Growth, Biomass Production and Nutrient Accumulation of Macaranga Gigantea in Response to NPK Fertilizer Application

Total Page:16

File Type:pdf, Size:1020Kb

Growth, Biomass Production and Nutrient Accumulation of Macaranga Gigantea in Response to NPK Fertilizer Application NUSANTARA BIOSCIENCE ISSN: 2087-3948 Vol. 9, No. 3, pp. 330-337 E-ISSN: 2087-3956 August 2017 DOI: 10.13057/nusbiosci/n090315 Growth, biomass production and nutrient accumulation of Macaranga gigantea in response to NPK fertilizer application DWI SUSANTO1,♥, SRI MULYATI1, HERI PURNOMO1, DADDY RUHIYAT2, RUDIANTO AMIRTA2 1Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Mulawarman. Jl. Barong Tongkok No. 4, Gunung Kelua, Samarinda- 75123, East Kalimantan, Indonesia. Tel./Fax.: +62-541-749140, 749152, 749153, ♥email: [email protected] 2Faculty of Forestry, Universitas Mulawarman. Jl. Ki Hajar Dewantara Kampus Gunung Kelua, Samarinda-75123, East Kalimantan, Indonesia Manuscript received: 23 November 2016. Revision accepted: 31 August 2017. Abstract. Susanto D, Mulyati S, Purnomo H, Ruhiyat D, Amirta R. 2017. Growth, biomass production and nutrient accumulation of Macaranga gigantea in response to NPK fertilizer application. Nusantara Bioscience 9: 330-337. Research described in this paper investigated the effect of fertilizer application on the growth, biomass production and nutrient accumulation of mahang (Macaranga gigantea) plant components. The experiment was carried out in a research area of the Faculty of Forestry, Mulawarman University, Samarinda, East Kalimantan. The effects of five dose levels of an NPK (16-16-16) fertilizer on the growth rate of mahang seedlings planted in field conditions were compared. The treatments consisted of a control group (with no fertilizer), and dosages of 40 g, 80 g, 120 g and 160 g per plant. Fertilization at those levels was applied twice: the first application at four weeks after the planting and the second application at 6 months after the first. Growth rates between treatments were compared over a twelve month period. The research findings revealed that as the dosages of fertilizer increased, so the growth, biomass production and nutrient accumulation in components of the plants also increased. The best growth was found in the treatment in which fertilizer was applied (twice) at a dosage of 120 g per plant; at this dose level, by twelve months of age, the stem basal diameter had reached 45.24.9 cm, stem height 219.239.1 cm, number of leaves per plant 17.31.2, and canopy diameter 246.725.0 cm. The highest production of above-ground biomass was also found in the fertilizer treatment of 120 g per plant; the largest proportion of the biomass was in the leaves, followed by the wood, and then bark. The nutrient element that had accumulated most in plants at 1 year of age was potassium, followed by phosphorus and then nitrogen. The highest nitrogen uptake of stands was found in the NPK fertilization with a dosage of 160 g per tree, while the highest phosphorus and potassium uptake was found at a fertilizer dosage of 120 g per tree. The amount of nutrients accumulated in producing one tonne of above-ground biomass increased in response to different fertilization treatments. The fertilizer treatment of 120 g per plant (applied twice; the first soon after planting and the next after 6 months) resulted in the accumulation within the 1 year old plants of 2.38 kg of nitrogen, 6.36 kg of phosporus and 17.83 kg of potassium, with an N:P:K ratio of 13.3 : 35.6 : 100. The availability of the element potassium needs special attention when this species is cultivated. Keywords: Macaranga gigantea, pioneer species, growth, biomass production and nutrient accumulation INTRODUCTION highest reduced sugar (82.47%) if compared with other types of wood which are potential to develop as raw The global fuel crisis has stimulated the development of material for ethanol (Amirta et al. 2010). alternative renewable biofuel energy sources. Utilization of Information about the cultivation of this plant is rare. biofuels, derived from agricultural crops like sugarcane, M. gigantea grows naturally in lowland tropical rainforests, corn, cassava, palm wine, and oil palm, converted into especially in gaps that result from timber harvesting, forest ethanol, presents challenges as well as opportunities. fires, and shifting cultivation (Lawrence 2005; Eichorn Various efforts made to optimize these biofuel industries 2006; Silk 2008). This plant is a pioneer species which have implications for agricultural production and on prices requires high levels of light in extensive forest gaps and of food materials. Liquid bioethanol derived from wood is secondary forest habitats (Davies et al. 1998; Romell et al. an alternative to the use of agricultural crops in biofuel 2008). The percentage and rate of germination of seeds production and could be sustainable as long as the forests extracted through the wet extraction process are higher than are managed sustainably. those extracted through the dry extraction