Performance Testing Tools Jan Bartoň 30/10/2003
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
End-To-End Lightpaths for Large File Transfers Over High Speed Long Distance Networks
End-to-end lightpaths for large file transfers over high speed long distance networks Corrie Kost, Steve McDonald (TRIUMF) Bryan Caron (Alberta), Wade Hong (Carleton) CHEP03 1 CHEP03 Outline • TB data transfer from TRIUMF to CERN (iGrid 2002) • e2e Lightpaths • 10 GbE technology • Performance tuning (Disk I/O, TCP) • Throughput results • Future plans and activities 2 CHEP03 The Birth of a Demo • Suggestion from Canarie to the Canadian HEP community to participate at iGrid2002 • ATLAS Canada discussed the demo at a Vancouver meeting in late May • Initial meeting at TRIUMF by participants in mid July to plan the demo • Sudden realization that there was a very short time to get all elements in place! 3 CHEP03 did we So what -a--r--e--- -w----e--- -g---o--i--n---g-- --t-o-- do? • Demonstrate a manually provisioned “e2e” lightpath • Transfer 1TB of ATLAS MC data generated in Canada from TRIUMF to CERN • Test out 10GbE technology and channel bonding • Establish a new benchmark for high performance disk to disk throughput over a large distance 4 CHEP03 TRIUMF • TRI University Meson Facility • Operated as a joint venture by Alberta, UBC, Carleton, SFU and Victoria • Located on the UBC campus in Vancouver • Proposed location for Canadian ATLAS Tier 1.5 site 5 The iGrid2002 Network 6 CHEP03 e2e Lightpaths • Core design principle of CA*net 4 • Ultimately to give control of lightpath creation, teardown and routing to the end user • Users “own” their resources and can negotiate sharing with other parties – Hence, “Customer Empowered Networks” • Ideas evolved from initial work on OBGP • Provides a flexible infrastructure for emerging grid applications via Web Services 7 CHEP03 e2e Lightpaths • Grid services architecture for user control and management • NEs are distributed objects or agents whose methods can be invoked remotely • Use OGSA and Jini/JavaSpaces for e2e customer control • Alas, can only do things manually today 8 CHEP03 CA*net 4 Topology Edmonton Saskatoon Winnipeg Vancouver Calgary Halifax Kamloops Regina Thunder Bay St. -
Evaluation and Tuning of Gigabit Ethernet Performance on Clusters
EVALUATION AND TUNING OF GIGABIT ETHERNET PERFORMANCE ON CLUSTERS A thesis submitted to Kent State University in partial fulfillment of the requirements for the Degree of Master of Science by Harit Desai August, 2007 Thesis Written By Harit Desai B.E., Nagpur University, India, 2000 M.S., Kent State University, OH, 2007 Approved by Dr. Paul A. Farrell, Advisor Dr. Robert A. Walker, Chair, Dept. of Computer Science Dr Jerry Feezel, Dean, College of Arts and Sciences ii TABLE OF CONTENTS ACKNOWLEDGEMENTS …..………………………………………………………….vi CHAPTER 1 INTRODUCTION ....…………………………….…………………….. 1 1.1 Clusters for Scientific Computing ……………………………………….…….... 2 1.2 Thesis Organization .………………………………………………………........ 8 CHAPTER 2 OVERVIEW OF GIGABIT ETHERNET TECHNOLOGY ..............9 2.1 Operating Modes ………………………………………………………………... 9 2.2 Enhanced CSMA/CD…………………………………………………………… 12 2.3 Issues affecting Gigabit Ethernet performance…………………………………. 15 CHAPTER 3 VI ARCHITECTURE OVERVIEW ………………………………… 19 3.1 VI Architecture…………………………………………………………………..20 3.1.1. Virtual Interfaces……………………………………………………………….. 21 3.1.2. VI Provider …..…………………………………………………………...……. 23 3.1.3 VI Consumer……………………………………………………………………. 23 3.1.4. Completion Queues………………………………………………..……………. 24 3.2. Data Transfer Models………………………………………………..………….. 25 3.2.1 Send/Receive……………………………………………………………..………26 3.3. Managing VI Components……………………………………………….………27 iii 3.3.1 Accessing a VI NIC……………………………………………………………...27 3.3.2 Registering and De-registering Memory …..………………...…………………28 3.3.3 Creating and Destroying VIs …………………………………………………. 28 3.3.4 Creating and Destroying Completion Queue …...………………………….….39 3.4. VI Connection and Disconnection………………....…………………………..31 3.4.1. VI Connection…………………………………………………………………31 3.4.2. VI Disconnection……………………………………………………………...34 3.4.3. VI Address Format…………………………………………………………… 35 3.5. VI States…………………………………...…………………………………. 36 CHAPTER 4 NETPIPE……………………………………………………………. 37 4.1. Introduction……………………………………………………………………37 4.2. NetPIPE Design……………………………………………………………….38 4.3. -
Institutionen För Datavetenskap Department of Computer and Information Science
