Statins Synergize with Hedgehog Pathway Inhibitors for Treatment of Medulloblastoma Renata E

Total Page:16

File Type:pdf, Size:1020Kb

Statins Synergize with Hedgehog Pathway Inhibitors for Treatment of Medulloblastoma Renata E Published OnlineFirst February 6, 2018; DOI: 10.1158/1078-0432.CCR-17-2923 Cancer Therapy: Preclinical Clinical Cancer Research Statins Synergize with Hedgehog Pathway Inhibitors for Treatment of Medulloblastoma Renata E. Gordon1,2, Li Zhang3, Suraj Peri4, Yin-Ming Kuo5, Fang Du1, Brian L. Egleston4, Jessica M. Y. Ng6, Andrew J. Andrews5, Igor Astsaturov2,7, Tom Curran6, and Zeng-Jie Yang1,3 Abstract Purpose: The role of cholesterol biosynthesis in hedgehog approved Smoothened antagonist), were utilized to inhibit pathway activity and progression of hedgehog pathway medul- medulloblastoma growth in vivo. loblastoma (Hh-MB) were examined in vivo. Statins, commonly Results: Cholesterol biosynthesis was markedly enhanced in used cholesterol-lowering agents, were utilized to validate cho- Hh-MB from both humans and mice. Inhibition of cholesterol lesterol biosynthesis as a therapeutic target for Hh-MB. biosynthesis dramatically decreased Hh pathway activity and Experimental Design: Bioinformatic analysis was performed reduced proliferation of medulloblastoma cells. Statins effectively to evaluate the association between cholesterol biosynthesis with inhibited medulloblastoma growth in vivo and functioned syn- hedgehog group medulloblastoma in human biospecimens. ergistically in combination with vismodegib. Alterations in hedgehog signaling were evaluated in medulloblas- Conclusions: Cholesterol biosynthesis is required for toma cells after inhibition of cholesterol biosynthesis. The pro- Smoothened activity in the hedgehog pathway, and it is indis- gression of endogenous medulloblastoma in mice was examined pensable for the growth of Hh-MB. Targeting cholesterol bio- after genetic blockage of cholesterol biosynthesis in tumor cells. synthesis represents a promising strategy for treatment of Statins alone, or in combination with vismodegib (an FDA- Hh-MB. Clin Cancer Res; 24(6); 1375–88. Ó2018 AACR. Introduction reductase (HMGCR) is rate limiting for cholesterol biosynthesis. HMGCR converts HMG-CoA to mevalonate and is the target Cholesterol is a key component of cellular membranes and a of statins (2). NAD(P) steroid dehydrogenase-like (NSDHL), a precursor for steroid hormones and bile acids. The brain is the 3b-hydroxysterol dehydrogenase, is involved in the removal of most cholesterol-rich organ, containing approximately 20% of two C-4 methyl groups in one of the later steps of cholesterol total body cholesterol. In the brain, cholesterol is primarily biosynthesis. Deficiency in NSDHL dramatically impairs choles- generated by de novo synthesis, as the blood–brain barrier in terol biosynthesis in both humans and mice (3). In particular, vertebrates prevents its uptake from the bloodstream (1). Almost conditional deletion of Nsdhl gene in cerebellar granule neuronal all cholesterol in the brain is present in an unesterified, free form. precursors inhibits cholesterol synthesis and dramatically Cholesterol is synthesized through a series of approximately represses proliferation (4). The final step in cholesterol synthesis 30 enzymatic reactions, starting with the substrate acetyl CoA is catalyzed by the enzyme 24-dehydrocholesterol reductase (Fig. 1A). The enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (DHCR24), which converts desmosterol to cholesterol by satu- rating the C-24,25 double-bond in the side chain. Triparanol, the first synthetic cholesterol-lowering drug, works by antagonizing 1 Cancer Biology Program, Fox Chase Cancer Center, Temple University Health DHCR24 (5). System, Philadelphia, Pennsylvania. 2Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia. 3Jiangsu Key Laboratory of In addition to its function as a component of cell membranes, Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow cholesterol regulates many signaling pathways, including the University, Suzhou, Jiangsu, China. 