process. Highest One type of soft wood that could be used for this rates of germination (65%) have been reported from seeds purpose is produced by the forest tree species Macaranga extracted through the wet extraction process and grown on gigantea (Rchb.f. & Zoll.) Müll.Arg. The production of compost media (Susanto et al. 2016a). Nussbaum at al. wood from this tree varies from 320 kg3m-1 (low), to 370 (1995) states that nutrient deficiency is an important factor kg3m-1 (medium), to 460 kg3 m-1 (high), with a water that hinders the initial growth of Dipterocarpaceae plants content of 35% (Suzuki 1999). Based on chemical analysis (Dryobalonops lanceolata and Shorea leprosula) planted of M gigantea biomass, it is found to contain 24.4% lignin. simultaneously with pioneer species (M. gigantea and M. 71.14% holocellulose, and 46.67% -cellulose (Amirta et hipoleuca) at the age of 6 months in the degraded lands of al. 2016b). Enzymatic hydrolysis of this plant produces the unused log stock piling areas and roadworks in Malaysia. SUSANTO et al. – Nutrient accumulation of Macaranga gigantea 331 Susanto et al. (2016a) investigated the relative growth rate exchange capacity: 7.06 meq.100g-1 , base saturation: of seedlings planted on different planting media and found 7.45%, and bulk density: 1.16 g. ml-1, and soil nutrients that mushroom spawn waste media resulted in the highest concentration are C Organic: 1.45%, N: 0.12%, P: 3.61 ppm, rate (0.36 ±0.42%), followed by compost media K: 67.48 ppm, Ca: 1.17 cmol. kg-1, Mg: 0.13 cmol. kg-1. (0.15±0.09%), top soil media (0.10±0.04%) and sand media (0.10±0.07%). According to Okuda (1996), Procedures seedlings of M. gigantea produce their leaves and shed Preparing seedlings them every 18.86 and 16.75 days respectively, while their Seedling were obtained by germinating M. gigantea leaves reach their full extent in 20.8 days and their twigs seed collected from ripe fruits of parent trees in the their full length in 91.8 days. Photosynthetic capacity Botanical Garden of Mulawarman University, Samarinda. increases rapidly during the development of leaves, The seeds obtained from the parent trees were spread on reaching a maximum as soon as the leaves reach their full soil beds. When the seeds were germinated and 2-3 leaves extent and then decreasing with increasing age. Effective had appeared, the seedlings were then planted in polybags placement of young leaves on the plant creates a high filled with growing media in the form of a mixture of capacity for photosynthesis to increase the capture of topsoil, rice husks, and chicken manure (4:1:1). Seedlings carbon by the whole plant. The seedlings of M. gigantea aged 3 months, with average height 2573.8 mm, basal reduce self-shading of their leaves by increase in the stem diameter 5.21.3 mm and with number of leaves petiole length and in the angle between petiole and the 4.72.4, were ready to plant in the research plots. upright main stem, from youngest to oldest leaves on the plant (Okuda et al. 1996; Yamada et al. 2000). Land preparation Seedlings of M. gigantea grow rapidly over the first 18 Initial vegetation found in the research location was in weeks when planted in polybags if supplied with a the form of bushes dominated by Melastoma sp and combination of nitrogen and phosphorus fertilizers saplings of pioneer plants such as Macaranga. The land (Lawrence 2001). Ishida et al. (2005) reported that the was prepared by clearcutting the area and this was carried lowest total photosynthesis rate per unit leaf area in out manually by exploring, cutting, slashing and burning. M.gigantea is found at the seedling stage and the highest at Planting holes were prepared at a spacing of 3m x 3m. The the sapling stage. The leaves at the sapling stage have the size of each planting hole was 30 cm x 30 cm x 30 cm. The highest nitrogen concentration, total photosynthesis rate, total size of the research plot was 50 x 90 m. and stomatal conductance, indicating that the gradual transition from seedling stage to sapling stage is Experimental design accompanied by accumulating N in the plant body and The trial was set up with five randomized treatments plots development of effiency of the plant’s water transport with 3 block (each containing 20 plants, making 20 x 5 x system to face unpredictable environmental stresses. 3= 300 plants in the entire trial area). The treatments were Our research reported in this paper focused on an five dosages of NPK fertilizer (16-16-16), consisting of a experiment examining the effect of dose level of an NPK control (with no fertilizer), and either 40 g, 80 g, 120 g or fertilizer on the growth of M. gigantea planted in a 160 g applied per plant. Fertilization was carried out twice. monoculture system in an open field. The growth in total The first application was four weeks after the planting and above-ground biomass and of its component plants parts the second application was applied 6 months after the first was measured, and the accumulation of nutrient elements application.
