net standards, primarily in that 10GbE oper- server adapter, introduces the benefits of Los Alamos National ates only over fiber and only in full-duplex 10GbE connectivity into LAN and system- mode, the differences are largely superficial. area network environments, thereby accom- Laboratory More importantly, 10GbE does not make modating the growing number of large-scale obsolete current investments in network infra- cluster systems and bandwidth-intensive structure. -
40 and 100 Gigabit Ethernet Overview
Extreme Networks White Paper 40 and 100 Gigabit Ethernet Overview Abstract This paper takes a look at the main forces that are driving Ethernet bandwidth upwards. It looks at the standards and architectural practices adopted by the different segments, how the different speeds of Ethernet are used and how its popularity has resulted in an ecosystem spanning data centers, carrier networks, enterprise networks, and consumers. Make Your Network Mobile © 2011 Extreme Networks, Inc. All rights reserved. Do not reproduce. Extreme Networks White Paper: 40 and 100 Gigabit Ethernet Overview and how its popularity has resulted in a complex ecosys- Overview tem between carrier networks, enterprise networks, and consumers. There are many reasons driving the need for higher bandwidth Ethernet, however, the main reason is our insatiable appetite for content. The definition of content Driving the Need for Speed in itself has evolved over time – where once the majority of traffic on an Ethernet network may have been occa- Ethernet in the Enterprise and Data sional file transfers, emails and the like, today technology Center is allowing us to push and receive richer content such Data center virtualization, which includes storage and as voice, video and high definition multimedia. Simi- server virtualization, is all about the efficient use of larly, mechanisms for delivering content have evolved resources. In the data center this is multifaceted. On over time to reflect this demand. While there were a few the one hand data center managers are trying to bring technologies competing for LAN dominance in the early power, cooling and space utilization under control, while days of networks, Ethernet has become the clear choice. -
Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern
Switched, Fast, and Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern.. Page 1 of 36 [Figures are not included in this sample chapter] Switched, Fast, and Gigabit Ethernet - 3 - Ethernet, Fast Ethernet, and Gigabit Ethernet Standards This chapter discusses the theory and standards of the three versions of Ethernet around today: regular 10Mbps Ethernet, 100Mbps Fast Ethernet, and 1000Mbps Gigabit Ethernet. The goal of this chapter is to educate you as a LAN manager or IT professional about essential differences between shared 10Mbps Ethernet and these newer technologies. This chapter focuses on aspects of Fast Ethernet and Gigabit Ethernet that are relevant to you and doesn’t get into too much technical detail. Read this chapter and the following two (Chapter 4, "Layer 2 Ethernet Switching," and Chapter 5, "VLANs and Layer 3 Switching") together. This chapter focuses on the different Ethernet MAC and PHY standards, as well as repeaters, also known as hubs. Chapter 4 examines Ethernet bridging, also known as Layer 2 switching. Chapter 5 discusses VLANs, some basics of routing, and Layer 3 switching. These three chapters serve as a precursor to the second half of this book, namely the hands-on implementation in Chapters 8 through 12. After you understand the key differences between yesterday’s shared Ethernet and today’s Switched, Fast, and Gigabit Ethernet, evaluating products and building a network with these products should be relatively straightforward. The chapter is split into seven sections: l "Ethernet and the OSI Reference Model" discusses the OSI Reference Model and how Ethernet relates to the physical (PHY) and Media Access Control (MAC) layers of the OSI model. -
Ethernet and Wifi