4Biostatistics and Bioinformatics Research hedgehog (Hh) pathway. The Hh pathway plays a critical role in Facility, Fox Chase Cancer Center, Temple University Health System, Philadel- brain development and function. In the absence of Hh ligand, the 5 phia, Pennsylvania. Cancer Epigenetics Program, Fox Chase Cancer Center, antagonizing receptor Patched1 (Ptch1) suppresses the seven- 6 Temple University Health System, Philadelphia, Pennsylvania. Children's transmembrane protein, Smoothened (Smo), thus precluding Research Institute, Children's Mercy Kansas City, Missouri. 7Molecular Thera- peutics Program, Fox Chase Cancer Center, Temple University Health System, downstream signaling. The interaction between Hh and Ptch1 Philadelphia, Pennsylvania. relieves inhibition of Smo, which then triggers a cascade of events culminating in activation of the glioma-associated oncogenes 1 Note: Supplementary data for this article are available at Clinical Cancer Research Online (http://clincancerres.aacrjournals.org/). and 2 (Gli1 and Gli2). Gli proteins translocate into cell nuclei and promote transcription of Hh pathway target genes, including Cancer Therapy: Preclinical Ptch1 and Gli1 (6, 7). Extensive evidence suggests that some Corresponding Author: Zeng-Jie Yang, Fox Chase Cancer Center, 333 Cottman exogenous oxysterols, such as 20 (S)-hydroxycholesterol and Avenue, Philadelphia, PA 19111. Phone: 215-214-1545; Fax: 215-728-2741; E-mail: 25-hydroxycholesterol, generated by cholesterol oxidation, can [email protected] activate Smo by binding to a site located in the extracellular doi: 10.1158/1078-0432.CCR-17-2923 cysteine-rich domain (CRD). This indicates that cholesterol deri- Ó2018 American Association for Cancer Research. vatives are capable of triggering Hh pathway activation in www.aacrjournals.org 1375 Downloaded from clincancerres.aacrjournals.org on September 28, 2021. © 2018 American Association for Cancer Research. Published OnlineFirst February 6, 2018; DOI: 10.1158/1078-0432.CCR-17-2923 Gordon et al. in vitro as well as tumor growth in vivo. Furthermore, we show that Translational Relevance cholesterol is necessary for maintaining Smo activity in the Medulloblastoma is the most common malignant brain absence of Ptch1. Statins, antagonists of cholesterol biosynthesis, tumor in children. Approximately 30% of human medullo- exhibited promising therapeutic effects in mouse medulloblas- blastoma arise from aberrant activation of hedgehog (Hh) toma models. Moreover, statins synergized with the clinically pathway. Vismodegib and sonidegib are two FDA-approved approved Smo antagonist, vismodegib, to prevent medulloblas- Hh pathway inhibitors that have demonstrated efficacy in toma progression in vivo. These findings elucidate an important clinical trials of Hh pathway–associated medulloblastoma role for endogenous cholesterol in medulloblastoma tumorigen- (Hh-MB). Despite a dramatic response to these inhibitors in esis and demonstrate that cholesterol biosynthesis represents a initial clinical trials, drug resistance and developmental toxi- novel therapeutic target for the treatment of medulloblastoma cities arise in humans as predicted by mouse models. Here, we and, potentially, other Hh pathway–associated malignancies. demonstrate that cholesterol is required for Hh pathway signal transduction in tumor cells. Statins, inhibitors of cholesterol Materials and Methods biosynthesis, block hedgehog pathway activity in medullo- blastoma and synergize with vismodegib to inhibit tumor Animals growth. Given the excellent safety profile, low cost and ready All mice were maintained under barrier conditions in the availability of cholesterol inhibitors, targeting cholesterol Laboratory Animal Facility at Fox Chase Cancer Center (Phila- biosynthesis represents a promising strategy for treatment of delphia, PA), and all experiments were performed in accordance with procedures approved by the Fox Chase Cancer Center Hh-MB and potentially other malignancies caused by Hh fl/fl pathway activation. Animal Care and Use Committee. Nsdhl mice were kindly provided by Dr. Gail Herman (The Ohio State University, T2 Columbus, OH). Math1-Cre mice, Math1-CreER mice, T2 fl/fl þ/À GFAP-CreER mice, Ptch1 mice, Ptch1 mice, R26R-eYFP mice, and SmoM2 (R26SmoM2)micewerepurchasedfromThe recipient cells (8–11). Two recent studies revealed that cholesterol Jackson Laboratory. CB17/SCID mice were generated by the itself synergizes with Hh ligand to activate Smo through