Recommended publications
  • Macaranga Tanarius Parasol Leaf Tree Euphorbiaceae
    Macaranga tanarius Parasol leaf tree Euphorbiaceae Forest Starr, Kim Starr, and Lloyd Loope United States Geological Survey--Biological Resources Division Haleakala Field Station, Maui, Hawai'i January, 2003 OVERVIEW Macaranga tanarius, native to Malaysia, is a medium size tree that is cultivated for ornament and reforestation in Hawai'i and other tropical regions of the world. In Hawai'i, M. tanarius is naturalized in disturbed mesic valleys on Kaua'i, O'ahu, and Maui (Oppenheimer et al. 1999, Wagner et al. 1999). On Maui, M. tanarius is widely naturalized in the Waikapu area of West Maui where it forms dense thickets in mesic valleys and streams from near sea level up to about 4,400 ft (1,341 m) elevation. On East Maui, only a single cultivated tree is currently known from a residential planting in Ha'iku. On West Maui, the infestation may not be feasible to control due to the vast area that it covers in steep and difficult terrain. On East Maui, there will always be the potential of re-invasion from the west side of the island, but control of the lone tree now may prevent a large infestation from occurring in the future. TAXONOMY Family: Euphorbiaceae (spurge family) (Wagner et al. 1999). Latin name: Macaranga tanarius (L.) Mull. Arg. (Wagner et al. 1999). Synonyms: Ricinus tanarius L. (Wagner et al. 1999), Macaranga molliuscula Kurz, Macaranga tomentosa Druce, Mappa tanarius Blume (World Agroforestry Centre 2002). Common names: Parasol leaf tree (Randall 2002), Macaranga (Neal 1965). Taxonomic notes: The genus, Macaranga, is made up of 250-280 species from tropical Africa, Madagascar, and Malesia to Australia and some parts of the Pacific, though none are native to Hawai'i (Wagner et al.
    [Show full text]
  • One New Endemic Plant Species on Average Per Month in New Caledonia, Including Eight More New Species from Île Art (Belep Islan
    CSIRO PUBLISHING Australian Systematic Botany, 2018, 31, 448–480 https://doi.org/10.1071/SB18016 One new endemic plant species on average per month in New Caledonia, including eight more new species from Île Art (Belep Islands), a major micro-hotspot in need of protection Gildas Gâteblé A,G, Laure Barrabé B, Gordon McPherson C, Jérôme Munzinger D, Neil Snow E and Ulf Swenson F AInstitut Agronomique Néo-Calédonien, Equipe ARBOREAL, BP 711, 98810 Mont-Dore, New Caledonia. BEndemia, Plant Red List Authority, 7 rue Pierre Artigue, Portes de Fer, 98800 Nouméa, New Caledonia. CHerbarium, Missouri Botanical Garden, 4344 Shaw Boulevard, Saint Louis, MO 63110, USA. DAMAP, IRD, CIRAD, CNRS, INRA, Université Montpellier, F-34000 Montpellier, France. ET.M. Sperry Herbarium, Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA. FDepartment of Botany, Swedish Museum of Natural History, PO Box 50007, SE-104 05 Stockholm, Sweden. GCorresponding author. Email: [email protected] Abstract. The New Caledonian biodiversity hotspot contains many micro-hotspots that exhibit high plant micro- endemism, and that are facing different types and intensities of threats. The Belep archipelago, and especially Île Art, with 24 and 21 respective narrowly endemic species (1 Extinct,21Critically Endangered and 2 Endangered), should be considered as the most sensitive micro-hotspot of plant diversity in New Caledonia because of the high anthropogenic threat of fire. Nano-hotspots could also be defined for the low forest remnants of the southern and northern plateaus of Île Art. With an average rate of more than one new species described for New Caledonia each month since January 2000 and five new endemics for the Belep archipelago since 2009, the state of knowledge of the flora is steadily improving.