Ethernet and WiFi hp://xkcd.com/466/ CSCI 466: Networks • Keith Vertanen • Fall 2011 Overview • Mul?ple access networks – Ethernet • Long history • Dominant wired technology – 802.11 • Dominant wireless technology 2 Classic Ethernet • Ethernet – luminferous ether through which electromagne?c radiaon once thought to propagate – Carrier Sense, Mul?ple Access with Collision Detec?on (CSMA/CD) – IEEE 802.3 Robert Metcalfe, co- inventor of Ethernet 3 Classic Ethernet • Ethernet – Xerox Ethernet standardized as IEEE 802.3 in 1983 – Xerox not interested in commercializing – Metcalfe leaves and forms 3Com 4 Ethernet connec?vity • Shared medium – All hosts hear all traffic on cable – Hosts tapped the cable – 2500m maximum length – May include repeaters amplifying signal – 10 Mbps bandwidth 5 Classic Ethernet cabling Cable aSer being "vampire" tapped. Thick Ethernet cable (yellow), 10BASE-5 transceivers, cable tapping tool (orange), 500m maximum length. Thin Ethernet cable (10BASE2) with BNC T- connector, 185m maximum length. 6 Ethernet addressing • Media Access Control address (MAC) – 48-bit globally unique address • 281,474,976,710,656 possible addresses • Should last ?ll 2100 • e.g. 01:23:45:67:89:ab – Address of all 1's is broadcast • FF:FF:FF:FF:FF:FF 7 Ethernet frame format • Frame format – Manchester encoded – Preamble products 10-Mhz square wave • Allows clock synch between sender & receiver – Pad to at least 64-bytes (collision detec?on) Ethernet 802.3 AlternaWng 0's 48-bit MAC and 1's (except addresses SoF of 11) 8 Ethernet receivers • Hosts listens to medium – Deliver to host: • Any frame with host's MAC address • All broadcast frames (all 1's) • Mul?cast frames (if subscribed to) • Or all frames if in promiscuous mode 9 MAC sublayer • Media Access Control (MAC) sublayer – Who goes next on a shared medium – Ethernet hosts can sense if medium in use – Algorithm for sending data: 1. -
End-To-End Lightpaths for Large File Transfers Over High Speed Long Distance Networks
End-to-end lightpaths for large file transfers over high speed long distance networks Corrie Kost, Steve McDonald (TRIUMF) Bryan Caron (Alberta), Wade Hong (Carleton) CHEP03 1 CHEP03 Outline • TB data transfer from TRIUMF to CERN (iGrid 2002) • e2e Lightpaths • 10 GbE technology • Performance tuning (Disk I/O, TCP) • Throughput results • Future plans and activities 2 CHEP03 The Birth of a Demo • Suggestion from Canarie to the Canadian HEP community to participate at iGrid2002 • ATLAS Canada discussed the demo at a Vancouver meeting in late May • Initial meeting at TRIUMF by participants in mid July to plan the demo • Sudden realization that there was a very short time to get all elements in place! 3 CHEP03 did we So what -a--r--e--- -w----e--- -g---o--i--n---g-- --t-o-- do? • Demonstrate a manually provisioned “e2e” lightpath • Transfer 1TB of ATLAS MC data generated in Canada from TRIUMF to CERN • Test out 10GbE technology and channel bonding • Establish a new benchmark for high performance disk to disk throughput over a large distance 4 CHEP03 TRIUMF • TRI University Meson Facility • Operated as a joint venture by Alberta, UBC, Carleton, SFU and Victoria • Located on the UBC campus in Vancouver • Proposed location for Canadian ATLAS Tier 1.5 site 5 The iGrid2002 Network 6 CHEP03 e2e Lightpaths • Core design principle of CA*net 4 • Ultimately to give control of lightpath creation, teardown and routing to the end user • Users “own” their resources and can negotiate sharing with other parties – Hence, “Customer Empowered Networks” • Ideas evolved from initial work on OBGP • Provides a flexible infrastructure for emerging grid applications via Web Services 7 CHEP03 e2e Lightpaths • Grid services architecture for user control and management • NEs are distributed objects or agents whose methods can be invoked remotely • Use OGSA and Jini/JavaSpaces for e2e customer control • Alas, can only do things manually today 8 CHEP03 CA*net 4 Topology Edmonton Saskatoon Winnipeg Vancouver Calgary Halifax Kamloops Regina Thunder Bay St. -
Evaluation and Tuning of Gigabit Ethernet Performance on Clusters
