Wide Field and Planetary Camera 2 Instrument Handbook

Total Page:16

File Type:pdf, Size:1020Kb

Wide Field and Planetary Camera 2 Instrument Handbook Version 10.0 August 2008 Wide Field and Planetary Camera 2 Instrument Handbook Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 [email protected] Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration User Support For prompt answers to any question, please contact the STScI Help Desk. • E-mail: [email protected] • Phone: (410) 338-1082 (800) 544-8125 (U.S. only, toll free) World Wide Web Information, software tools, and other resources are available on the WFPC2 World Wide Web page: • URL: http://www.stsci.edu/hst/wfpc2 Revision History Instrument Version Date Editor WFPC2 10.0 August 2008 Matt McMaster, John Biretta WFPC2 9.2 October 2006 John A. Biretta WFPC2 9.1 October 2005 Inge Heyer, John A. Biretta WFPC2 9.0 October 2004 Inge Heyer, John A. Biretta WFPC2 8.0 October 2003 Anton Koekemoer, Inge Heyer WFPC2 7.0 October 2002 John A. Biretta, Lori M. Lubin WFPC2 6.1 July 2001 John A. Biretta, Inge Heyer WFPC2 6.0 June 2001 John A. Biretta, Inge Heyer WFPC2 5.0 June 2000 John A. Biretta, Inge Heyer WFPC2 Update June 1999 Stefano Casertano WFPC2 Update June 1998 Andrew Fruchter, Inge Heyer WFPC2 4.0 June 1996 John A. Biretta WFPC2 1.0; 2.0; 3.0 March 1993; May 1994; June 1995 Christopher J. Burrows WF/PC-1 3.0 April 1992 John W. MacKenty WF/PC-1 1.0; 2.0; 2.1 October 1985; May 1989; May 1990 Richard Griffiths Send comments or corrections to: Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 E-mail:[email protected] Table of Contents Acknowledgments.........................................................ix Chapter 1: Introduction............................................. 1 1.1 Instrument Overview .................................................... 1 1.1.1 Field-of-View............................................................... 2 1.1.2 Spectral Filters............................................................ 3 1.1.3 Quantum Efficiency and Exposure Limits................... 4 1.1.4 CCD Detector Technology.......................................... 4 1.1.5 UV Imaging................................................................. 5 1.1.6 Aberration Correction and Optical Alignment ............. 6 1.2 Comparison of WFPC2, ACS, NICMOS, and STIS ............................................................................ 6 1.2.1 Comparison of WFPC2 and ACS ............................... 7 1.2.2 Comparison of WFPC2 and NICMOS ...................... 11 1.2.3 Comparison of WFPC2 and STIS............................. 12 1.3 History of WFPC2 ....................................................... 13 1.4 The Previous vs. Current Generation: WF/PC-1 vs. WFPC2 .................................................... 15 1.5 Organization of this Handbook ................................ 17 1.6 The Help Desk at STScI............................................ 18 1.7 Further Information ..................................................... 18 Chapter 2: Instrument Description ............... 21 2.1 Science Objectives ..................................................... 21 2.2 WFPC2 Configuration, Field-of-View, and Resolution........................................................................ 22 2.3 Overall Instrument Description ................................ 23 2.4 Quantum Efficiency..................................................... 26 2.5 Shutter ........................................................................... 28 2.6 Serial Clocks ................................................................ 30 iii iv Table of Contents 2.7 Overhead Times.......................................................... 33 2.8 CCD Orientation and Readout................................. 35 2.9 Calibration Channel .................................................... 37 Chapter 3: Optical Filters ...................................... 39 3.1 Introduction ................................................................... 39 3.2 Choice of Broad Band Filters ................................... 46 3.3 Linear Ramp Filters .................................................... 46 3.3.1 Spectral Response ................................................... 47 3.3.2 Target Locations....................................................... 53 3.3.3 LRF Photometric Calibration .................................... 56 3.4 Redshifted [OII] Quad Filters.................................... 59 3.5 Polarizer Quad Filter .................................................. 59 3.5.1 Polarization Calibration............................................. 60 3.6 Methane Quad Filter ................................................. 63 3.7 Wood’s Filters .............................................................. 66 3.8 Red Leaks in UV Filters............................................. 