    [Show full text]
  • ACTIVITIES, HABITAT USE and DIET of WILD DUSKY LANGURS, Trachypithecus Obscurus in DIFFERENT HABITAT TYPES in PENANG, MALAYSIA
    Journal of Sustainability Science and Management eISSN: 2672-7226 Volume 14 Number 4, August 2019: 58-72 © Penerbit UMT ACTIVITIES, HABITAT USE AND DIET OF WILD DUSKY LANGURS, Trachypithecus obscurus IN DIFFERENT HABITAT TYPES IN PENANG, MALAYSIA YAP JO LEEN, NADINE RUPPERT* AND NIK FADZLY NIK ROSELY Primate Research and Conservation Lab, School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia. *Corresponding author: [email protected] Abstract: Most primates are threatened but studies that address their use of degraded habitats are scarce. Here, we report on activities, habitat use and diet of Trachypithecus obscurus in a human-impacted landscape in Penang Island. We studied the relationship of these primates with their habitat to facilitate conservation management plans. We used group scan sampling to assess activity budgets and recorded home range size, stratum use and food plant species and parts. The home range of the study group was 12.9 hectares, including secondary forest (61.2%), a nature park (23.9%) and beach (14.9%). Langurs mainly rested (43.5%) and fed (24.8%) and spent significantly more time resting and foraging in the secondary forest than elsewhere. They mainly fed on leaves (60.3%) and consumed 56 identified plant species from 32 families of wild and cultivated plants. Langurs behaved differently and ate different plant species in different habitat types and the group had to cross a busy motorway to reach the beach, thus, we also report on road crossing behaviour. These langurs have seemingly adapted well to disturbed habitat however, more comparative studies are needed to predict long-term effects of habitat degradation on the population of this species and to develop feasible conservation plans.
    [Show full text]
  • Revision of the Genus Cleidion (Euphorbiaceae) in Malesia
    BLUMEA 50: 197–219 Published on 22 April 2005 http://dx.doi.org/10.3767/000651905X623373 REVISION OF THE GENUS CLEIDION (EUPHORBIACEAE) IN MALESIA KRISTO K.M. KULJU & PETER C. VAN WELZEN Nationaal Herbarium Nederland, Universiteit Leiden branch, P.O. Box 9514, 2300 RA Leiden, The Netherlands; e-mail: [email protected], [email protected] SUMMARY A revision of the Malesian species in the genus Cleidion is presented. Cleidion javanicum is shown to be the correct name for the widespread type species (instead of the name C. spiciflorum). A new species, C. luziae, resembling C. javanicum, is described from the Moluccas, New Guinea and the Solomon Islands. In addition, C. salomonis is synonymised with C. papuanum and C. lanceolatum is treated as a variety of C. ramosii. In total 7 Malesian Cleidion species are recognized. Cleidion megistophyllum from the Philippines cannot reliably be confirmed to belong to the genus due to lack of information and specimens and is treated as a doubtful species. Key words: Cleidion, Acalypheae, Cleidiinae, revision, taxonomy, Malesia. INTRODUCTION Cleidion is a pantropical genus belonging to the large angiosperm family Euphorbiaceae s.s. It was described by Blume (1825), who included a single species C. javanicum1. The first revision was made by Müller Argoviensis (1865, 1866). His work was fol- lowed by the comprehensive treatment of Pax & Hoffmann (1914), which included 17 species. Pax & Hoffmann excluded the section Discocleidion Müll.Arg. which differs from Cleidion by the presence of a staminate and pistillate disc (in Cleidion a disc is absent), stipellate and palmatinerved leaves (in Cleidion the leaves are non-stipellate and pinnatinerved), and differences in anther type.