EVALUATION AND TUNING OF GIGABIT ETHERNET PERFORMANCE ON CLUSTERS A thesis submitted to Kent State University in partial fulfillment of the requirements for the Degree of Master of Science by Harit Desai August, 2007 Thesis Written By Harit Desai B.E., Nagpur University, India, 2000 M.S., Kent State University, OH, 2007 Approved by Dr. Paul A. Farrell, Advisor Dr. Robert A. Walker, Chair, Dept. of Computer Science Dr Jerry Feezel, Dean, College of Arts and Sciences ii TABLE OF CONTENTS ACKNOWLEDGEMENTS …..………………………………………………………….vi CHAPTER 1 INTRODUCTION ....…………………………….…………………….. 1 1.1 Clusters for Scientific Computing ……………………………………….…….... 2 1.2 Thesis Organization .………………………………………………………........ 8 CHAPTER 2 OVERVIEW OF GIGABIT ETHERNET TECHNOLOGY ..............9 2.1 Operating Modes ………………………………………………………………... 9 2.2 Enhanced CSMA/CD…………………………………………………………… 12 2.3 Issues affecting Gigabit Ethernet performance…………………………………. 15 CHAPTER 3 VI ARCHITECTURE OVERVIEW ………………………………… 19 3.1 VI Architecture…………………………………………………………………..20 3.1.1. Virtual Interfaces……………………………………………………………….. 21 3.1.2. VI Provider …..…………………………………………………………...……. 23 3.1.3 VI Consumer……………………………………………………………………. 23 3.1.4. Completion Queues………………………………………………..……………. 24 3.2. Data Transfer Models………………………………………………..………….. 25 3.2.1 Send/Receive……………………………………………………………..………26 3.3. Managing VI Components……………………………………………….………27 iii 3.3.1 Accessing a VI NIC……………………………………………………………...27 3.3.2 Registering and De-registering Memory …..………………...…………………28 3.3.3 Creating and Destroying VIs …………………………………………………. 28 3.3.4 Creating and Destroying Completion Queue …...………………………….….39 3.4. VI Connection and Disconnection………………....…………………………..31 3.4.1. VI Connection…………………………………………………………………31 3.4.2. VI Disconnection……………………………………………………………...34 3.4.3. VI Address Format…………………………………………………………… 35 3.5. VI States…………………………………...…………………………………. 36 CHAPTER 4 NETPIPE……………………………………………………………. 37 4.1. Introduction……………………………………………………………………37 4.2. NetPIPE Design……………………………………………………………….38 4.3. -
Institutionen För Datavetenskap Department of Computer and Information Science
Institutionen för datavetenskap Department of Computer and Information Science Final thesis NetworkPerf – A tool for the investigation of TCP/IP network performance at Saab Transpondertech by Magnus Johansson LIU-IDA/LITH-EX-A--09/039--SE 2009-08-13 Linköpings universitet Linköpings universitet SE-581 83 Linköping, Sweden 581 83 Linköping Final thesis NetworkPerf - A tool for the investigation of TCP/IP network performance at Saab Transpondertech Version 1.0.2 by Magnus Johansson LIU-IDA/LITH-EX-A09/039SE 2009-08-13 Supervisor: Hannes Persson, Attentec AB Examiner: Dr Juha Takkinen, IDA, Linköpings universitet Abstract In order to detect network changes and network troubles, Saab Transpon- dertech needs a tool that can make network measurements. The purpose of this thesis has been to nd measurable network proper- ties that best reect the status of a network, to nd methods to measure these properties and to implement these methods in one single tool. The resulting tool is called NetworkPerf and can measure the following network properties: availability, round-trip delay, delay variation, number of hops, intermediate hosts, available bandwidth, available ports, and maximum al- lowed packet size. The thesis also presents the methods used for measuring these properties in the tool: ping, traceroute, port scanning, and bandwidth measurement. iii iv Acknowledgments This master's thesis would not be half as good as it is, if I had not received help and support from several people. Many thanks to my examiner Dr Juha Takkinen, without whose countin- uous feedback this report would not have been more than a few confusing pages. -
Gigabit Ethernet