67 3.9 Apertures....................................................................... 72 Chapter 4: CCD Performance ............................ 77 4.1 Introduction ................................................................... 77 4.2 Quantum Efficiency..................................................... 79 4.3 Dynamic Range ........................................................... 80 4.4 Read Noise and Gain Settings ................................ 81 4.5 Bright Object Artifacts ................................................ 82 4.5.1 Blooming................................................................... 82 4.5.2 Horizontal Smearing ................................................. 82 4.5.3 Diffraction Effects and Ghost Images ....................... 83 4.6 Residual Image............................................................ 84 4.7 Flat Field Response.................................................... 85 4.8 Dark Backgrounds ...................................................... 87 4.8.1 Sources of Dark Current........................................... 87 4.8.2 Dark Current Evolution ............................................. 89 4.8.3 Darktime ................................................................... 92 4.9 Cosmic Rays ................................................................ 94 4.10 SAA and Scheduling System Issues.................... 98 4.11 Radiation Damage and Hot Pixels...................... 100 Table of Contents v 4.12 Photometric Anomalies: CTE and "Long vs. Short"............................................................ 102 4.12.1 CTE Trends and Causes ...................................... 103 4.12.2 Photometric Effects of the CTE Anomaly ............. 105 4.12.3 Physical Effects of the CTE Anomaly ................... 110 4.12.4 Mitigating CTE During Observations .................... 116 4.12.5 Final Characterization of the CTE Anomaly ......... 119 4.12.6 The Long vs. Short Anomaly ................................ 119 4.13 WF4 CCD Anomaly ................................................ 122 Chapter 5: Point Spread Function ........................................................................ 125 5.1 Effects of OTA Spherical Aberration .................... 125 5.2 Aberration Correction ............................................... 130 5.3 Wavefront Quality...................................................... 131 5.4 CCD Pixel Response Function .............................. 132 5.5 Model PSFs ................................................................ 133 5.6 PSF Variations with Field Position........................ 134 5.6.1 Aperture Corrections vs. Field Position .................. 138 5.7 PSF Variations with Time / OTA Focus ............... 141 5.8 PSF Anomaly in F1042M Filter.............................. 146 5.9 Large Angle Scattering ............................................ 147 5.10 Ghost Images .......................................................... 148 5.11 Optical Distortion..................................................... 150 5.11.1 Pixel Area Correction............................................ 156 5.11.2 34th-Row Defect................................................... 157 5.11.3 Geometric Distortion Closeout Calibrations.......... 157 Chapter 6: System Throughput and SNR / Exposure Time Estimation ........... 161 6.1 System Throughput .................................................. 161 6.2 On-Line Exposure Time Calculator....................... 166 6.3 Target Count Rates .................................................. 167 6.3.1 Count Rates for Stellar Sources ............................. 167 6.3.2 Count Rates for Power Law Sources ..................... 168 6.3.3 Count Rates for Emission Line Sources................. 168 6.4 Sky Background ........................................................ 169 vi Table of Contents 6.5 Signal-to-Noise Ratio Estimation .......................... 171 6.5.1 Point Sources -- PSF Fitting ................................... 172 6.5.2 Point Sources -- Aperture Photometry.................... 175 6.5.3 Extended Sources .................................................. 176 6.6 Exposure Time Estimation...................................... 179 6.7 Sample SNR Calculations....................................... 180 6.7.1 Point Sources ......................................................... 180 6.7.2 Extended Sources .................................................. 187 6.7.3 Emission Line Sources ........................................... 188 6.8 Photometric Anomalies............................................ 194 6.9 Red Leaks in UV Filters........................................... 195 6.10 Long-term Photometric
Recommended publications
  • Clusters of Galaxies…
