Synergistic Herbicidal Composition Containing

Total Page:16

File Type:pdf, Size:1020Kb

Synergistic Herbicidal Composition Containing (19) TZZ ¥¥___T (11) EP 2 493 311 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A01N 43/54 (2006.01) A01N 43/40 (2006.01) 13.07.2016 Bulletin 2016/28 A01P 13/02 (2006.01) A01N 25/32 (2006.01) (21) Application number: 10773505.2 (86) International application number: PCT/US2010/054221 (22) Date of filing: 27.10.2010 (87) International publication number: WO 2011/056631 (12.05.2011 Gazette 2011/19) (54) SYNERGISTIC HERBICIDAL COMPOSITION CONTAINING FLUROXYPYR AND PENOXSULAM SYNERGISTISCHE HERBIZIDZUSAMMENSETZUNG MIT FLUROXYPYR UND PENOXSULAM COMPOSITION HERBICIDE SYNERGIQUE CONTENANT DU FLUROXYPYR ET DU PENOXSULAME (84) Designated Contracting States: (74) Representative: f & e patent AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Fleischer, Engels & Partner mbB, Patentanwälte GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Braunsberger Feld 29 PL PT RO RS SE SI SK SM TR 51429 Bergisch Gladbach (DE) Designated Extension States: BA ME (56) References cited: EP-A1- 0 512 739 WO-A2-2008/058622 (30) Priority: 28.10.2009 US 255689 P WO-A2-2009/152827 AU-B2- 606 560 US-A- 5 990 047 (43) Date of publication of application: 05.09.2012 Bulletin 2012/36 • DATABASE WPI Section Ch, Week 200969 Thomson Scientific, London, GB; Class A97, AN (60) Divisional application: 2009-N99318 XP002651295, "Herbicide 16152976.3 / 3 036 993 composition for preventing graminaceous and broadleaved weed in rice field comprises active (73) Proprietor: Dow AgroSciences LLC ingredients including sulfonylurea or its salt, Indianapolis, IN 46268 (US) pyridines and penoxsulam at specified weight ratio", -& CN 101 530 105 A (BEIJING (72) Inventors: YINGTAIJIAHE SCIENCE) 16 September 2009 • MANN, Richard (2009-09-16) Franklin • DATABASE WPI Section Ch, Week 200828 IN 46131 (US) Thomson Scientific, London, GB; Class C02, AN • WEIMER, Monte 2008-D85552 XP002651296, "Herbicide Pittsboro composition for controlling grassy weeds and IN 46167 (US) broadleaf weed in corn field, comprises • MCVEIGH-NELSON, Ändrea nicosulfuron, fluroxypyr, dispersant agent, Indianapolis wetting agent and light calcium", -& CN 101 066 IN 46260 (US) 056 A (ZHAO BANGBIN CHEN [CN]) 7 November •ELLIS,Andrew 2007 (2007-11-07) Greenville MS 38701 (US) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 2 493 311 B1 Printed by Jouve, 75001 PARIS (FR) (Cont. next page) EP 2 493 311 B1 • DATABASE WPI Section Ch, Week 200974 • Kristie J. Pellerin: "MANAGEMENT OF Thomson Scientific, London, GB; Class A97, AN IMIDAZOLINONE TOLERANT (IT) RICE IN DRILL- 2009-N99319 XP002645687, "Herbicide ANDWATERSEEDED RICE", Thesis Submitted to composition for treating annual perennial the Graduate Faculty of the Louisiana State graminaceous and broadleaved weed of rice field University and Agricultural and Mechanical comprises sulfonylurea, pyridines and College in partial fulfillment of the requirements cyhalofop-butyl at specified weight ratio", -& CN for the degree of Master of Science in The 101 530 104 A (BEIJING YINGTAI JIAHE Department of Plant Pathology and Crop TECHNOLOGY CO LTD) 16 September 2009 Physiology, 1 December 2002 (2002-12-01), (2009-09-16) XP055022983, Retrieved from the Internet: • DAVID W. BROWN ET AL: "Safening grain URL:http://etd.lsu.edu/docs/available/etd- sorghum injury from metsulfuron with growth 1113102-140006/unrestricted/Pellerin_thesi regulator herbicides", WEED SCIENCE, vol. 52, 1 s.pdf [retrieved on 2012-03-26] January 2004 (2004-01-01), pages 