Institutionen för datavetenskap Department of Computer and Information Science Final thesis NetworkPerf – A tool for the investigation of TCP/IP network performance at Saab Transpondertech by Magnus Johansson LIU-IDA/LITH-EX-A--09/039--SE 2009-08-13 Linköpings universitet Linköpings universitet SE-581 83 Linköping, Sweden 581 83 Linköping Final thesis NetworkPerf - A tool for the investigation of TCP/IP network performance at Saab Transpondertech Version 1.0.2 by Magnus Johansson LIU-IDA/LITH-EX-A09/039SE 2009-08-13 Supervisor: Hannes Persson, Attentec AB Examiner: Dr Juha Takkinen, IDA, Linköpings universitet Abstract In order to detect network changes and network troubles, Saab Transpon- dertech needs a tool that can make network measurements. The purpose of this thesis has been to nd measurable network proper- ties that best reect the status of a network, to nd methods to measure these properties and to implement these methods in one single tool. The resulting tool is called NetworkPerf and can measure the following network properties: availability, round-trip delay, delay variation, number of hops, intermediate hosts, available bandwidth, available ports, and maximum al- lowed packet size. The thesis also presents the methods used for measuring these properties in the tool: ping, traceroute, port scanning, and bandwidth measurement. iii iv Acknowledgments This master's thesis would not be half as good as it is, if I had not received help and support from several people. Many thanks to my examiner Dr Juha Takkinen, without whose countin- uous feedback this report would not have been more than a few confusing pages. -
Network Test and Monitoring Tools
ajgillette.com Technical Note Network Test and Monitoring Tools Author: A.J.Gillette Date: December 6, 2012 Revision: 1.3 Table of Contents Network Test and Monitoring Tools................................................................................................................1 Introduction.............................................................................................................................................................3 Link Characterization ...........................................................................................................................................4 Summary.................................................................................................................................................................12 Appendix A: NUTTCP..........................................................................................................................................13 Installing NUTTCP ..........................................................................................................................................13 Using NUTTCP .................................................................................................................................................13 NUTTCP Examples..........................................................................................................................................14 Appendix B: IPERF................................................................................................................................................17 -
Cloudstate: End-To-End WAN Monitoring for Cloud-Based Applications
CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization CloudState: End-to-end WAN Monitoring for Cloud-based Applications Aaron McConnell, Gerard Parr, Sally McClean, Philip Morrow, Bryan Scotney School of Computing and Information Engineering University of Ulster Coleraine, Northern Ireland Email: [email protected], [email protected], [email protected], [email protected], [email protected] Abstract—Modern data centres are increasingly moving to- It is therefore necessary to have a periodic, automated wards more sophisticated cloud-based infrastructures, where means of measuring the state of the WAN link between servers are consolidated, backups are simplified and where any two addresses relevant to the successful delivery of an resources can be scaled up, across distributed cloud sites, if necessary. Placing applications and data stores across sites has application to end-users. This measurement should be taken a cost, in terms of the hosting at a given site, a cost in terms of periodically, with the time between polls being short enough the migration of application VMs and content across a network, that sudden changes in the quality of the WAN are observed, and a cost in terms of the quality of the end-to-end network but far enough part so as not to flood the network with link between the application and the end-user. This paper details monitoring traffic. Data collected from polls should also be a solution aimed at monitoring all relevant end-to-end network links between VMs, storage and end-users. -
Measure Wireless Network Performance Using Testing Tool Iperf
Measure wireless network performance using testing tool iPerf By Lisa Phifer, SearchNetworking.com Many companies are upgrading their wireless networks to 802.11n for better throughput, reach, and reliability, but getting a handle on your wireless LAN's ( WLAN 's) performance is important to ensure sufficient capacity and coverage. Here, we describe how to quantify network performance using iPerf, a simple, readily-available tool that measures TCP /UDP throughput, loss, and delay. Getting started iPerf was developed to simplify TCP performance tuning by making it easy to measure maximum throughput and bandwidth. When used with UDP, iPerf can also measure datagram loss and delay (aka jitter). iPerf can be run over any kind of IP network, including local Ethernet LANs, Internet access links, and Wi-Fi networks. To use iPerf, you