    Budapest University, MTA-Eötvös François Mernier …and the surprisesoftheir spectacularhotatmospheres Clusters ofgalaxies… K complex ) ⇤ Fe ) α [email protected] - Wallon Super - Wallon [email protected] Fe XXVI (Ly (/ Fe XXIV) L complex ) ) (incl. Ne) α α ) Fe ) ) α ) α α ) ) ) ) α ⇥ ) ) ) α α α α α α Si XIV (Ly Mg XII (Ly Ni XXVII / XXVIII Fe XXV (He S XVI (Ly O VIII (Ly Si XIII (He S XV (He Ca XIX (He Ca XX (Ly Fe XXV (He Cr XXIII (He Ar XVII (He Ar XVIII (Ly Mn XXIV (He Ca XIX / XX Yo u are h ere ! 1 km = 103 m Yo u are h ere ! (somewhere behind…) 107 m Yo u are h ere ! (and this is the Moon) 109 m ≃3.3 light seconds Yo u are h ere ! 1012 m ≃55.5 light minutes 1013 m 1014 m Yo u are h ere ! ≃4 light days 1013 m Yo u are h ere ! 1014 m 1017 m ≃10.6 light years 1021 m Yo u are h ere ! ≃106 000 light years 1 million ly Yo u are h ere ! The Local Group Andromeda (M31) 1 million ly Yo u are h ere ! The Local Group Triangulum (M33) 1 million ly Yo u are h ere ! The Local Group 10 millions ly The Virgo Supercluster Virgo cluster 10 millions ly The Virgo Supercluster M87 Virgo cluster 10 millions ly The Virgo Supercluster 2dFGRS Survey The large scale structure of the universe Abell 2199 (429 000 000 light years) Abell 2029 (1.1 billion light years) Abell 2029 (1.1 billion light years) Abell 1689 Abell 1689 (2.2 billion light years) Les amas de galaxies 53 Light emits at optical “colors”… …but also in infrared, radio, …and X-ray! Light emits at optical “colors”… …but also in infrared, radio, …and X-ray! Light emits at optical “colors”…
    [Show full text]
  • STS-103 Table of Contents Mission Overview
    Refining the Hubble Space Telescope's View of the Universe SPACESPACESPACE SHUTTLESHUTTLESHUTTLE PRESSKITPRESSKITPRESSKIT WWW.SHUTTLEPRESSKIT.COM Updated November 24, 1999 STS-103 Table of Contents Mission Overview ......................................................................................................... 1 Mission Profile .............................................................................................................. 8 Crew.............................................................................................................................. 10 Flight Day Summary Timeline ...................................................................................................14 Rendezvous Rendezvous, Retrieval and Deploy ......................................................................................................18 EVA Hubble Space Telescope Extravehicular Activity ..................................................................................21 EVA Timeline ........................................................................................................................................24 Payloads Fine Guidance Sensor .........................................................................................................................27 Gyroscopes .........................................................................................................................................28 New Advanced Computer .....................................................................................................................30
    [Show full text]
  • Hubble Space Telescope
    HUBBLE SPACE TELESCOPE Pioneering optics made by Ball Aerospace are ® GO BEYOND WITH BALL. responsible for the Hubble Space Telescope’s iconic images and revolutionary discoveries. In total, Ball has built seven instruments for Hubble, including the five currently aboard the telescope. Beginning with the first servicing mission in 1993 through the fourth in 2009, Ball’s advanced optical technologies have extended Hubble’s operational life and enabled the telescope to help us understand our universe as never before. OUR ROLE QUICK FACTS Since scientists began formulating the idea for Hubble, • Ball-built seven science instruments for the first major optical telescope in space, Ball played a Hubble, two star trackers, five major leave- part, providing a total of seven science instruments flown behind equipment subsystems. on Hubble. Today, Ball supports COS, WFC3, ACS, STIS and NICMOS and provides on-orbit mission operations • Each of the five science instruments now support. After the last servicing mission in 2009, Hubble’s operating on the telescope were Ball-designed unprecedented science capabilities made it the premier and built. space-based telescope for ultraviolet, optical and near- • Ball-built COSTAR was installed during infrared astronomy. Servicing Mission 1 in 1993 along with JPL’s Cosmic Origins Spectrograph (COS) WFPC-2 to correct Hubble’s hazy vision. COS is the most sensitive ultraviolet spectrograph ever • Ball developed more than eight custom tools built for space and replaced the Ball-built COSTAR in 2009. to support astronauts during COS improved Hubble’s ultraviolet sensitivity at least 10 servicing missions. times and up to 70 times when observing very faint objects, like distant quasars, massive celestial objects, too faint for previous spectrographs.
