Better Understanding Carbon-Climate Feedbacks and Reducing Future Risks

Total Page:16

File Type:pdf, Size:1020Kb

Better Understanding Carbon-Climate Feedbacks and Reducing Future Risks CLIMATE CHANGE : SCIENCE AND SOLUTIONS | BRIEFING 7 The carbon cycle: Better understanding carbon-climate feedbacks and reducing future risks In brief Carbon is everywhere on Earth. It is within all living Study of the carbon cycle is critical to narrow gaps in our organisms, in soils, in the ocean and in the atmosphere. understanding of the Earth system and more accurately It is also stored in rocks and fossils. It constantly flows project the effect of CO2 emissions on global temperatures. between these reservoirs, which are interlinked through While the fundamental processes driving flows of carbon a variety of processes. This is the carbon cycle. More than are largely known, uncertainties remain, particularly in the half of the carbon dioxide (CO2) emitted to the atmosphere magnitude of change. Understanding carbon-climate feedback by human activity has been absorbed by natural carbon processes – the effect that a changing climate has on the reservoirs (or ‘sinks’), which have therefore considerably carbon cycle which in turn further changes the climate – is dampened climate change. However, as we continue into particularly important, as these are among the largest sources an era of unprecedented CO2 emissions, we are disrupting of uncertainty in climate change projections. Risks associated the carbon cycle, with potentially severe consequences for with large carbon-climate feedbacks are minimised by our climate. reducing CO2 emissions as much and as quickly as possible. INSIGHTS • Nature’s carbon cycle has alleviated climate change • Enhancement of natural carbon sinks by human and its impacts by absorbing more than half of the intervention will be essential to achieve net zero carbon that human activities have emitted, but such emissions. This includes sustainable afforestation, a large uptake is not guaranteed to continue. reforestation, agricultural soil management, and peatland restoration. • The future of carbon sinks will depend on the level of CO2 in the atmosphere and how fast it rises or • Research to improve understanding of the carbon cycle decreases, on the impacts of climate change, and should include: continuous observational monitoring in the potentially on direct human intervention. Safeguarding atmosphere, on land, and in the ocean, by both in situ and the sinks, in particular forests, is essential to maintain satellite data; better understanding of potential instabilities their functions. in carbon sinks, as well as the development of models that more fully represent the carbon cycle’s complexity. • Carbon-climate feedbacks are expected to amplify climate change and its impacts, with the greatest • The risks associated with carbon cycle uncertainties will and most uncertain effects in a high carbon be minimised by increasing momentum towards halving emissions future. global emissions by 2030 and continuing with deep emissions cuts afterwards. CLIMATE CHANGE : SCIENCE AND SOLUTIONS THE CARBON CYCLE 1 1. Climate change and the carbon cycle 1.1 Why the carbon cycle matters 1.2 The natural carbon cycle For 800,000 years The processes of the carbon cycle are The Earth has an active natural carbon fundamentally tied to the climate of our cycle, inhaling and exhaling carbon like a until the Industrial planet. Carbon is constantly cycling between living organism. Before humans released Revolution (starting atmospheric, oceanic, and terrestrial reservoirs. CO2 at large scale from burning fossil around 1750), ice Before humans perturbed the environment, fuels, deforestation, and other use of land core data show the carbon emitted by natural processes (like (termed ‘the anthropogenic perturbation’), decay of organic matter) was approximately the atmospheric reservoir stored around CO2 concentration in the atmosphere equal to the carbon absorbed (for instance, 2200 billion tonnes of CO2 (2200 GtCO2). by vegetation growth), leading to a relatively Each year, around 400 GtCO is removed remained 2 stable atmospheric CO concentration since from the atmosphere by trees and other approximately 2 the end of the last glaciation ten thousand vegetation on land through photosynthesis, around 300 parts years ago. This helped ensure that surface and a similar amount is returned to it by plant per million, with air temperature was also relatively stable. and soil respiration. In the ocean, around 330 CO2 concentration GtCO2 each year is exchanged between the However, the carbon cycle can move out of fluctuating over atmosphere and surface waters, with more CO2 its fragile equilibrium with the global climate. glacial-interglacial absorbed in the cold waters of high-latitudes, Cold and warm periods in Earth’s history have and some CO out-gassed in the tropical cycles. CO 2 2 shown that natural perturbations, such as oceans where carbon-rich deep waters come concentration glaciations triggered by changes to Earth’s to the surface via upwelling of ocean waters1. reached 415 ppm axial