must install two components: an iPerf server (which listens for incoming test requests) and an iPerf client (which launches test sessions). iPerf is available as open source or executable binaries for many operating systems, including Win32, Linux, FreeBSD, MacOS X, OpenBSD, and Solaris. A Win32 iPerf installer can be found at NLANR , while a Java GUI version (JPerf) is available from SourceForge . To measure Wi-Fi performance, you probably want to install iPerf on an Ethernet host upstream from the access point ( AP ) under test -- this will be your server. Next, install iPerf on one or more Wi-Fi laptops -- these will be your clients. This is representative of a typical application flow between Wi-Fi client and wired server. If your goal is to measure AP performance, place your iPerf server on the same LAN as the AP, connected by Fast or Gigabit Ethernet. -
How to Generate Realistic Network Traffic? Antoine VARET and Nicolas LARRIEU ENAC (French Civil Aviation University) - Telecom/Resco Laboratory
How to generate realistic network traffic ? Antoine Varet, Nicolas Larrieu To cite this version: Antoine Varet, Nicolas Larrieu. How to generate realistic network traffic ?. IEEE COMPSAC 2014, 38th Annual International Computers, Software & Applications Conference, Jul 2014, Västerås, Swe- den. pp xxxx. hal-00973913 HAL Id: hal-00973913 https://hal-enac.archives-ouvertes.fr/hal-00973913 Submitted on 4 Oct 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. How to generate realistic network traffic? Antoine VARET and Nicolas LARRIEU ENAC (French Civil Aviation University) - Telecom/Resco Laboratory ABSTRACT instance, an Internet Service Provider (ISP) providing access for Network engineers and designers need additional tools to generate software engineering companies manage a different profile of data network traffic in order to test and evaluate, for instance, communications than an ISP for private individuals [2]. However, application performances or network provisioning. In such a there are some common characteristics between both profiles. The context, traffic characteristics are the most important part of the goal of the tool we have developed is to handle most of Internet work. Indeed, it is quite easy to generate traffic, but it is more traffic profiles and to generate traffic flows by following these difficult to produce traffic which can exhibit real characteristics different Internet traffic properties. -
Openss7 IPERF Utility Installation and Reference Manual Version 2.0 Edition 8 Updated 2008-10-31 Package Iperf-2.0.8
OpenSS7 IPERF Utility Installation and Reference Manual Version 2.0 Edition 8 Updated 2008-10-31 Package iperf-2.0.8 Brian Bidulock <[email protected]> for The OpenSS7 Project <http://www.openss7.org/> Copyright c 2001-2006 OpenSS7 Corporation <http://www.openss7.com/> Copyright c 1997-2000 Brian F. G. Bidulock <[email protected]> All Rights Reserved. Published by OpenSS7 Corporation 1469 Jefferys Crescent Edmonton, Alberta T6L 6T1 Canada This is texinfo edition 8 of the OpenSS7 IPERF Utility documentation, and is consistent with Iperf 2.0. This manual was developed under the OpenSS7 Project and was funded in part by OpenSS7 Corporation. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the con- ditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another lan- guage, under the same conditions as for modified versions. i Short Contents Preface ::::::::::::::::::::::::::::::::::::::::::::::::: 1 Quick Start Guide :::::::::::::::::::::::::::::::::::::::: 9 1 Introduction :::::::::::::::::::::::::::::::::::::::: 15 2 Objective ::::::::::::::::::::::::::::::::::::::::::: 17 3 Reference ::::::::::::::::::::::::::::::::::::::::::: 19 4 Conformance :::::::::::::::::::::::::::::::::::::::: -
Realistic Network Traffic Profile Generation: Theory and Practice
Realistic Network Traffic Profile Generation : Theory and Practice Antoine Varet, Nicolas Larrieu To cite this version: Antoine Varet, Nicolas Larrieu. Realistic Network Traffic Profile Generation : Theory and Practice. Computer and Information Science, Canadian Center of Science and Education, 2014, 7 (2), pp 1-16. 10.5539/cis.v7n2p1. hal-00955420 HAL Id: hal-00955420 https://hal-enac.archives-ouvertes.fr/hal-00955420 Submitted on 4 Mar 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Realistic network traffic profile generation: theory and practice Antoine Varet1 & Nicolas Larrieu1 1 ENAC Telecom/Resco Laboratory, Toulouse, France Correspondence: Nicolas Larrieu, ENAC, E-mail: [email protected] Abstract Network engineers and designers need additional tools to generate network traffic in order to test and evaluate application performances or network provisioning for instance. In such a context, traffic characteristics are the very important part of the work. Indeed, it is quite easy to generate traffic but it is more difficult to produce traffic which can exhibit real characteristics such as the ones you can observe in the Internet. With the lack of adequate tools to generate data flows with “realistic behaviors” at the network or transport level, we needed to develop our tool entitled “SourcesOnOff”. -