    [Show full text]
  • Space Reporter's Handbook Mission Supplement
    CBS News Space Reporter's Handbook - Mission Supplement Page 1 The CBS News Space Reporter's Handbook Mission Supplement Shuttle Mission STS-125: Hubble Space Telescope Servicing Mission 4 Written and Produced By William G. Harwood CBS News Space Analyst [email protected] CBS News 5/10/09 Page 2 CBS News Space Reporter's Handbook - Mission Supplement Revision History Editor's Note Mission-specific sections of the Space Reporter's Handbook are posted as flight data becomes available. Readers should check the CBS News "Space Place" web site in the weeks before a launch to download the latest edition: http://www.cbsnews.com/network/news/space/current.html DATE RELEASE NOTES 08/03/08 Initial STS-125 release 04/11/09 Updating to reflect may 12 launch; revised flight plan 04/15/09 Adding EVA breakdown; walkthrough 04/23/09 Updating for 5/11 launch target date 04/30/09 Adding STS-400 details from FRR briefing 05/04/09 Adding trajectory data; abort boundaries; STS-400 launch windows Introduction This document is an outgrowth of my original UPI Space Reporter's Handbook, prepared prior to STS-26 for United Press International and updated for several flights thereafter due to popular demand. The current version is prepared for CBS News. As with the original, the goal here is to provide useful information on U.S. and Russian space flights so reporters and producers will not be forced to rely on government or industry public affairs officers at times when it might be difficult to get timely responses. All of these data are available elsewhere, of course, but not necessarily in one place.
    [Show full text]
  • Wide Field Camera 3 Instrument Mini-Handbook for Cycle 16
    Version 3.0 October 2006 Wide Field Camera 3 Instrument Mini-Handbook for Cycle 16 For long-term planning only Do not propose for WFC3 in Cycle 16 Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 [email protected] Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration User Support For prompt answers to any question, please contact the STScI Help Desk. • E-mail: [email protected] • Phone: (410) 338-1082 (800) 544-8125 (U.S., toll free) World Wide Web Information and other resources are available on the WFC3 World Wide Web sites at STScI and GSFC: • URL: http://www.stsci.edu/hst/wfc3 • URL: http://wfc3.gsfc.nasa.gov WFC3 Mini-Handbook Revision History Version Date Editor 3.0 October 2006 Howard E. Bond 2.0 October 2003 Massimo Stiavelli 1.0 October 2002 Mauro Giavalisco Contributors: Sylvia Baggett, Tom Brown, Howard Bushouse, Mauro Giavalisco, George Hartig, Bryan Hilbert, Randy Kimble, Matt Lallo, Olivia Lupie, John MacKenty, Larry Petro, Neill Reid, Massimo Robberto, Massimo Stiavelli. Citation: In publications, refer to this document as: Bond, H. E., et al. 2006, “Wide Field Camera 3 Instrument Mini-Handbook, Version 3.0” (Baltimore: STScI) Send comments or corrections to: Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 E-mail:[email protected] Acknowledgments The WFC3 Science Integrated Product Team (2006) Sylvia Baggett Howard Bond Tom Brown Howard Bushouse George Hartig Bryan Hilbert Robert Hill (GSFC)
    [Show full text]
  • Arxiv:0807.2573V1 [Astro-Ph] 16 Jul 2008 Oy 1-03 Japan
    Draft version November 1, 2018 A Preprint typeset using LTEX style emulateapj v. 08/13/06 STRANGE FILAMENTARY STRUCTURES (“FIREBALLS”) AROUND A MERGER GALAXY IN THE COMA CLUSTER OF GALAXIES1 Michitoshi Yoshida2, Masafumi Yagi3, Yutaka Komiyama3,4, Hisanori Furusawa4, Nobunari Kashikawa3, Yusei Koyama5, Hitomi Yamanoi3,6, Takashi Hattori4 and Sadanori Okamura5,7 Draft version November 1, 2018 ABSTRACT We found an unusual complex of narrow blue filaments, bright blue knots, and Hα-emitting filaments and clouds, which morphologically resembled a complex of “fireballs,” extending up to 80 kpc south from an E+A galaxy RB199 in the Coma cluster. The galaxy has a highly disturbed morphology indicative of a galaxy–galaxy merger remnant. The narrow blue filaments extend in straight shapes toward the south from the galaxy, and several bright blue knots are located at the southern ends of the filaments. The RC band absolute magnitudes, half light radii and estimated masses of the 6−7 bright knots are ∼ −12 −−13 mag, ∼ 200 − 300 pc and ∼ 10 M⊙, respectively. Long, narrow Hα-emitting filaments are connected at the south edge of the knots. The average color of the fireballs is B − RC ≈ 0.5, which is bluer than RB199 (B − R = 0.99), suggesting that most of the stars in the fireballs were formed within several times 108 yr. The narrow blue filaments exhibit almost no Hα emission. Strong Hα and UV emission appear in the bright knots. These characteristics indicate that star formation recently ceased in the blue filaments and now continues in the bright knots. The gas stripped by some mechanism from the disk of RB199 may be traveling in the intergalactic space, forming stars left along its trajectory.