tilt and orbit around the sun, can disrupt in 2020 and the carbon cycle, altering the level of CO2 in For 800,000 years until the Industrial continues to rise. the atmosphere and other reservoirs, with Revolution (starting around 1750), ice core data implications for the Earth’s climate. Such natural shows CO2 concentration in the atmosphere fluctuations reveal the intricate functioning remained below approximately 300 parts of the carbon cycle and its influence on the per million (ppm), with CO2 concentration climate system. fluctuating over glacial-interglacial cycles. In the centuries leading up to the Industrial Anthropogenic, or human-generated, Revolution, CO2 concentration was around 270 emissions have rapidly increased the – 280ppm2. While preindustrial humans emitted concentration of CO in the atmosphere to 2 some CO2 from fires and land clearance, such levels unprecedented in the last three million emissions were very small; it was not until years. Some of these emissions are absorbed the Industrial Revolution that anthropogenic by the natural carbon cycle, but it has been emissions began to significantly perturb the disrupted beyond natural fluctuations. It is carbon cycle. therefore essential to better understand the cycle in order to project future climate change. 2 CLIMATE CHANGE : SCIENCE AND SOLUTIONS THE CARBON CYCLE FIGURE 1 CO2 concentrations in the atmosphere have fluctuated over the last 800,000 years as the Earth moves between 1 glacial and interglacial periods, but human activity since 1750 is increasing CO2 concentrations at unprecedented rates (A). As of 2020, Earth’s atmospheric CO2 concentration is around 415 ppm and rising by around 2.5 ppm each year. This growth rate has accelerated in recent decades11 (B). (A) 450 2020 400 2000 350 1980 1960 300 concentration (ppm) 2 250 CO 200 150 800,000 700,000 600,000 500,000 400,000 300,000 200,000 100,000 0 Years before present (B) 420 400 380 360 concentration (ppm) 2 CO 340 320 300 1960 1980 2000 2020 Year CLIMATE CHANGE : SCIENCE AND SOLUTIONS THE CARBON CYCLE 3 1.3 The carbon cycle since 1750: the Total fossil plus land-use change emissions were partitioned among the atmosphere (19 GtCO ), Without the ‘anthropogenic perturbation’ 2 Since 1750, anthropogenic emissions of CO land (13 GtCO ), and ocean (9 GtCO )2. sequestration of 2 2 2 have started to disturb the global carbon cycle, carbon by the rising from negligible levels of anthropogenic Carbon sinks have prevented much higher levels of climate change and more severe land and ocean, CO2 before the Industrial Revolution, to around impacts. Without the sequestration of carbon the level of CO2 in 42 GtCO2 in 2019 from burning of fossil fuels 2 by the land and ocean, the level of CO in the the atmosphere and land-use change . This increase in CO2 2 would now be emissions is the main driving cause of climate atmosphere would now be around 600 ppm, change. With methane, nitrous oxide and other with an associated warming about double that around 600 ppm, 2 greenhouse gases (GHGs) included, annual currently observed . with an associated emissions have risen to around 59 billion warming about 4 The land and ocean respond to rising CO2 in tonnes of CO2 equivalent (GtCO2e) (see panel the atmosphere. Land has helped to alleviate double that on methane and nitrogen cycles). currently observed. climate change because elevated atmospheric CO increases photosynthesis, which in In the past decade, CO2 emissions originated 2 primarily from fossil fuel combustion, averaging turn tends to encourage more plant growth (especially of trees). More plant growth leads to 34 GtCO2 per year during 2010 – 2019 (see figure 2). During the same period, land- more biomass, resulting in more carbon storage in living plants. When plants die, some of this use change emitted 16 GtCO2, mainly from additional biomass becomes soil organic matter, deforestation, and reabsorbed 10 GtCO2, mainly from the regrowth of abandoned agricultural increasing soil carbon storage. This is a primary reason why the land sink has helped dampen land, leading to net emissions of 6 GtCO2. anthropogenic climate change. However, this BOX 1 process has limits. The land sink will saturate when it becomes limited by other factors, such The methane and nitrogen cycles as the availability of water or nutrients, meaning Stabilising the global climate does not depend it may sequester proportionally less of the future CO2 humans emit. Impacts of climate change, only on CO2 emissions but other greenhouse gases (GHG) which make up more than such as forest droughts, fires and permafrost 25% of total anthropogenic GHG emissions, thaw, may even reverse the sink. particularly methane and nitrous oxide4. Total In the ocean, rising atmospheric CO2 pushes GHG emissions, including CO2, methane, additional CO into the ocean, which leads to nitrous oxide and other gases reached an 2 4 a proportional increase in the amount of CO2 estimated 59 GtCO2e in 2019 , of which around dissolved in the ocean surface. Most of this 10 GtCO2e comprised methane and 3 GtCO2e CO reacts with carbonate ions in seawater to nitrous oxide.