    [Show full text]
  • Proposal for the Construction of Power Plant Using Non-Marketable Coals
    Attachment 1 Proposal for The Construction of Power Plant Using Non-marketable Coals Contents Figures .............................................................................................................................................ii Tables..............................................................................................................................................iii 1 Survey on Power Infrastructure in the Province of East Kalimantan....................................... 1 2 Power Supply and Demand...................................................................................................... 6 3 Review of Fuel for Power Generation ................................................................................... 12 4 Selection of Power Plant Construction site............................................................................ 18 5 Non-Marketable Coal Transportation Cost ............................................................................ 23 6 Investigation of Power Generating Capacity ......................................................................... 25 7 Load Flow Analysis ............................................................................................................... 27 8 Coal Handling System ........................................................................................................... 30 9 Power Plant Concept.............................................................................................................. 31 10 Outline of Power Plant......................................................................................................
    [Show full text]
  • Title Evolutionary Relationships Between Pollination and Protective Mutualisms in the Genus Macaranga (Euphorbiaceae)( Dissertat
    Evolutionary relationships between pollination and protective Title mutualisms in the genus Macaranga (Euphorbiaceae)( Dissertation_全文 ) Author(s) Yamasaki, Eri Citation 京都大学 Issue Date 2014-03-24 URL https://doi.org/10.14989/doctor.k18113 学位規則第9条第2項により要約公開; 許諾条件により本文 Right は2019-06-25に公開 Type Thesis or Dissertation Textversion ETD Kyoto University Evolutionary relationships between pollination and protective mutualisms in the genus Macaranga (Euphorbiaceae) Eri Yamasaki 2014 1 2 Contents 摘要.…………………………………………………………………………………..5 Summary.……………………………………………………………………………..9 Chapter 1 General introduction……………………………………………………………….14 Chapter 2 Diversity of pollination systems in Macaranga Section 2.1 Diversity of bracteole morphology in Macaranga ………………………….20 Section 2.2 Wind and insect pollination (ambophily) in Mallotus , a sister group of Macaranga …………..…………..……...…………..………………………...31 Section 2.3 Disk-shaped nectaries on bracteoles of Macaranga sinensis provide a reward for pollinators……………………………….………………………………...45 Chapter 3 Interactions among plants, pollinators and guard ants in ant-plant Macaranga Section 3.1 Density of ant guards on inflorescences and their effects on herbivores and pollinators…………………………………………………….......................56 Section 3.2 Anal secretions of pollinator thrips of Macaranga winkleri repel guard ants…….71 Chapter 4 General discussion.………………….……………………………………………...85 Appendix…………………………………………………………………….………89 Acknowledgement…………………………………………………………….…...101 Literature cited……………………………….…………………………………….103
    [Show full text]
  • DNA Barcoding Confirms Polyphagy in a Generalist Moth, Homona Mermerodes (Lepidoptera: Tortricidae)
    Molecular Ecology Notes (2007) 7, 549–557 doi: 10.1111/j.1471-8286.2007.01786.x BARCODINGBlackwell Publishing Ltd DNA barcoding confirms polyphagy in a generalist moth, Homona mermerodes (Lepidoptera: Tortricidae) JIRI HULCR,* SCOTT E. MILLER,† GREGORY P. SETLIFF,‡ KAROLYN DARROW,† NATHANIEL D. MUELLER,§ PAUL D. N. HEBERT¶ and GEORGE D. WEIBLEN** *Department of Entomology, Michigan State University, 243 Natural Sciences Building, East Lansing, Michigan 48824, USA, †National Museum of Natural History, Smithsonian Institution, Box 37012, Washington, DC 20013-7012, USA, ‡Department of Entomology, University of Minnesota, 1980 Folwell Avenue, Saint Paul, Minnesota 55108–1095 USA, §Saint Olaf College, 1500 Saint Olaf Avenue, Northfield, MN 55057, USA,¶Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G2W1, **Bell Museum of Natural History and Department of Plant Biology, University of Minnesota, 220 Biological Sciences Center, 1445 Gortner Avenue, Saint Paul, Minnesota 55108–1095, USA Abstract Recent DNA barcoding of generalist insect herbivores has revealed complexes of cryptic species within named species. We evaluated the species concept for a common generalist moth occurring in New Guinea and Australia, Homona mermerodes, in light of host plant records and mitochondrial cytochrome c oxidase I haplotype diversity. Genetic divergence among H. mermerodes moths feeding on different host tree species was much lower than among several Homona species. Genetic divergence between haplotypes from New Guinea and Australia was also less than interspecific divergence. Whereas molecular species identification methods may reveal cryptic species in some generalist herbivores, these same methods may confirm polyphagy when identical haplotypes are reared from multiple host plant families. A lectotype for the species is designated, and a summarized bibliography and illustrations including male genitalia are provided for the first time.