    [Show full text]
  • Stsci Newsletter: 2011 Volume 028 Issue 02
    National Aeronautics and Space Administration Interacting Galaxies UGC 1810 and UGC 1813 Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) 2011 VOL 28 ISSUE 02 NEWSLETTER Space Telescope Science Institute We received a total of 1,007 proposals, after accounting for duplications Hubble Cycle 19 and withdrawals. Review process Proposal Selection Members of the international astronomical community review Hubble propos- als. Grouped in panels organized by science category, each panel has one or more “mirror” panels to enable transfer of proposals in order to avoid conflicts. In Cycle 19, the panels were divided into the categories of Planets, Stars, Stellar Rachel Somerville, [email protected], Claus Leitherer, [email protected], & Brett Populations and Interstellar Medium (ISM), Galaxies, Active Galactic Nuclei and Blacker, [email protected] the Inter-Galactic Medium (AGN/IGM), and Cosmology, for a total of 14 panels. One of these panels reviewed Regular Guest Observer, Archival, Theory, and Chronology SNAP proposals. The panel chairs also serve as members of the Time Allocation Committee hen the Cycle 19 Call for Proposals was released in December 2010, (TAC), which reviews Large and Archival Legacy proposals. In addition, there Hubble had already seen a full cycle of operation with the newly are three at-large TAC members, whose broad expertise allows them to review installed and repaired instruments calibrated and characterized. W proposals as needed, and to advise panels if the panelists feel they do not have The Advanced Camera for Surveys (ACS), Cosmic Origins Spectrograph (COS), the expertise to review a certain proposal. Fine Guidance Sensor (FGS), Space Telescope Imaging Spectrograph (STIS), and The process of selecting the panelists begins with the selection of the TAC Chair, Wide Field Camera 3 (WFC3) were all close to nominal operation and were avail- about six months prior to the proposal deadline.
    [Show full text]
  • Downloads/ Astero2007.Pdf) and by Aerts Et Al (2010)
    This work is protected by copyright and other intellectual property rights and duplication or sale of all or part is not permitted, except that material may be duplicated by you for research, private study, criticism/review or educational purposes. Electronic or print copies are for your own personal, non- commercial use and shall not be passed to any other individual. No quotation may be published without proper acknowledgement. For any other use, or to quote extensively from the work, permission must be obtained from the copyright holder/s. i Fundamental Properties of Solar-Type Eclipsing Binary Stars, and Kinematic Biases of Exoplanet Host Stars Richard J. Hutcheon Submitted in accordance with the requirements for the degree of Doctor of Philosophy. Research Institute: School of Environmental and Physical Sciences and Applied Mathematics. University of Keele June 2015 ii iii Abstract This thesis is in three parts: 1) a kinematical study of exoplanet host stars, 2) a study of the detached eclipsing binary V1094 Tau and 3) and observations of other eclipsing binaries. Part I investigates kinematical biases between two methods of detecting exoplanets; the ground based transit and radial velocity methods. Distances of the host stars from each method lie in almost non-overlapping groups. Samples of host stars from each group are selected. They are compared by means of matching comparison samples of stars not known to have exoplanets. The detection methods are found to introduce a negligible bias into the metallicities of the host stars but the ground based transit method introduces a median age bias of about -2 Gyr.