Recommended publications
  • The Role of Reforestation in Carbon Sequestration
    New Forests (2019) 50:115–137 https://doi.org/10.1007/s11056-018-9655-3 The role of reforestation in carbon sequestration L. E. Nave1,2 · B. F. Walters3 · K. L. Hofmeister4 · C. H. Perry3 · U. Mishra5 · G. M. Domke3 · C. W. Swanston6 Received: 12 October 2017 / Accepted: 24 June 2018 / Published online: 9 July 2018 © Springer Nature B.V. 2018 Abstract In the United States (U.S.), the maintenance of forest cover is a legal mandate for federally managed forest lands. More broadly, reforestation following harvesting, recent or historic disturbances can enhance numerous carbon (C)-based ecosystem services and functions. These include production of woody biomass for forest products, and mitigation of atmos- pheric ­CO2 pollution and climate change by sequestering C into ecosystem pools where it can be stored for long timescales. Nonetheless, a range of assessments and analyses indicate that reforestation in the U.S. lags behind its potential, with the continuation of ecosystem services and functions at risk if reforestation is not increased. In this context, there is need for multiple independent analyses that quantify the role of reforestation in C sequestration, from ecosystems up to regional and national levels. Here, we describe the methods and report the fndings of a large-scale data synthesis aimed at four objectives: (1) estimate C storage in major ecosystem pools in forest and other land cover types; (2) quan- tify sources of variation in ecosystem C pools; (3) compare the impacts of reforestation and aforestation on C pools; (4) assess whether these results hold or diverge across ecore- gions.
    [Show full text]
  • Minimal Geological Methane Emissions During the Younger Dryas-Preboreal Abrupt Warming Event
    UC San Diego UC San Diego Previously Published Works Title Minimal geological methane emissions during the Younger Dryas-Preboreal abrupt warming event. Permalink https://escholarship.org/uc/item/1j0249ms Journal Nature, 548(7668) ISSN 0028-0836 Authors Petrenko, Vasilii V Smith, Andrew M Schaefer, Hinrich et al. Publication Date 2017-08-01 DOI 10.1038/nature23316 Peer reviewed eScholarship.org Powered by the California Digital Library University of California LETTER doi:10.1038/nature23316 Minimal geological methane emissions during the Younger Dryas–Preboreal abrupt warming event Vasilii V. Petrenko1, Andrew M. Smith2, Hinrich Schaefer3, Katja Riedel3, Edward Brook4, Daniel Baggenstos5,6, Christina Harth5, Quan Hua2, Christo Buizert4, Adrian Schilt4, Xavier Fain7, Logan Mitchell4,8, Thomas Bauska4,9, Anais Orsi5,10, Ray F. Weiss5 & Jeffrey P. Severinghaus5 Methane (CH4) is a powerful greenhouse gas and plays a key part atmosphere can only produce combined estimates of natural geological in global atmospheric chemistry. Natural geological emissions and anthropogenic fossil CH4 emissions (refs 2, 12). (fossil methane vented naturally from marine and terrestrial Polar ice contains samples of the preindustrial atmosphere and seeps and mud volcanoes) are thought to contribute around offers the opportunity to quantify geological CH4 in the absence of 52 teragrams of methane per year to the global methane source, anthropogenic fossil CH4. A recent study used a combination of revised 13 13 about 10 per cent of the total, but both bottom-up methods source δ C isotopic signatures and published ice core δ CH4 data to 1 −1 2 (measuring emissions) and top-down approaches (measuring estimate natural geological CH4 at 51 ±​ 20 Tg CH4 yr (1σ range) , atmospheric mole fractions and isotopes)2 for constraining these in agreement with the bottom-up assessment of ref.