319-325, • Anonymous: "Clearmax herbicide Label", BASF XP055001834, DOI: 10.1614/P2002-074 Corporation , 1 January 2008 (2008-01-01), • DATABASE WPI Section Ch, Week 200967 XP055022990, Retrieved from the Internet: Thomson Scientific, London, GB; Class C02, AN URL:http://fs1.agrian.com/pdfs/Clearmax_He 2009-P07796 XP002672428, "Herbicide rbicide_Label1.pdf [retrieved on 2012-03-26] composition for preventing gramineous weeds • MONTE R. WEIMER ET AL: "PERFORMANCE OF and broad-leaved weeds comprises CEREAL GRASS HERBICIDES IN TANK-MIX nicosulfuron,atrazine and fluroxypyr at specified COMBINATIONS WITH FLUROXYPYR, weight ratio", -& CN 101 530 103 A (SHANXI CLOPYRALID, AMINOPYRALID, BROMOXYNIL, SUNGER ROAD BIO SCIENCE) 16 September AND MCPA MIXTURES.", NORTH CENTRAL 2009 (2009-09-16) WEED SCIENCE SOCIETY PROCEEDINGS, vol. • DATABASE WPI Section Ch, Week 200943 61, 1 January 2006 (2006-01-01), page 105, Thomson Scientific, London, GB; Class C02, AN XP055022996, 2009-J82999 XP002672429, -& CN 101 433 205 A • Rodney G Lym ET AL: "Leafy spurge control with (SINOCHEM CORP [CN] SINOCHEM CORP various picolinic acid herbicides", Leafy Spurge SHENYANG RES I O [CN]) 20 May 2009 Symposium. Riverton, WY., 9 July 1986 (2009-05-20) (1986-07-09), pages 78-79, XP055022790, • PELLERIN KRISTIE J ET AL: "Potential use of Retrieved from the Internet: imazethapyr mixtures in drill-seeded URL:http://library.ndsu.edu/tools/dspace/l imidazolinone-resistant rice", WEED oad/?file=/repository/bitstream/handle/103 TECHNOLOGY, vol. 18, no. 4, 1 October 2004 65/3822/1575LY86.PDF?sequence=1 [retrieved (2004-10-01), pages 1037-1042, XP002605743, on 2012-03-23] CHAMPAIGN, IL, US ISSN: 0890-037X, DOI: • DATABASE WPI Section Ch, Week 201029 10.1614/WT-03-214 Thomson Scientific, London, GB; Class C02, AN • LARRY R NELSON ET AL: "Imazapyr and 2010-D58704 XP002672430, -& CN 101 669 482 A Triclopyr Tank Mixtures for Basal Bark Control of (HEFEI XINGYU CHEMICAL CO LTD) 17 March Woody Brushin the Southeastern United States", 2010 (2010-03-17) NEW FORESTS, vol. 31, no. 2, 1 March 2006 (2006-03-01), pages 173-183, XP019260382, KLUWER ACADEMIC PUBLISHERS, DO ISSN: 1573-5095 • Mathew C. Nespeca: "Interactive Effects of Imazapyr plus Triclopyr ester and Imazapyr plus Glyphosate Mixtures on Woody Weed Seedlings - abstract", Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science in Forestry, 17 October 1997 (1997-10-17), XP055022988, Blacksburg, VA Retrieved from the Internet: URL:http://scholar.lib.vt.edu/theses/avail able/etd-93197-152836/unrestricted/abst.PD F [retrieved on 2012-03-26] 2 EP 2 493 311 B1 Description [0001] This invention concerns a synergistic herbicidal composition consisting of (a) fluroxypyr and (b) penoxsulam for controlling weeds in crops, especially rice, cereal and grain crops, pastures, rangelands, industrial vegetation man- 5 agement (IVM) and turf. These compositions provide improved post-emergence herbicidal weed control. [0002] The protection of crops from weeds and other vegetation which inhibit crop growth is a constantly recurring problem in agriculture. To help combat this problem, researchers in the field of synthetic chemistry have produced an extensive variety of chemicals and chemical formulations effective in the control of such unwanted growth. Chemical herbicides of many types have been disclosed in the literature and a large number are in commercial use. 10 [0003] CN 101 530 105 A relates to herbicidal compositions containing ternary mixtures of a sulfonylurea herbicide or a salt thereof, a pyridine herbicide and penoxsulam. However, no