    [Show full text]
  • Arxiv:2006.10868V2 [Astro-Ph.SR] 9 Apr 2021 Spain and Institut D’Estudis Espacials De Catalunya (IEEC), C/Gran Capit`A2-4, E-08034 2 Serenelli, Weiss, Aerts Et Al
    Noname manuscript No. (will be inserted by the editor) Weighing stars from birth to death: mass determination methods across the HRD Aldo Serenelli · Achim Weiss · Conny Aerts · George C. Angelou · David Baroch · Nate Bastian · Paul G. Beck · Maria Bergemann · Joachim M. Bestenlehner · Ian Czekala · Nancy Elias-Rosa · Ana Escorza · Vincent Van Eylen · Diane K. Feuillet · Davide Gandolfi · Mark Gieles · L´eoGirardi · Yveline Lebreton · Nicolas Lodieu · Marie Martig · Marcelo M. Miller Bertolami · Joey S.G. Mombarg · Juan Carlos Morales · Andr´esMoya · Benard Nsamba · KreˇsimirPavlovski · May G. Pedersen · Ignasi Ribas · Fabian R.N. Schneider · Victor Silva Aguirre · Keivan G. Stassun · Eline Tolstoy · Pier-Emmanuel Tremblay · Konstanze Zwintz Received: date / Accepted: date A. Serenelli Institute of Space Sciences (ICE, CSIC), Carrer de Can Magrans S/N, Bellaterra, E- 08193, Spain and Institut d'Estudis Espacials de Catalunya (IEEC), Carrer Gran Capita 2, Barcelona, E-08034, Spain E-mail: [email protected] A. Weiss Max Planck Institute for Astrophysics, Karl Schwarzschild Str. 1, Garching bei M¨unchen, D-85741, Germany C. Aerts Institute of Astronomy, Department of Physics & Astronomy, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium and Department of Astrophysics, IMAPP, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands G.C. Angelou Max Planck Institute for Astrophysics, Karl Schwarzschild Str. 1, Garching bei M¨unchen, D-85741, Germany D. Baroch J. C. Morales I. Ribas Institute of· Space Sciences· (ICE, CSIC), Carrer de Can Magrans S/N, Bellaterra, E-08193, arXiv:2006.10868v2 [astro-ph.SR] 9 Apr 2021 Spain and Institut d'Estudis Espacials de Catalunya (IEEC), C/Gran Capit`a2-4, E-08034 2 Serenelli, Weiss, Aerts et al.
    [Show full text]
  • The Hubble Legacy Fields (HLF-GOODS-S) V1.5 Data Products: Combining 2442 Orbits of GOODS-S/CDF-S Region ACS and WFC3/IR Images
    !1 The Hubble Legacy Fields (HLF-GOODS-S) v1.5 Data Products: Combining 2442 Orbits of GOODS-S/CDF-S Region ACS and WFC3/IR Images. Garth Illingworth1, Daniel Magee1, Rychard Bouwens2, Pascal Oesch3, Ivo Labbe2, Pieter van Dokkum3, Katherine Whitaker4, Bradford Holden1, Marijn Franx2, and Valentino Gonzalez5 Abstract We have submitted to MAST the 1.5 version data release of the Hubble Legacy Fields (HLF) project covering a 25 x 25 arcmin area over the GOODS-S (ECDF-S) region from the HST archival program AR-13252. The release combines exposures from Hubble's two main cameras, the Advanced Camera for Surveys (ACS/WFC) and the Wide Field Camera 3 (WFC3/IR), taken over more than a decade between mid-2002 to the end of 2016. The HLF includes essentially all optical (ACS/WFC F435W, F606W, F775W, F814W and F850LP filters) and infrared (WFC3/ IR F098M, F105W, F125W, F140W and F160W filters) data taken by Hubble over the original CDF-S region including the GOODS-S, ERS, CANDELS and many other programs (31 in total). The data has been released at https://archive.stsci.edu/prepds/hlf/ as images with a common astrometric reference frame, with corresponding inverse variance weight maps. We provide one image per filter of WFC3/IR images at 60 mas per pixel resolution and two ACS/WFC images per filter, at both 30 and 60 mas per pixel. Since this comprehensive dataset combines data from 31 programs on the GOODS-S/CDF-S, the AR proposal identified the MAST products by the global name "Hubble Legacy Field”, with this region being identified by “HLF-GOODS-S”.