    [Show full text]
  • The Water Cycle
    Natural Resource Management Basic concepts and strategies 1 This publication was co-financed by the Catholic Relief Services (CRS) and the generous support of the American people through the United States Agency of International Development (USAID) Office of Acquisition and Assistance under the terms of Leader with Associates Cooperative Agreement No. AID-OAA-L-10-00003 with the University of Illinois at Urbana Champaign for the Modernizing Extension and Advisory Services (MEAS) Project. MEAS aims at promoting and assisting in the modernization of rural extension and advisory services worldwide through various outputs and services. The services benefit a wide audience of users, including developing country policymakers and technical specialists, development practitioners from NGOs, other donors, and consultants, and USAID staff and projects. Catholic Relief Services (CRS) serves the poor and disadvantaged overseas. CRS provides emergency relief in the wake of natural and man-made disasters and promotes the subsequent recovery of communities through integrated development interventions, without regard to race, creed or nationality. CRS’ programs and resources respond to the U.S. Bishops’ call to live in solidarity – as one human family – across borders, over oceans, and through differences in language, culture and economic condition. CRS provided co-financing for this publication. Catholic Relief Services 228 West Lexington Street Baltimore, MD 21201-3413 USA Illustrations: Jorge Enrique Gutiérrez Printed in the United States of America. ISBN x-xxxxxx-xx-x Download this publication and related material at http://crsprogramquality.org/ or at http://www.meas-extension.org/meas-offers/training © 20[nn] Catholic Relief Services – United States Conference of Catholic Bishops and MEAS project This work is licensed under a Creative Commons Attribution 3.0 Unported License.
    [Show full text]
  • Long-Term Carbon Sink in Borneo's Forests Halted by Drought
    Corrected: Publisher correction ARTICLE DOI: 10.1038/s41467-017-01997-0 OPEN Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects Lan Qie et al. Less than half of anthropogenic carbon dioxide emissions remain in the atmosphere. While carbon balance models imply large carbon uptake in tropical forests, direct on-the-ground observations are still lacking in Southeast Asia. Here, using long-term plot monitoring records fi −1 1234567890 of up to half a century, we nd that intact forests in Borneo gained 0.43 Mg C ha per year (95% CI 0.14–0.72, mean period 1988–2010) in above-ground live biomass carbon. These results closely match those from African and Amazonian plot networks, suggesting that the world’s remaining intact tropical forests are now en masse out-of-equilibrium. Although both pan-tropical and long-term, the sink in remaining intact forests appears vulnerable to climate and land use changes. Across Borneo the 1997–1998 El Niño drought temporarily halted the carbon sink by increasing tree mortality, while fragmentation persistently offset the sink and turned many edge-affected forests into a carbon source to the atmosphere. Correspondence and requests for materials should be addressed to L.Q. (email: [email protected]) #A full list of authors and their affliations appears at the end of the paper NATURE COMMUNICATIONS | 8: 1966 | DOI: 10.1038/s41467-017-01997-0 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01997-0 ver the past half-century land and ocean carbon sinks Nevertheless, crucial evidence required to establish whether the have removed ~55% of anthropogenic CO2 emissions to forest sink is pan-tropical remains missing.