synergism is reported for the respective mixtures. [0004] In some cases, herbicidal active ingredients have been shown to be more effective in combination than when applied individually and this is referred to as "synergism." As described in the Herbicide Handbook of the Weed Science Society of America, Eighth Edition, 2002, p. 462 "’synergism’ [is] an interaction of two or more factors such that the effect 15 when combined is greater than the predicted effect based on the response to each factor applied separately." The present invention is based on the discovery that fluroxypyr, penoxsulam, halosulfuron-methyl and imazamox, already known individually for their herbicidal efficacy, display a synergistic effect when applied in combination. [0005] The herbicidal compounds forming the synergistic composition of this invention are independently known in the art for their effects on plant growth. 20 [0006] The present invention concerns a synergistic herbicidal mixture consisting of an herbicidally effective amount of (a) fluroxypyr and (b) the acetolactate synthase (ALS) inhibitor herbicide penoxsulam. The compositions may also contain an agriculturally acceptable adjuvant and/or carrier. [0007] The present invention also concerns herbicidal compositions for and methods of controlling the growth of undesirable vegetation, particularly in monocot crops including rice, wheat, barley, oats, rye, sorghum, corn, maize, 25 pastures, grasslands, rangelands, fallowland, turf, IVM and aquatics and the use of these synergistic compositions. [0008] The species spectra of the ALS inhibitor penoxsulam, i.e., the weed species which the respective compound controls, are broad and highly complementary with that of fluroxypyr. For example, it has been surprisingly found that a combination of penoxsulam and fluroxypyr exhibits a synergistic action in the control of Hemp sesbaniaSesbania ( exaltata; SEBEX), Texasweed (Caperonia palustris; CNPPA), Japanese bulrush (Scirpus juncoides; SCPJU), narrow- 30 leaved plantain
Recommended publications
  • 2,4-Dichlorophenoxyacetic Acid
    2,4-Dichlorophenoxyacetic acid 2,4-Dichlorophenoxyacetic acid IUPAC (2,4-dichlorophenoxy)acetic acid name 2,4-D Other hedonal names trinoxol Identifiers CAS [94-75-7] number SMILES OC(COC1=CC=C(Cl)C=C1Cl)=O ChemSpider 1441 ID Properties Molecular C H Cl O formula 8 6 2 3 Molar mass 221.04 g mol−1 Appearance white to yellow powder Melting point 140.5 °C (413.5 K) Boiling 160 °C (0.4 mm Hg) point Solubility in 900 mg/L (25 °C) water Related compounds Related 2,4,5-T, Dichlorprop compounds Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) 2,4-Dichlorophenoxyacetic acid (2,4-D) is a common systemic herbicide used in the control of broadleaf weeds. It is the most widely used herbicide in the world, and the third most commonly used in North America.[1] 2,4-D is also an important synthetic auxin, often used in laboratories for plant research and as a supplement in plant cell culture media such as MS medium. History 2,4-D was developed during World War II by a British team at Rothamsted Experimental Station, under the leadership of Judah Hirsch Quastel, aiming to increase crop yields for a nation at war.[citation needed] When it was commercially released in 1946, it became the first successful selective herbicide and allowed for greatly enhanced weed control in wheat, maize (corn), rice, and similar cereal grass crop, because it only kills dicots, leaving behind monocots. Mechanism of herbicide action 2,4-D is a synthetic auxin, which is a class of plant growth regulators.