binding animal facility laboratory at Fox Chase Cancer Center. to the CRD (12, 13). The physical interaction between Smo and Tamoxifen (Sigma-Aldrich) was dissolved in corn oil and cholesterol was further confirmed in studies of the crystal structure administrated by oral gavage at a dosage of 200 mg/kg daily of Smo (14). These findings suggest that cholesterol functions as a during 3 subsequent days. Animals were sacrificed for further native ligand for Smo activation and that Hh signaling may be analyses after 7 days from initial tamoxifen treatment. influenced by the local availability of cholesterol. Insufficient Hh signaling can lead to birth defects, whereas Compounds excessive activity of the Hh pathway is associated with the for- The following compounds were used for our in vitro and in vivo mation of human malignancies, including medulloblastoma, the studies: simvastatin (Cayman Chemicals), atorvastatin (Cayman most common malignant brain tumor in children. The Hh Chemicals), triparanol (Sigma-Aldrich), vismodegib (Chemlea- pathway is activated in approximately 30% of human medullo- der Biochemical), and water-soluble cholesterol (cholesterol- blastoma.
Recommended publications
  • Differential Regulation of Gene Expression by Cholesterol Biosynthesis Inhibitors That Reduce (Pravastatin) Or Enhance (Squalest
    JPET Fast Forward. Published on May 25, 2016 as DOI: 10.1124/jpet.116.233312 This article has not been copyedited and formatted. The final version may differ from this version. Differential regulation of gene expression by cholesterol biosynthesis inhibitors that reduce (pravastatin) or enhance (squalestatin 1) nonsterol isoprenoid levels in primary cultured mouse and rat hepatocytes. Elizabeth A. Rondini, Zofia Duniec-Dmuchowski, Daniela Cukovic, Alan A. Dombkowski, and Thomas A. Kocarek Downloaded from Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA (E.A.R., Z.D-D, T.A.K.) jpet.aspetjournals.org Department of Pediatrics, Division of Clinical Pharmacology and Toxicology, Wayne State University, Detroit, MI 48202 (D.C., A.A.D) at ASPET Journals on September 27, 2021 JPET Fast Forward. Published on May 25, 2016 as DOI: 10.1124/jpet.116.233312 This article has not been copyedited and formatted. The final version may differ from this version. JPET #233312 Running title: Regulation of hepatocellular gene expression by isoprenoids Address correspondence to: Dr. Thomas A. Kocarek, Institute of Environmental Health Sciences, 6135 Woodward Avenue, IBio Building, Room 2126, Wayne State University, Detroit, MI 48202, USA. Tel: (313) 577-6580; FAX: (313) 972-8025; E-mail: [email protected] Number of text pages: 43 Downloaded from Number of tables: 2 Supplemental Number of figures: 8 jpet.aspetjournals.org Number of references: 77 Number of words in Abstract: 249 Number of words in Introduction: 745 at
    [Show full text]
  • Identification and Characterization of Zebrafish 17Beta-HSD Type 1 and Type 3: a Comparative Analysis of Androgen/Estrogen Activity Regulators
    Institut für Experimentelle Genetik GSF-Forschungzentrum für Umwelt und Gesundheit, Neuherberg Identification and characterization of zebrafish 17beta-HSD type 1 and type 3: A comparative analysis of androgen/estrogen activity regulators Rebekka Mindnich Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.- Prof. Dr. Bertold Hock Prüfer der Dissertation: 1. Priv.-Doz. Dr. Jerzy Adamski 2. Univ.-Prof. Dr. Johannes Buchner 3. Univ.-Prof. Dr. Wolfgang Wurst Die Dissertation wurde am 30.06.2004 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 07.10. 2004 angenommen. Table of contents Table of contents ABSTRACT................................................................................................................................... 7 ZUSAMMENFASSUNG................................................................................................................ 9 ABBREVIATIONS....................................................................................................................... 11 1 INTRODUCTION ................................................................................................................ 13 1.1 THE AIM OF THIS STUDY ...............................................................................................