Ethernet Technologies and Gigabit Ethernet Professor John Gorgone Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 1 Topics • Origins of Ethernet • Ethernet 10 MBS • Fast Ethernet 100 MBS • Gigabit Ethernet 1000 MBS • Comparison Tables • ATM VS Gigabit Ethernet •Ethernet8SummaryCopyright 1998, John T. Gorgone, All Rights Reserved 2 Origins • Original Idea sprang from Abramson’s Aloha Network--University of Hawaii • CSMA/CD Thesis Developed by Robert Metcalfe----(1972) • Experimental Ethernet developed at Xerox Palo Alto Research Center---1973 • Xerox’s Alto Computers -- First Ethernet Ethernet8systemsCopyright 1998, John T. Gorgone, All Rights Reserved 3 DIX STANDARD • Digital, Intel, and Xerox combined to developed the DIX Ethernet Standard • 1980 -- DIX Standard presented to the IEEE • 1980 -- IEEE creates the 802 committee to create acceptable Ethernet Standard Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 4 Ethernet Grows • Open Standard allows Hardware and Software Developers to create numerous products based on Ethernet • Large number of Vendors keeps Prices low and Quality High • Compatibility Problems Rare Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 5 What is Ethernet? • A standard for LANs • The standard covers two layers of the ISO model – Physical layer – Data link layer Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 6 What is Ethernet? • Transmission speed of 10 Mbps • Originally, only baseband • In 1986, broadband was introduced • Half duplex and full duplex technology • Bus topology Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 7 Components of Ethernet • Physical Medium • Medium Access Control • Ethernet Frame Ethernet8 Copyright 1998, John T. Gorgone, All Rights Reserved 8 CableCable DesignationsDesignations 10 BASE T SPEED TRANSMISSION MAX TYPE LENGTH Ethernet8 Copyright 1998, John T. -
The Future Is 40 Gigabit Ethernet White Paper Cisco Public
The Future Is 40 Gigabit Ethernet White Paper Cisco Public The Future Is 40 Gigabit Ethernet © 2016 Cisco and/or its affiliates. All rights reserved. The Future Is 40 Gigabit Ethernet White Paper Cisco Public Executive Summary The business case for 40 Gigabit Ethernet is becoming inescapably compelling. While 10 Gigabit Ethernet is still making its way into the data centers, CIOs and IT managers must now consider how they are going to handle what’s coming next: high-bandwidth applications such as server virtualization and cloud computing; fabric consolidation within the data center; and a greater demand for high-performance computing among end users (see Figure 1). The need for faster data transfer rates is relentless and carries significant implications with regard to network productivity as well as operating expenditure (OpEx) costs. Figure 1. Current Trends Driving the Demand for This report addresses the impending move to 40 Higher-Speed Ethernet Gigabit Ethernet, how it may change the network architecture, and what IT managers can do now to Market Drivers for More Bandwidth prepare to migrate to the new standard. Consumer & Broadband Access Introduction: The Business Case for Content 40 Gigabit Ethernet Providers Since February 1980, when the first IEEE 802 Server Virtualization standards committee convened, speeds in Ethernet Video on delivery to all layers have made increasingly greater Demand leaps over increasingly shorter intervals. In 2016, Blade Server Higher eight years after the adoption of 10 Gigabit Ethernet, Speed Service the IEEE has adopted 802.3ba, paving the way for Providers & Ethernet IXCs 40 Gigabit Ethernet and 100 Gigabit Ethernet. -
Towards 100 Gbps Ethernet: Development of Ethernet / Physical Layer Aspects
SEMINAR ON TOPICS IN COMMUNICATIONS ENGINEERING 1 Towards 100 Gbps Ethernet: Development of Ethernet / Physical Layer Aspects Ömer Bulakci Abstract — Physical layer features of Ethernet from the first released clauses and ongoing architecture researches for 100 realization towards the 100 Gb Ethernet (100 GbE) development GbE are elaborated. have been considered. Comparisons of these features are made according to the standardized data rates. Feasible physical layer TABLE I options are then discussed for high data rates. Milestones of 802.3 IEEE Standard I. INTRODUCTION Clause Date of Bit Physical THERNET is the most widely deployed Local Area Name Release Rate Medium Network (LAN) protocol and has been extended to E 802.3a Single Metropolitan Area Networks (MAN) and Wide Area (Thin Ethernet) 1985 10 Mbps Thin Coaxial Networks (WAN) [1]. The major advantages that characterize (Cheapernet) Cable Ethernet can be stated as its cost efficiency, traditional tenfold bit rate increase (from 10 Mbps to 100 Gbps), simplicity, high 