    [Show full text]
  • Cryosphere: a Kingdom of Anomalies and Diversity
    Atmos. Chem. Phys., 18, 6535–6542, 2018 https://doi.org/10.5194/acp-18-6535-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Cryosphere: a kingdom of anomalies and diversity Vladimir Melnikov1,2,3, Viktor Gennadinik1, Markku Kulmala1,4, Hanna K. Lappalainen1,4,5, Tuukka Petäjä1,4, and Sergej Zilitinkevich1,4,5,6,7,8 1Institute of Cryology, Tyumen State University, Tyumen, Russia 2Industrial University of Tyumen, Tyumen, Russia 3Earth Cryosphere Institute, Tyumen Scientific Center SB RAS, Tyumen, Russia 4Institute for Atmospheric and Earth System Research (INAR), Physics, Faculty of Science, University of Helsinki, Helsinki, Finland 5Finnish Meteorological Institute, Helsinki, Finland 6Faculty of Radio-Physics, University of Nizhny Novgorod, Nizhny Novgorod, Russia 7Faculty of Geography, University of Moscow, Moscow, Russia 8Institute of Geography, Russian Academy of Sciences, Moscow, Russia Correspondence: Hanna K. Lappalainen (hanna.k.lappalainen@helsinki.fi) Received: 17 November 2017 – Discussion started: 12 January 2018 Revised: 20 March 2018 – Accepted: 26 March 2018 – Published: 8 May 2018 Abstract. The cryosphere of the Earth overlaps with the 1 Introduction atmosphere, hydrosphere and lithosphere over vast areas ◦ with temperatures below 0 C and pronounced H2O phase changes. In spite of its strong variability in space and time, Nowadays the Earth system is facing the so-called “Grand the cryosphere plays the role of a global thermostat, keeping Challenges”. The rapidly growing population needs fresh air the thermal regime on the Earth within rather narrow limits, and water, more food and more energy. Thus humankind suf- affording continuation of the conditions needed for the main- fers from climate change, deterioration of the air, water and tenance of life.
    [Show full text]
  • This Ubiquitous Carbon…
    Engineering Physics Department Presents Dr. Cristian Contescu Senior Research Staff, Materials Science and Technology Division Oak Ridge National Laboratory This ubiquitous carbon… Abstract: After Stone Age, Bronze Age, and Iron Age, and after the Silicon Age of the informational revolution, the technologies of 21st century are marked by the ubiquitous presence of various forms of carbon allotropes. For a very long time, diamond and graphite were the only known carbon allotropes, but that has changed with the serendipitous discovery of fullerenes, carbon nanotubes, and graphene. Every ten or fifteen years scientists unveil new forms of carbons with new and perplexing properties, while computations suggest that the carbon’s family still has members unknown to us today. At a dramatically accelerated pace, new carbon forms find their place at the leading edge of scientific and technological innovations. At the same time traditional forms of carbon are being used in new and exciting applications that make our life safer, healthier, and more enjoyable. The 21st century may soon be recognized as the Age of Carbon forms. This educational talk will show how carbon, the fourth most abundant element in the Galaxy and the basis of life on Earth, was the engine of most important technological developments throughout the history of civilization. It will emphasize the ability of carbon atoms to generate a variety of mutual combinations and with many other chemical elements. These properties have placed carbon at the core of numerous inventions that define our civilization, while emerging new technologies open a rich path for value-added products in today’s market.
    [Show full text]
  • Properties of Carbon the Atomic Element Carbon Has Very Diverse
    Properties of Carbon The atomic element carbon has very diverse physical and chemical properties due to the nature of its bonding and atomic arrangement. fig. 1 Allotropes of Carbon Some allotropes of carbon: (a) diamond, (b) graphite, (c) lonsdaleite, (d–f) fullerenes (C60, C540, C70), (g) amorphous carbon, and (h) carbon nanotube. Carbon has several allotropes, or different forms in which it can exist. These allotropes include graphite and diamond, whose properties span a range of extremes. Despite carbon's ability to make 4 bonds and its presence in many compounds, it is highly unreactive under normal conditions. Carbon exists in 2 main isotopes: 12C and 13C. There are many other known isotopes, but they tend to be short-lived and have extremely short half-lives. Allotropes The different forms of a chemical element. Cabon is the chemical element with the symbol C and atomic number 6. As a member of group 14 on the periodic table, it is nonmetallic and tetravalent—making four electrons available to form covalent chemical bonds. Carbon has 6 protons and 6 Source URL: https://www.boundless.com/chemistry/nonmetallic-elements/carbon/properties-carbon/ Saylor URL: http://www.saylor.org/courses/chem102#6.1 Attributed to: Boundless www.saylor.org Page 1 of 2 neutrons, and has a standard atomic weight of 12.0107 amu. Its electron configuration is denoted as 1s22s22p2. It is a solid, and sublimes at 3,642 °C. It's oxidation state ranges from 4 to -4, and it has an electronegativity rating of 2.55 on the Pauling scale. Carbon has several allotropes, or different forms in which it exists.