    [Show full text]
  • Herbicide Mode of Action Table High Resistance Risk
    Herbicide Mode of Action Table High resistance risk Chemical family Active constituent (first registered trade name) GROUP 1 Inhibition of acetyl co-enzyme A carboxylase (ACC’ase inhibitors) clodinafop (Topik®), cyhalofop (Agixa®*, Barnstorm®), diclofop (Cheetah® Gold* Decision®*, Hoegrass®), Aryloxyphenoxy- fenoxaprop (Cheetah®, Gold*, Wildcat®), fluazifop propionates (FOPs) (Fusilade®), haloxyfop (Verdict®), propaquizafop (Shogun®), quizalofop (Targa®) Cyclohexanediones (DIMs) butroxydim (Factor®*), clethodim (Select®), profoxydim (Aura®), sethoxydim (Cheetah® Gold*, Decision®*), tralkoxydim (Achieve®) Phenylpyrazoles (DENs) pinoxaden (Axial®) GROUP 2 Inhibition of acetolactate synthase (ALS inhibitors), acetohydroxyacid synthase (AHAS) Imidazolinones (IMIs) imazamox (Intervix®*, Raptor®), imazapic (Bobcat I-Maxx®*, Flame®, Midas®*, OnDuty®*), imazapyr (Arsenal Xpress®*, Intervix®*, Lightning®*, Midas®* OnDuty®*), imazethapyr (Lightning®*, Spinnaker®) Pyrimidinyl–thio- bispyribac (Nominee®), pyrithiobac (Staple®) benzoates Sulfonylureas (SUs) azimsulfuron (Gulliver®), bensulfuron (Londax®), chlorsulfuron (Glean®), ethoxysulfuron (Hero®), foramsulfuron (Tribute®), halosulfuron (Sempra®), iodosulfuron (Hussar®), mesosulfuron (Atlantis®), metsulfuron (Ally®, Harmony®* M, Stinger®*, Trounce®*, Ultimate Brushweed®* Herbicide), prosulfuron (Casper®*), rimsulfuron (Titus®), sulfometuron (Oust®, Eucmix Pre Plant®*, Trimac Plus®*), sulfosulfuron (Monza®), thifensulfuron (Harmony®* M), triasulfuron (Logran®, Logran® B-Power®*), tribenuron (Express®),
    [Show full text]
  • INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES
    US Environmental Protection Agency Office of Pesticide Programs INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES Note: Pesticide tolerance information is updated in the Code of Federal Regulations on a weekly basis. EPA plans to update these indexes biannually. These indexes are current as of the date indicated in the pdf file. For the latest information on pesticide tolerances, please check the electronic Code of Federal Regulations (eCFR) at http://www.access.gpo.gov/nara/cfr/waisidx_07/40cfrv23_07.html 1 40 CFR Type Family Common name CAS Number PC code 180.163 Acaricide bridged diphenyl Dicofol (1,1-Bis(chlorophenyl)-2,2,2-trichloroethanol) 115-32-2 10501 180.198 Acaricide phosphonate Trichlorfon 52-68-6 57901 180.259 Acaricide sulfite ester Propargite 2312-35-8 97601 180.446 Acaricide tetrazine Clofentezine 74115-24-5 125501 180.448 Acaricide thiazolidine Hexythiazox 78587-05-0 128849 180.517 Acaricide phenylpyrazole Fipronil 120068-37-3 129121 180.566 Acaricide pyrazole Fenpyroximate 134098-61-6 129131 180.572 Acaricide carbazate Bifenazate 149877-41-8 586 180.593 Acaricide unclassified Etoxazole 153233-91-1 107091 180.599 Acaricide unclassified Acequinocyl 57960-19-7 6329 180.341 Acaricide, fungicide dinitrophenol Dinocap (2, 4-Dinitro-6-octylphenyl crotonate and 2,6-dinitro-4- 39300-45-3 36001 octylphenyl crotonate} 180.111 Acaricide, insecticide organophosphorus Malathion 121-75-5 57701 180.182 Acaricide, insecticide cyclodiene Endosulfan 115-29-7 79401
    [Show full text]
  • List of Herbicide Groups
    List of herbicides Group Scientific name Trade name clodinafop (Topik®), cyhalofop (Barnstorm®), diclofop (Cheetah® Gold*, Decision®*, Hoegrass®), fenoxaprop (Cheetah® Gold* , Wildcat®), A Aryloxyphenoxypropionates fluazifop (Fusilade®, Fusion®*), haloxyfop (Verdict®), propaquizafop (Shogun®), quizalofop (Targa®) butroxydim (Falcon®, Fusion®*), clethodim (Select®), profoxydim A Cyclohexanediones (Aura®), sethoxydim (Cheetah® Gold*, Decision®*), tralkoxydim (Achieve®) A Phenylpyrazoles pinoxaden (Axial®) azimsulfuron (Gulliver®), bensulfuron (Londax®), chlorsulfuron (Glean®), ethoxysulfuron (Hero®), foramsulfuron (Tribute®), halosulfuron (Sempra®), iodosulfuron (Hussar®), mesosulfuron (Atlantis®), metsulfuron (Ally®, Harmony®* M, Stinger®*, Trounce®*, B Sulfonylureas Ultimate Brushweed®* Herbicide), prosulfuron (Casper®*), rimsulfuron (Titus®), sulfometuron (Oust®, Eucmix Pre Plant®*), sulfosulfuron (Monza®), thifensulfuron (Harmony®* M), triasulfuron, (Logran®, Logran® B Power®*), tribenuron (Express®), trifloxysulfuron (Envoke®, Krismat®*) florasulam (Paradigm®*, Vortex®*, X-Pand®*), flumetsulam B Triazolopyrimidines (Broadstrike®), metosulam (Eclipse®), pyroxsulam (Crusader®Rexade®*) imazamox (Intervix®*, Raptor®,), imazapic (Bobcat I-Maxx®*, Flame®, Midas®*, OnDuty®*), imazapyr (Arsenal Xpress®*, Intervix®*, B Imidazolinones Lightning®*, Midas®*, OnDuty®*), imazethapyr (Lightning®*, Spinnaker®) B Pyrimidinylthiobenzoates bispyribac (Nominee®), pyrithiobac (Staple®) C Amides: propanil (Stam®) C Benzothiadiazinones: bentazone (Basagran®,
    [Show full text]
  • Literature Review of Controlling Aquatic Invasive Vegetation With
    Eurasian watermilfoil in Christmas Lake, 2011 Literature Review on Controlling Aquatic Invasive Vegetation with Aquatic Herbicides Compared to Other Control Methods: Effectiveness, Impacts, and Costs Prepared for: Prepared by: Minnehaha Creek Watershed District Steve McComas Blue Water Science St. Paul, MN 55116 September 2011 1 Literature Review on Controlling Aquatic Invasive Vegetation with Aquatic Herbicides Compared to Other Control Methods: Effectiveness, Impacts, and Costs Steve McComas, Blue Water Science Table of Contents page number Introduction .................................................................................................................................................................. 1 Use of Herbicides as an Aquatic Plant Control Technique ...................................................................................... 2 How Herbicides Work and Their Mode of Action ....................................................................................................... 3 Aquatic Herbicide Impacts on Humans and the Ecosystem ....................................................................................... 8 Where to Find Sources of Specific Information on herbicide Products and Their Active Ingredients ....................... 16 Harvesting, Drawdown, and Biocontrol as Aquatic Plant Control Techniques ................................................... 17 Summary of Control Techniques for Non-Native Curlyleaf Pondweed and Eurasian Watermilfoil ................... 25 Control Techniques for Other
    [Show full text]
  • Pesticide Reference Values Comparison Study
    Is Protecting Aquatic Life from Pesticides Sufficient to Ensure Human Health Protection in Sources of Drinking Water? Kelly D. Moran, Ph.D., TDC Environmental, LLC Bonny Starr, P.E., Starr Consulting October 1, 2018 Abstract California water and pesticides regulators have long operated under the informal assumption that programs to protect aquatic life from currently used pesticides will also ensure the safety of surface water drinKing water sources. This paper examines the scientific validity of this assumption for the agricultural pesticides in California’s Central Valley by comparing water quality regulatory values and benchmarks (“reference values”) for human health with those for aquatic life. Because numeric water quality criteria and other numeric regulatory values established for water quality protection exist for only a handful of currently used pesticides, the comparison relies heavily on US EPA pesticides human health and aquatic life benchmarks. For acute endpoints, both human health and aquatic life reference values typically use a one-day exposure time frame, but chronic endpoint exposure periods differ, with aquatic life exposure periods (4 to 60 days) usually shorter than human health exposure periods (annual). The evaluation looKed in detail at 301 agricultural pesticides with human health reference values. Of these 301 pesticides, only 46% had aquatic life reference values that were equal to or lower than the human health reference value. For 54% of these pesticides, either no aquatic life reference value existed or the aquatic life reference value was higher than the human health reference value. In these cases, aquatic life protection actions would not suffice to protect human health.