802.3i 1990 10 Mbps TP Copper transmission reliability and worldwide interoperability 802.3j 1993 10 Mbps Two MMFs between vendors [2]. TP Copper The first experimental Ethernet was developed during the 802.3u 1995 100 Mbps Two Fibers early 1970s by XEROX Corporation in a coaxial cable (Fast Ethernet) (MMF,SMF) network with a data rate about 3 Mbps [3]. The initial 802.3z 1998 1 Gbps MMF, SMF standardization process of Ethernet was started in 1979 by (Gigabit Ethernet) Digital Equipment Corporation (DEC), Intel and Xerox. In 802.3ab 1999 1 Gbps TP Copper 1980, DIX Standard known as the “Thick Ethernet” was 802.3ae 2002 10 Gbps MMF,SMF released. -
Latticesc/M Broadcom XAUI/Higig 10 Gbps Lattice Semiconductor Physical Layer Interoperability Over CX-4
LatticeSC/M Broadcom® XAUI/HiGig™ 10 Gbps Physical Layer Interoperability Over CX-4 August 2007 Technical Note TN1155 Introduction This technical note describes a physical layer 10-Gigabit Ethernet and HiGig (10 Gbps) interoperability test between a LatticeSC/M device and the Broadcom BCM56800 network switch. The test was limited to the physical layer (up to XGMII) of the 10-Gigabit Ethernet protocol stack. Specifically, the document discusses the following topics: • Overview of LatticeSC™ and LatticeSCM™ devices and Broadcom BCM56800 network switch • Physical layer interoperability setup and results Two significant aspects of the interoperability test need to be highlighted: • The BCM56800 uses a CX-4 HiGig port, whereas the LatticeSC Communications Platform Evaluation Board provides an SMA connector. A CX-4 to SMA conversion board was used as a physical medium interface to cre- ate a physical link between both boards. The SMA side of the CX-4 to SMA conversion board has four differential TX/RX channels (10 Gbps bandwidth total). All four SMA channels (Quad 360) were connected to the LatticeSC side. • The physical layer interoperability ran at a 10-Gbps data rate (12.5-Gbps aggregated rate). XAUI Interoperability XAUI is a high-speed interconnect that offers reduced pin count and the ability to drive up to 20” of PCB trace on standard FR-4 material. In order to connect a 10-Gigabit Ethernet MAC to an off-chip PHY device, an XGMII inter- face is used. The XGMII is a low-speed parallel interface for short range (approximately 2”) interconnects. XAUI interoperability is based on the 10-Gigabit Ethernet standard (IEEE Standard 802.3ae-2002). -
Modern Ethernet
Color profile: Generic CMYK printer profile Composite Default screen All-In-One / Network+ Certification All-in-One Exam Guide / Meyers / 225345-2 / Chapter 6 CHAPTER Modern Ethernet 6 The Network+ Certification exam expects you to know how to • 1.2 Specify the main features of 802.2 (Logical Link Control) [and] 802.3 (Ethernet): speed, access method, topology, media • 1.3 Specify the characteristics (for example: speed, length, topology, and cable type) of the following cable standards: 10BaseT and 10BaseFL; 100BaseTX and 100BaseFX; 1000BaseTX, 1000BaseCX, 1000BaseSX, and 1000BaseLX; 10GBaseSR, 10GBaseLR, and 10GBaseER • 1.4 Recognize the following media connectors and describe their uses: RJ-11, RJ-45, F-type, ST,SC, IEEE 1394, LC, MTRJ • 1.6 Identify the purposes, features, and functions of the following network components: hubs, switches • 2.3 Identify the OSI layers at which the following network components operate: hubs, switches To achieve these goals, you must be able to • Define the characteristics, cabling, and connectors used in 10BaseT and 10BaseFL • Explain how to connect multiple Ethernet segments • Define the characteristics, cabling, and connectors used with 100Base and Gigabit Ethernet Historical/Conceptual The first generation of Ethernet network technologies enjoyed substantial adoption in the networking world, but their bus topology continued to be their Achilles’ heel—a sin- gle break anywhere on the bus completely shut down an entire network. In the mid- 1980s, IBM unveiled a competing network technology called Token Ring. You’ll get the complete discussion of Token Ring in the next chapter, but it’s enough for now to say that Token Ring used a physical star topology.