A Tool for Evaluating Network Protocols
XIOPerf : A Tool For Evaluating Network Protocols John Bresnahan, Rajkumar Kettimuthu and Ian Foster Mathematics and Computer Science Division Argonne National Laboratory Argonne, Illinois 60439 Email: {bresnaha,kettimut,foster}@mcs.anl.gov Abstract— The nature of Grid and distributed computing user typically has one simple question. What protocol is best implies network communication between heterogeneous systems for my needs? over a wide and ever-changing variety of network environments. Answering that question on paper can be a difficult task. Often times large amounts of data is stored in remote locations and must be transmitted in bulk. It is desirable to have the bulk Many factors must be identified and considered. Every proto- data transfers be as fast as possible, however due to the dynamic col has its strengths and could be a potential candidate. There networks involved it is often hard to predict what protocol will is no single fastest protocol for every situation. The best choice provide the fastest service for a given situation. In this paper most often depends on the environment in which the users we present XIOPerf, a network protocol testing and evaluation application exists. The user must consider at a minimum the tool. XIOPerf is a command line program written on top of GlobusXIO with a simple and well defined interface to many following parameters: different protocol implementations. XIOPerf was created to give Network type: Is it a dedicated link, or does some users a way to quickly and easily experiment with an open quality of service guarantee that a portion of the ended set of protocols over real networks to determine which will bandwidth is dedicated to the user? best suit their needs. -
EXPERIMENTS on VIDEO STREAMING OVER COMPUTER NETWORKS Steven Becker University of Nebraska-Lincoln
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln CSE Technical reports Computer Science and Engineering, Department of 2012 EXPERIMENTS ON VIDEO STREAMING OVER COMPUTER NETWORKS Steven Becker University of Nebraska-Lincoln Follow this and additional works at: http://digitalcommons.unl.edu/csetechreports Becker, Steven, "EXPERIMENTS ON VIDEO STREAMING OVER COMPUTER NETWORKS" (2012). CSE Technical reports. 156. http://digitalcommons.unl.edu/csetechreports/156 This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. EXPERIMENTS ON VIDEO STREAMING OVER COMPUTER NETWORKS by Steven Becker A PROJECT REPORT Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Computer Science Under the Supervision of Dr. Byrav Ramamurthy Lincoln, Nebraska December, 2012 EXPERIMENTS ON VIDEO STREAMING OVER COMPUTER NETWORKS Steven Becker, M.S. University of Nebraska, 2012 Adviser: Dr. Byrav Ramamurthy Video traffic (including streaming video service) is dominating the Internet traffic today. Video can be streamed using a dedicated server, a content delivery network (CDN), or peer-to-peer (P2P) overlays across a network. Video can be transmitted in multiple formats and at different resolutions. Video is also being distributed to a variety of devices (fixed and mobile). In this project, we investigate the evolution of streaming video standards over time and the corresponding effects on the Internet that have occurred as a direct result of increasing video traffic. -
Optimizing NFS Performance
C HAPTER 1 Network Considerations NFS is an acronym for “Network File System,” so it should come as no surprise that NFS performance is heavily affected by the latency and bandwidth of the underlying network. Before embarking on a detailed investigation into a specific area of NFS, it is a good idea to first verify that the underlying network is performing as expected. This chapter focuses on three main areas: analyzing the physical layout of the network that separates your NFS clients and servers, measuring the throughput capabilities of the network, and network troubleshooting concepts. This chapter describes a recommended methodology and set of tools available for under- standing the physical layout of your network, measuring its throughput, and performing routine network troubleshooting tasks. This chapter does not discuss the myriad of networking topolo- gies and interface cards that are currently available for HP-UX systems. NFS runs on most any networking link supporting Internet Protocol (IP), and it typically performs better on faster links.1 1.1 Analyze Network Layout An important early step in troubleshooting any NFS performance issue is to learn as much as possible about the physical layout of the underlying network topology. Some of the questions you should be trying to answer at this stage are: 1. There is a wealth of information about the latest and greatest networking technologies, such as Gigabit Ethernet, Auto Port Aggregation (APA), etc., available from HP’s IT Resource Center web site: http://itrc.hp.com, and HP’s online documentation repository: http://docs.hp.com. 1 2 Chapter 1 • Network Considerations • How many network hops (i.e.