    [Show full text]
  • Triggering of Erythrocyte Death by Triparanol
    Toxins 2015, 7, 3359-3371; doi:10.3390/toxins7083359 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Article Triggering of Erythrocyte Death by Triparanol Arbace Officioso 1,2, Caterina Manna 2, Kousi Alzoubi 1 and Florian Lang 1,* 1 Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany; E-Mails: [email protected] (A.O.); [email protected] (K.A.) 2 Department of Biochemistry, Biophysics and General Pathology, School of Medicine and Surgery, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-7071-29-72194; Fax: +49-7071-29-5618. Academic Editor: Azzam Maghazachi Received: 22 July 2015 / Accepted: 12 August 2015 / Published: 24 August 2015 Abstract: The cholesterol synthesis inhibitor Triparanol has been shown to trigger apoptosis in several malignancies. Similar to the apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress which may activate erythrocytic Ca2+ permeable unselective cation 2+ 2+ 2+ channels with subsequent Ca entry and increase of cytosolic Ca activity ([Ca ]i). The present study explored whether and how Triparanol induces eryptosis. To this end, phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell 2+ volume from forward scatter, hemolysis from hemoglobin release, [Ca ]i from Fluo3-fluorescence, and ROS formation from 2’,7’-dichlorodihydrofluorescein diacetate (DCFDA) dependent fluorescence.
    [Show full text]
  • Identification and Characterization of TPRKB Dependency in TP53 Deficient Cancers
    Identification and Characterization of TPRKB Dependency in TP53 Deficient Cancers. by Kelly Kennaley A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Molecular and Cellular Pathology) in the University of Michigan 2019 Doctoral Committee: Associate Professor Zaneta Nikolovska-Coleska, Co-Chair Adjunct Associate Professor Scott A. Tomlins, Co-Chair Associate Professor Eric R. Fearon Associate Professor Alexey I. Nesvizhskii Kelly R. Kennaley [email protected] ORCID iD: 0000-0003-2439-9020 © Kelly R. Kennaley 2019 Acknowledgements I have immeasurable gratitude for the unwavering support and guidance I received throughout my dissertation. First and foremost, I would like to thank my thesis advisor and mentor Dr. Scott Tomlins for entrusting me with a challenging, interesting, and impactful project. He taught me how to drive a project forward through set-backs, ask the important questions, and always consider the impact of my work. I’m truly appreciative for his commitment to ensuring that I would get the most from my graduate education. I am also grateful to the many members of the Tomlins lab that made it the supportive, collaborative, and educational environment that it was. I would like to give special thanks to those I’ve worked closely with on this project, particularly Dr. Moloy Goswami for his mentorship, Lei Lucy Wang, Dr. Sumin Han, and undergraduate students Bhavneet Singh, Travis Weiss, and Myles Barlow. I am also grateful for the support of my thesis committee, Dr. Eric Fearon, Dr. Alexey Nesvizhskii, and my co-mentor Dr. Zaneta Nikolovska-Coleska, who have offered guidance and critical evaluation since project inception.
    [Show full text]
  • NSDHL, an Enzyme Involved in Cholesterol Biosynthesis, Traffics Through the Golgi and Accumulates on ER Membranes and on The
    Human Molecular Genetics, 2003, Vol. 12, No. 22 2981–2991 DOI: 10.1093/hmg/ddg321 NSDHL, an enzyme involved in cholesterol biosynthesis, traffics through the Golgi and accumulates on ER membranes and on the surface of lipid droplets Hugo Caldas1 and Gail E. Herman1,2,* Downloaded from https://academic.oup.com/hmg/article/12/22/2981/606598 by guest on 27 September 2021 1Center for Molecular and Human Genetics, Columbus Children’s Research Institute, Columbus, OH 43205, USA and 2Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA Received July 15, 2003; Revised August 29, 2003; Accepted September 11, 2003 NSDHL, for NAD(P)H steroid dehydrogenase-like, encodes a sterol dehydrogenase or decarboxylase involved in the sequential removal of two C-4 methyl groups in post-squalene cholesterol biosynthesis. Mutations in this gene are associated with human CHILD syndrome (congenital hemidysplasia with ichthyosiform nevus and limb defects), an X-linked, male lethal disorder, as well as the mouse mutations bare patches and striated. In the present study, we have investigated the subcellular localization of tagged proteins encoded by wild-type and selected mutant murine Nsdhl alleles using confocal microscopy. In addition to an ER localization commonly found for enzymes of post-squalene cholesterol biosynthesis, we have identified a novel association of NSDHL with lipid droplets, which are endoplasmic reticulum (ER)-derived cytoplasmic structures that contain a neutral lipid core. We further demonstrate that trafficking through the Golgi is necessary for ER membrane localization of the protein and propose a model for the association of NSDHL with lipid droplets.