    [Show full text]
  • Lensperfect A1689
    Draft Preprint typeset using LATEX style emulateapj v. 11/10/09 THE HIGHEST RESOLUTION MASS MAP OF GALAXY CLUSTER SUBSTRUCTURE TO DATE WITHOUT ASSUMING LIGHT TRACES MASS: LENSPERFECT ANALYSIS OF ABELL 1689 Dan Coe1, Narciso Ben´ıtez2, Tom Broadhurst3, Leonidas A. Moustakas1, and Holland Ford4 Draft ABSTRACT We present a strong lensing mass model of Abell 1689 which resolves substructures ∼ 25 kpc across (including about ten individual galaxy subhalos) within the central ∼ 400 kpc diameter. We achieve this resolution by perfectly reproducing the observed (strongly lensed) input positions of 168 multiple images of 55 knots residing within 135 images of 42 galaxies. Our model makes no assumptions about light tracing mass, yet we reproduce the brightest visible structures with some slight deviations. A1689 00 00 remains one of the strongest known lenses on the sky, with an Einstein radius of RE = 47:0 ± 1:2 +3 (143−4 kpc) for a lensed source at zs = 2. We find a single NFW or S´ersicprofile yields a good fit simultaneously (with only slight tension) to both our strong lensing (SL) mass model and published weak lensing (WL) measurements at larger radius (out to the virial radius). According to this NFW +0:5 15 −1 +0:4 15 −1 fit, A1689 has a mass of Mvir = 2:0−0:3 ×10 M h70 (M200 = 1:8−0:3 ×10 M h70 ) within the virial −1 +0:1 −1 +1:5 radius rvir = 3:0 ± 0:2 Mpc h70 (r200 = 2:4−0:2 Mpc h70 ), and a central concentration cvir = 11:5−1:4 (c200 = 9:2 ± 1:2).
    [Show full text]
  • The HST Large Programme on NGC 6752. I. Serendipitous Discovery Of
    Mon. Not. R. Astron. Soc. 000, 1–5 (201X) Printed 4 February 2019 (MN LATEX style file v2.2) The HST Large Programme on NGC6752. I. Serendipitous discovery of a dwarf Galaxy in background⋆ L. R. Bedin1†, M.Salaris2, R. M. Rich3, H. Richer4, J.Anderson5, D.Bettoni1, D. Nardiello6, A.P.Milone6, A.F.Marino6, M.Libralato5, A.Bellini5, A.Dieball7, P. Bergeron8, A.J.Burgasser9 and D.Apai10,11 1INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova, Italy 2Astrophysics Research Institute, Liverpool John Moores University,146 Brownlow Hill, Liverpool L3 5RF, UK 3Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547, USA 4Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada 5Space Telescope Science Institute, 3800 San Martin Drive, Baltimore, MD 21218, USA 6Dipartimento di Fisica e Astronomia Galileo Galilei, Universit di Padova, Vicolo dellOsservatorio 3, Padova I-35122, Italy 7Argelander Institut f¨ur Astronomie, Helmholtz Institut f¨ur Strahlen-und Kernphysik, University of Bonn, Germany 8D´epartement de Physique, Universit´ede Montr´eal, C.P. 6128, Succ. Centre-Ville, Montr´eal, QC H3C 3J7, Canada 9Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093, USA 10Department of Astronomy and Steward Observatory, The University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721, USA 11Lunar and Planetary Laboratory, The University of Arizona, 1640 E. University Blvd., Tucson, AZ 85721, USA Accepted 2019 January 8. Received 2019 January 8; in original form 2018 November 28 ABSTRACT As part of a large Hubble Space Telescope investigation aiming at reaching the faintest stars in the Galactic globular cluster NGC 6752, an ACS/WFC field was the subject of deep optical observations reaching magnitudes as faint as V ∼ 30.
    [Show full text]