    [Show full text]
  • Chemical Weed Control
    2014 North Carolina Agricultural Chemicals Manual The 2014 North Carolina Agricultural Chemicals Manual is published by the North Carolina Cooperative Extension Service, College of Agriculture and Life Sciences, N.C. State University, Raleigh, N.C. These recommendations apply only to North Carolina. They may not be appropriate for conditions in other states and may not comply with laws and regulations outside North Carolina. These recommendations are current as of November 2013. Individuals who use agricultural chemicals are responsible for ensuring that the intended use complies with current regulations and conforms to the product label. Be sure to obtain current information about usage regulations and examine a current product label before applying any chemical. For assistance, contact your county Cooperative Extension agent. The use of brand names and any mention or listing of commercial products or services in this document does not imply endorsement by the North Carolina Cooperative Extension Service nor discrimination against similar products or services not mentioned. VII — CHEMICAL WEED CONTROL 2014 North Carolina Agricultural Chemicals Manual VII — CHEMICAL WEED CONTROL Chemical Weed Control in Field Corn ...................................................................................................... 224 Weed Response to Preemergence Herbicides — Corn ........................................................................... 231 Weed Response to Postemergence Herbicides — Corn ........................................................................
    [Show full text]
  • Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 Theinternational Programme on Chemical Safety (IPCS) Was Established in 1980
    The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 cation Hazard of Pesticides by and Guidelines to Classi The WHO Recommended Classi The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 TheInternational Programme on Chemical Safety (IPCS) was established in 1980. The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC Participating Organizations. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase international coordination in the field of chemical safety. The Participating Organizations are: FAO, ILO, UNDP, UNEP, UNIDO, UNITAR, WHO, World Bank and OECD. The purpose of the IOMC is to promote coordination of the policies and activities pursued by the Participating Organizations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment. WHO recommended classification of pesticides by hazard and guidelines to classification, 2019 edition ISBN 978-92-4-000566-2 (electronic version) ISBN 978-92-4-000567-9 (print version) ISSN 1684-1042 © World Health Organization 2020 Some rights reserved.
    [Show full text]
  • North Dakota Herbicide Chart
    This chart lists premix herbicides alphabetically by their trade names so you can identify the premix's component herbicides and their respective site of action groups. Refer to the Mode of Action chart on the left for more information. North Dakota ------------------------------- Component -------------------------------------------------------- Premix Site of Action Trade Name ® Trade Name ® Active Ingredient Group Affinity BroadSpec Harmony :1 thifensulfuron 2 Express :1 tribenuron 2 Herbicide Chart Repeated use of herbicides with the same site of action alone can Affinity TankMix Harmony :4 thifensulfuron 2 Express :1 tribenuron 2 result in the development of herbicide-resistant weed populations. Anthem * Zidua* pyroxasulfone 15 Cadet fluthiacet-ethyl 14 By Mode of Action (effect on plant growth) Audit Harmony :3 thifensulfuron 2 This chart groups herbicides by their modes of action to assist you in selecting 1) to maintain Express :1 tribenuron 2 greater diversity in herbicide use and 2) to rotate among herbicides with different sites of action to delay the development of herbcide resistance. Authority Assist Spartan sulfentrazone 14 Pursuit imazethapyr 2 The Site of Action Group is a classification system developed by the Weed Science Society of America. Authority First Spartan sulfentrazone 14 Number of resistant - or Sonic FirstRate cloransulam 2 weed species in U.S. Site of Authority MTZ Spartan sulfentrazone 14 Action Product Examples Metribuzin metribuzin 5 Group Site of Action Chemical Family Active Ingredient Trade Name ®
    [Show full text]
  • US EPA-Pesticides; Pyrasulfotole
    UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON D.C., 20460 JUL 0 5 2007 OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES MEMORANDUM SUBJECT: Evaluation of Public Interest Documentation for the Conditional Registration of Pyrasulfotole on Wheat, Barley, Oats, and Triticale (D340011; D340014) FROM: Nicole Zinn, Biologist Biological Analysis Branch Biological and Economic Analysis Division (7503P) THRU: Arnet Jones, Chief Biological Analysis Branch Biological and Economic Analysis Division (7503P) TO: Tracy White Joanne Miller Registration Division (7505P) PEER REVIEW PANEL: June 27,2007 SUMMARY Pyrasulfotole is a 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor, which is a new mode of action for small grains. HPPD-inhibitors are currently available for use in other crops but not in small grains. BEAD has reviewed the efficacy information which indicates that pyrasulfotole will provide control of redroot pigweed, common lambsquarters, wild buckwheat and volunteer canola. To control a broader spectrum of weeds, a combination product with bromoxynil is proposed for use in the United States. BEAD reviewed the documentation submitted by the registrant to determine whether one of two criteria have been met: there is a need for the new pesticide that is not being met by currently registered pesticides or the benefits from the new pesticide are greater than those from currently registered pesticides or non-chemical control measures. Although the information submitted focused on the pyrasulfotole + bromoxynil product, BEAD focused its review on the benefits of pyrasulfotole since bromoxynil is currently registered. BEAD believes that by providing a new mode of action for control of certain weeds, pyrasulfotole meets a need that is not being met by currently registered pesticides.