    [Show full text]
  • Inhibition of Cholesterol Biosynthesis in Hypercholesterolemia
    J Med Biochem 2013; 32 (1) DOI: 10.2478/v10011-012-0020-3 UDK 577.1 : 61 ISSN 1452-8258 J Med Biochem 32: 16–19, 2013 Review article Pregledni ~lanak INHIBITION OF CHOLESTEROL BIOSYNTHESIS IN HYPERCHOLESTEROLEMIA – IS IT THE RIGHT CHOICE? INHIBICIJA BIOSINTEZE HOLESTEROLA U HIPERHOLESTEROLEMIJI – DA LI JE PRAVI IZBOR? Abdurrahman Coskun, Mustafa Serteser, Ibrahim Unsal Acibadem University, School of Medicine, Department of Biochemistry, Istanbul, Turkey Summary: Cholesterol biosynthesis is a complex pathway Kratak sadr`aj: Biosinteza holesterola je kompleksan me - comprising more than 20 biochemical reactions. Although ta boli~ki put koji obuhvata vi{e od 20 biohemijskih reakcija. the final product created in the pathway is cholesterol, the Iako je kona~an proizvod koji nastaje holesterol, interme- intermediate products, such as ubiquinone and dolichol, also dijerni proizvodi, kao {to su ubihinon i dolihol, tako|e obez- provide vital metabolic functions. Statins are HGM-CoA be |u ju vitalne metaboli~ke funkcije. Statini su inhibitori reductase inhibitors that stop the production of cholesterol HMG-KoA reduktaze koji zaustavljaju produkciju holestero- by directly inhibiting the mevalonate production. Mevalonate la di rektnom inhibicijom produkcije mevalonata. Mevalonat is a precursor of two additional vital molecules, squalene and je prekursor dva dodatna vitalna molekula, skvalena i ubihi - ubiquinone (coenzyme Q10). We hypothesized that inhibit- no na (koenzim Q10). Postavili smo hipotezu da produ`eno ing the cholesterol biosynthesis with statins for an extended trajanje inhibicije biosinteze holesterola statinima mo`e da duration may potentiate the oxidative stress, neurodegener- po tencira oksidativni stres, neurodegenerativne bolesti i ative disease and cancer. Our recommendation was to meas- kan cer.