    [Show full text]
  • Learning the Water, Carbon and Nitrogen Cycles Through the Effects of Intensive Farming Techniques
    Learning the Water, Carbon and Nitrogen Cycles through the Effects of Intensive Farming Techniques Winnie Chan Furness High School Overview Rationale Objectives Strategies Classroom Activities Annotated Bibliography/Resources Appendices/Content Standards Overview Elements of natural substances are constantly cycling through Earth. Water, carbon, and nitrogen move through Earth’s many ecosystems in closed paths called the biogeochemical cycles. In this unit, students will learn about these cycles by understanding modern farming techniques used to produce enough food to feed a world population of 7.8 billion. Students will plan and carry out experiments, analyze and interpret data, and communicate the information learned. This curriculum unit is intended for Biology students in Grades 9 and 10. The lessons are meant to be incorporated into “Unit 10: Ecology” of the School District of Philadelphia’s Core Curriculum for Biology, which is typically taught at the end of the year (May/June). Rationale The biogeochemical cycles operate on a fixed amount of matter on Earth. While the total amounts of water, carbon and nitrogen do not change, these substances exist in many different forms. Water is found on Earth as solid ice, liquid water or gaseous vapor. Carbon and nitrogen both exist as in the atmosphere as carbon dioxide gas and nitrogen gas, respectively, or as an integrated part of living and non-living substances. The hydrologic or water cycle describes the constant movement of water through Earth and its atmosphere. Major processes of
    [Show full text]
  • Drought and Ecosystem Carbon Cycling
    Agricultural and Forest Meteorology 151 (2011) 765–773 Contents lists available at ScienceDirect Agricultural and Forest Meteorology journal homepage: www.elsevier.com/locate/agrformet Review Drought and ecosystem carbon cycling M.K. van der Molen a,b,∗, A.J. Dolman a, P. Ciais c, T. Eglin c, N. Gobron d, B.E. Law e, P. Meir f, W. Peters b, O.L. Phillips g, M. Reichstein h, T. Chen a, S.C. Dekker i, M. Doubková j, M.A. Friedl k, M. Jung h, B.J.J.M. van den Hurk l, R.A.M. de Jeu a, B. Kruijt m, T. Ohta n, K.T. Rebel i, S. Plummer o, S.I. Seneviratne p, S. Sitch g, A.J. Teuling p,r, G.R. van der Werf a, G. Wang a a Department of Hydrology and Geo-Environmental Sciences, Faculty of Earth and Life Sciences, VU-University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands b Meteorology and Air Quality Group, Wageningen University and Research Centre, P.O. box 47, 6700 AA Wageningen, The Netherlands c LSCE CEA-CNRS-UVSQ, Orme des Merisiers, F-91191 Gif-sur-Yvette, France d Institute for Environment and Sustainability, EC Joint Research Centre, TP 272, 2749 via E. Fermi, I-21027 Ispra, VA, Italy e College of Forestry, Oregon State University, Corvallis, OR 97331-5752 USA f School of Geosciences, University of Edinburgh, EH8 9XP Edinburgh, UK g School of Geography, University of Leeds, Leeds LS2 9JT, UK h Max Planck Institute for Biogeochemistry, PO Box 100164, D-07701 Jena, Germany i Department of Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, PO Box 80115, 3508 TC Utrecht, The Netherlands j Institute of Photogrammetry and Remote Sensing, Vienna University of Technology, Gusshausstraße 27-29, 1040 Vienna, Austria k Geography and Environment, Boston University, 675 Commonwealth Avenue, Boston, MA 02215, USA l Department of Global Climate, Royal Netherlands Meteorological Institute, P.O.