    [Show full text]
  • Negative Cross-Resistance of Acetolactate Synthase Inhibitor–Resistant Kochia (Kochia Scoparia) to Protoporphyrinogen Oxidase
    Weed Technology 2012 26:570–574 Negative Cross-Resistance of Acetolactate Synthase Inhibitor–Resistant Kochia (Kochia scoparia) to Protoporphyrinogen Oxidase– and Hydroxyphenylpyruvate Dioxygenase–Inhibiting Herbicides Hugh J. Beckie, Eric N. Johnson, and Anne Le´ge`re* This greenhouse experiment examined the response of homozygous susceptible and acetolactate synthase (ALS) inhibitor– resistant plants from six Canadian kochia accessions with the Pro197 or Trp574 mutation to six alternative herbicides of different sites of action. The null hypothesis was ALS-inhibitor–resistant and –susceptible plants from within and across accessions would respond similarly to herbicides of different sites of action. This hypothesis was accepted for all accessions except that of MBK2 with the Trp574 mutation. Resistant plants of that accession were 80, 60, and 50% more sensitive than susceptible plants to pyrasulfotole, mesotrione (hydroxyphenylpyruvate dioxygenase [HPPD] inhibitors), and carfentrazone (protoporphyrinogen oxidase [PPO] inhibitor), respectively. However, no differential dose response between resistant and susceptible plants of this kochia accession to bromoxynil, fluroxypyr, or glyphosate was observed. A previous study had found marked differences in growth and development between resistant and susceptible plants of this accession, but not of the other accessions examined in this experiment. Negative cross-resistance exhibited by resistant plants of accession MBK2 to PPO and HPPD inhibitors in this experiment may be a pleiotropic effect
    [Show full text]
  • 2,4-D Roadside Vegetation Management Herbicide Fact Sheet
    2,4-D Roadside Vegetation Management Herbicide Fact Sheet This fact sheet was developed by Oregon State University and Intertox, Inc. to assist interested parties in understanding the risks associated with pesticide use in Washington State Department of Transportation’s (WSDOT) Integrated Vegetation Management program. WSDOT updated in 2017 to reflect current products and usage. Introduction 2,4-Dichlorophenoxyacetic acid (2,4-D) is a selective herbicide used to control broadleaf weeds. 2,4-D is the first successful selective herbicide developed (1942, marketed by 1944). It is the third most widely used herbicide in the United States and Canada and the most widely used herbicide worldwide. 2,4-D controls plant growth by triggering reactions in plant cells that affect critical cell functions and cell growth, leading to plant death. 2,4-D is the only active ingredient in the herbicide products Weedar 64, Clean Amine 4, Base Camp, 2,4D LV4, Solution and Savage. It is combined with the active ingredient clopyralid in the product Curtail and with the active ingredient Dicamba in Veteran 720, Rangestar and Weedmaster. In addition, E-2 also has a combination of 2,4-D, Fluroxypyr and Dicamba. Whereas Crossbow is a combination of 2,4D and Triclopyr. The Washington State Department of Transportation (WSDOT) uses these products for selective control of broadleaf noxious and nuisance weeds. 2,4-D also has agricultural, urban, lawn and garden, and forestry uses. WSDOT assessed the potential risks to humans, wildlife, and aquatic animals exposed to 2,4-D in their Integrated Vegetation Management (IVM) program.
    [Show full text]