    [Show full text]
  • BMC Genomics Biomed Central
    BMC Genomics BioMed Central Research article Open Access Histone deacetylase inhibitors: A new mode for inhibition of cholesterol metabolism Sridar V Chittur*1, Niquiche Sangster-Guity2 and Paulette J McCormick1 Address: 1Center for Functional Genomics, University at Albany, State University of New York, Cancer Research Center, One Discovery Drive, Rm 310, Rensselaer, NY 12144, USA and 2Johns Hopkins University, School of Medicine, 1550 Orleans St, CRBII Rm 456, Baltimore, MD 21231, USA Email: Sridar V Chittur* - [email protected]; Niquiche Sangster-Guity - [email protected]; Paulette J McCormick - [email protected] * Corresponding author Published: 29 October 2008 Received: 6 March 2008 Accepted: 29 October 2008 BMC Genomics 2008, 9:507 doi:10.1186/1471-2164-9-507 This article is available from: http://www.biomedcentral.com/1471-2164/9/507 © 2008 Chittur et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Eukaryotic gene expression is a complex process involving multiple cis and trans activating molecules to either facilitate or inhibit transcription. In recent years, many studies have focused on the role of acetylation of histone proteins in modulating transcription, whereas deacetylation of these same proteins is associated with inactivation or repression of gene expression. This study explores gene expression in HepG2 and F9 cell lines treated with Trichostatin A (TSA), a potent histone deacetylase inhibitor. Results: These experiments show that TSA treatment results in clear repression of genes involved in the cholesterol biosynthetic pathway as well as other associated pathways including fatty acid biosynthesis and glycolysis.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • The University of Chicago Genetic Services Laboratories NSDHL Analysis for CHILD Syndrome
    The University of Chicago Genetic Services Laboratories 5841 S. Maryland Ave., Rm. G701, MC 0077, Chicago, Illinois 60637 Toll Free: (888) UC GENES (888) 824 3637 Local: (773) 834 0555 FAX: (773) 702 9130 [email protected] dnatesting.uchicago.edu CLIA #: 14D0917593 CAP #: 18827-49 NSDHL analysis for CHILD syndrome Clinical Features: Patients with CHILD syndrome (Congenital Hemidysplasia with Ichthyosiform erythroderma and Limb Defects [OMIM #308050], have a specific lateralization pattern and midline demarcation of an inflammatory epidermal nevus. These skin lesions are usually present at birth and persist throughout life. Alopecia and nail abnormalities are also common. Limb defects (typically hypoplasia or aplasia) occur ipsilateral to the skin defects. Epiphyseal stippling may be noted on radiographs in infancy. Underdevelopment of other organs, including the brain, lungs, heart or kidneys, on the same side as the skin defects may also occur (1-3). Molecular and Biochemical Genetics: Mutations of the NSDHL [OMIM #300275] gene that codes for a NADH steroid dehydrogenase-like protein (3- hydroxysteroid dehydrogenase) have been identified in patients with CHILD syndrome (1). This protein functions in the cholesterol biosynthetic pathway and mutations are thought to result in a loss of function. The NSDHL gene has 7 coding exons, and over 20 mutations have been identified. Intragenic deletions of one or more exons of the NSDHL gene have been reported in a small percentage of patients (2, 4). No clear genotype-phenotype correlations have been reported, most likely due to random X-inactivation. The NSDHL gene is the human homolog of bare patches (Bpa) and striated (Str) in mice that show an X-linked dominant male-lethal phenotype (5).
    [Show full text]
  • Altered Gene Expression Along the Glycolysis– Cholesterol Synthesis Axis Is Associated with Outcome in Pancreatic Cancer Joanna M
    Published OnlineFirst September 3, 2019; DOI: 10.1158/1078-0432.CCR-19-1543 CLINICAL CANCER RESEARCH | PRECISION MEDICINE AND IMAGING Altered Gene Expression along the Glycolysis– Cholesterol Synthesis Axis Is Associated with Outcome in Pancreatic Cancer Joanna M. Karasinska1, James T. Topham1, Steve E. Kalloger1,2, Gun Ho Jang3, Robert E. Denroche3, Luka Culibrk4, Laura M. Williamson4, Hui-Li Wong5, Michael K.C. Lee5, Grainne M. O’Kane6, Richard A. Moore4, Andrew J. Mungall4, Malcolm J. Moore5, Cassia Warren1, Andrew Metcalfe1, Faiyaz Notta3, Jennifer J. Knox6, Steven Gallinger3,6, Janessa Laskin4,5, Marco A. Marra4,7, Steven J.M. Jones4,7, Daniel J. Renouf1,5,8, and David F. Schaeffer1,2,9 ABSTRACT ◥ Purpose: Identification of clinically actionable molecular Results: On the basis of the median normalized expression of subtypes of pancreatic ductal adenocarcinoma (PDAC) is key glycolytic and cholesterogenic genes, four subgroups were iden- to improving patient outcome. Intertumoral metabolic het- tified: quiescent, glycolytic, cholesterogenic, and mixed. Glyco- erogeneity contributes to cancer survival and the balance lytic tumors were associated with the shortest median survival in between distinct metabolic pathways may influence PDAC resectable (log-rank test P ¼ 0.018) and metastatic settings (log- outcome. We hypothesized that PDAC can be stratified into rank test P ¼ 0.027). Patients with cholesterogenic tumors had the prognostic metabolic subgroups based on alterations in the longest median survival. KRAS and MYC-amplified tumors had expression of genes involved in glycolysis and cholesterol higher expression of glycolytic genes than tumors with normal or synthesis. lost copies of the oncogenes (Wilcoxon rank sum test P ¼ 0.015).