    [Show full text]
  • Sp Carbon Chain Interaction with Silver Nanoparticles Probed by Surface Enhanced Raman Scattering
    sp carbon chain interaction with silver nanoparticles probed by Surface Enhanced Raman Scattering A. Lucotti1, C. S. Casari2, M. Tommasini1, A. Li Bassi2, D. Fazzi1, V. Russo2, M. Del Zoppo1, C. Castiglioni1, F. Cataldo3, C. E. Bottani2, G. Zerbi1 1 Dipartimento di Chimica, Materiali e Ingegneria Chimica ‘G. Natta’ and NEMAS - Center for NanoEngineered MAterials and Surfaces, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy 2 Dipartimento di Energia and NEMAS - Center for NanoEngineered MAterials and Surfaces, Politecnico di Milano, via Ponzio 34/3, I-20133 Milano, Italy 3 Actinium Chemical Research srl, via Casilina 1626/A, 00133 Roma, Italy and INAF – Osservatorio Astrofisico di Catania, Via S. Sofia 78, 95123 Catania, Italy Abstract Surface Enhanced Raman Spectroscopy (SERS) is exploited here to investigate the interaction of isolated sp carbon chains (polyynes) in a methanol solution with silver nanoparticles. Hydrogen-terminated polyynes show a strong interaction with silver colloids used as the SERS active medium revealing a chemical SERS effect. SERS spectra after mixing polyynes with silver colloids show a noticeable time evolution. Experimental results, supported by density functional theory (DFT) calculations of the Raman modes, allow us to investigate the behaviour and stability of polyynes of different lengths and the overall sp conversion towards sp2 phase. 1 2 1. Introduction Linear carbon chains with sp hybridization represent one of the simplest one dimensional systems and have therefore attracted a great interest for many years [1, 2]. sp chains can display two types of carbon-carbon bonding: polyynes, chains with single-triple alternating bonds (…-C≡C- C≡C-…) and polycumulenes, chains with all double bonds (…=C=C=C=…).
    [Show full text]
  • Agricultural Soil Carbon Credits: Making Sense of Protocols for Carbon Sequestration and Net Greenhouse Gas Removals
    Agricultural Soil Carbon Credits: Making sense of protocols for carbon sequestration and net greenhouse gas removals NATURAL CLIMATE SOLUTIONS About this report This synthesis is for federal and state We contacted each carbon registry and policymakers looking to shape public marketplace to ensure that details investments in climate mitigation presented in this report and through agricultural soil carbon credits, accompanying appendix are accurate. protocol developers, project developers This report does not address carbon and aggregators, buyers of credits and accounting outside of published others interested in learning about the protocols meant to generate verified landscape of soil carbon and net carbon credits. greenhouse gas measurement, reporting While not a focus of the report, we and verification protocols. We use the remain concerned that any end-use of term MRV broadly to encompass the carbon credits as an offset, without range of quantification activities, robust local pollution regulations, will structural considerations and perpetuate the historic and ongoing requirements intended to ensure the negative impacts of carbon trading on integrity of quantified credits. disadvantaged communities and Black, This report is based on careful review Indigenous and other communities of and synthesis of publicly available soil color. Carbon markets have enormous organic carbon MRV protocols published potential to incentivize and reward by nonprofit carbon registries and by climate progress, but markets must be private carbon crediting marketplaces. paired with a strong regulatory backing. Acknowledgements This report was supported through a gift Conservation Cropping Protocol; Miguel to Environmental Defense Fund from the Taboada who provided feedback on the High Meadows Foundation for post- FAO GSOC protocol; Radhika Moolgavkar doctoral fellowships and through the at Nori; Robin Rather, Jim Blackburn, Bezos Earth Fund.
    [Show full text]
  • Causes of Sea Level Rise
    FACT SHEET Causes of Sea OUR COASTAL COMMUNITIES AT RISK Level Rise What the Science Tells Us HIGHLIGHTS From the rocky shoreline of Maine to the busy trading port of New Orleans, from Roughly a third of the nation’s population historic Golden Gate Park in San Francisco to the golden sands of Miami Beach, lives in coastal counties. Several million our coasts are an integral part of American life. Where the sea meets land sit some of our most densely populated cities, most popular tourist destinations, bountiful of those live at elevations that could be fisheries, unique natural landscapes, strategic military bases, financial centers, and flooded by rising seas this century, scientific beaches and boardwalks where memories are created. Yet many of these iconic projections show. These cities and towns— places face a growing risk from sea level rise. home to tourist destinations, fisheries, Global sea level is rising—and at an accelerating rate—largely in response to natural landscapes, military bases, financial global warming. The global average rise has been about eight inches since the centers, and beaches and boardwalks— Industrial Revolution. However, many U.S. cities have seen much higher increases in sea level (NOAA 2012a; NOAA 2012b). Portions of the East and Gulf coasts face a growing risk from sea level rise. have faced some of the world’s fastest rates of sea level rise (NOAA 2012b). These trends have contributed to loss of life, billions of dollars in damage to coastal The choices we make today are critical property and infrastructure, massive taxpayer funding for recovery and rebuild- to protecting coastal communities.
    [Show full text]