    [Show full text]
  • Steroidal Triterpenes of Cholesterol Synthesis
    Molecules 2013, 18, 4002-4017; doi:10.3390/molecules18044002 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Steroidal Triterpenes of Cholesterol Synthesis Jure Ačimovič and Damjana Rozman * Centre for Functional Genomics and Bio-Chips, Faculty of Medicine, Institute of Biochemistry, University of Ljubljana, Zaloška 4, Ljubljana SI-1000, Slovenia; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +386-1-543-7591; Fax: +386-1-543-7588. Received: 18 February 2013; in revised form: 19 March 2013 / Accepted: 27 March 2013 / Published: 4 April 2013 Abstract: Cholesterol synthesis is a ubiquitous and housekeeping metabolic pathway that leads to cholesterol, an essential structural component of mammalian cell membranes, required for proper membrane permeability and fluidity. The last part of the pathway involves steroidal triterpenes with cholestane ring structures. It starts by conversion of acyclic squalene into lanosterol, the first sterol intermediate of the pathway, followed by production of 20 structurally very similar steroidal triterpene molecules in over 11 complex enzyme reactions. Due to the structural similarities of sterol intermediates and the broad substrate specificity of the enzymes involved (especially sterol-Δ24-reductase; DHCR24) the exact sequence of the reactions between lanosterol and cholesterol remains undefined. This article reviews all hitherto known structures of post-squalene steroidal triterpenes of cholesterol synthesis, their biological roles and the enzymes responsible for their synthesis. Furthermore, it summarises kinetic parameters of enzymes (Vmax and Km) and sterol intermediate concentrations from various tissues. Due to the complexity of the post-squalene cholesterol synthesis pathway, future studies will require a comprehensive meta-analysis of the pathway to elucidate the exact reaction sequence in different tissues, physiological or disease conditions.
    [Show full text]
  • Epigenetic Mechanisms Are Involved in the Oncogenic Properties of ZNF518B in Colorectal Cancer
    Epigenetic mechanisms are involved in the oncogenic properties of ZNF518B in colorectal cancer Francisco Gimeno-Valiente, Ángela L. Riffo-Campos, Luis Torres, Noelia Tarazona, Valentina Gambardella, Andrés Cervantes, Gerardo López-Rodas, Luis Franco and Josefa Castillo SUPPLEMENTARY METHODS 1. Selection of genomic sequences for ChIP analysis To select the sequences for ChIP analysis in the five putative target genes, namely, PADI3, ZDHHC2, RGS4, EFNA5 and KAT2B, the genomic region corresponding to the gene was downloaded from Ensembl. Then, zoom was applied to see in detail the promoter, enhancers and regulatory sequences. The details for HCT116 cells were then recovered and the target sequences for factor binding examined. Obviously, there are not data for ZNF518B, but special attention was paid to the target sequences of other zinc-finger containing factors. Finally, the regions that may putatively bind ZNF518B were selected and primers defining amplicons spanning such sequences were searched out. Supplementary Figure S3 gives the location of the amplicons used in each gene. 2. Obtaining the raw data and generating the BAM files for in silico analysis of the effects of EHMT2 and EZH2 silencing The data of siEZH2 (SRR6384524), siG9a (SRR6384526) and siNon-target (SRR6384521) in HCT116 cell line, were downloaded from SRA (Bioproject PRJNA422822, https://www.ncbi. nlm.nih.gov/bioproject/), using SRA-tolkit (https://ncbi.github.io/sra-tools/). All data correspond to RNAseq single end. doBasics = TRUE doAll = FALSE $ fastq-dump -I --split-files SRR6384524 Data quality was checked using the software fastqc (https://www.bioinformatics.babraham. ac.uk /projects/fastqc/). The first low quality removing nucleotides were removed using FASTX- Toolkit (http://hannonlab.cshl.edu/fastxtoolkit/).
    [Show full text]