    [Show full text]
  • Studies of a South East Asian Ant-Plant Association: Protection of Macaranga Trees by Crematogaster Borneensis
    Oecologia (1989) 79: 463-470 Studies of a South East Asian ant-plant association: protection of Macaranga trees by Crematogaster borneensis 1 Brigitte Fiala *, Ulrich Maschwitz\ Tho Yow Pong 2, and Andreas J. Helbig 1 1 Zoo\ogisches Institut der Universitat, Siesmayerstrasse 70, D-6000 Frankfurt/M., Federal Republic of Germany 2 Forest Research Institute Malaysia, Kepong, Selangor, Malaysia Summary. In the humid tropics of SE Asia there are some which have been described primarily for ant-associated epi­ 14 myrmecophytic species of the pioneer tree genus M acar­ phytes in SE Asia and Australia (Janzen 1974a; Huxley anga (Euphorbiaceae). In Peninsular Malaysia a close asso­ 1978; Rickson 1979) and 2) associations where ants protect ciation exists between the trees and the small, non-stinging their host trees against vine-growth and herbivores which myrmicine Crema togas ter borneensis. These ants feed have been studied mainly in the neotropics and tropical mainly on food bodies provided by the plants and have Africa (Janzen 1967, 1969, 1972; Risch et al. 1977; Letour­ their colonies inside the hollow intemodes. In a ten months neau 1983; McKey 1984; Schremmer 1984; Schupp 1986). field study we were able to demonstrate for four Macaranga In SE Asia there are also myrmecophytic trees, of which species (M. triloba, M. hypoleuca, M. hosei, M. hulletti) the genus Macaranga (Euphorbiaceae) is the most wide­ that host plants also benefit considerably from ant-occupa­ spread. In Peninsular Malaysia nine out of 27 species in tion. Ants do not contribute to the nutrient demands of this genus occurring mostly in pioneer habitats are asso­ their host plant, they do, however, protect it against herbi­ ciated with ants.
    [Show full text]
  • Summary Environmental Impact Assessment
    ASIAN DEVELOPMENT BANK SUMMARY ENVIRONMENTAL IMPACT ASSESSMENT OF THE NEW SAMARINDA AIRPORT EASTERN ISLANDS AIR TRANSPORT DEVELOPMENT PROJECT IN INDONESIA May 1997 2 ABBREVIATIONS BIMP-EAGA – Brunei, Indonesia, Malaysia, Philippines-East ASEAN Growth Area DGAC – Directorate General of Air Communications EIA – Environmental Impact Assessment ICAO – International Civil Aviation Organization LAPI-ITB – Lembaga Afiliasi Penelitian dan Industri- Institut Teknologi Bandung Ldn – Day-Night Noise Level in decibels, used to measure aircraft noise MOC – Ministry of Communications NSA – New Samarinda Airport SEIA – Summary Environmental Impact Assessment 3 CONTENTS Page MAP I. INTRODUCTION 1 II. DESCRIPTION OF THE PROJECT 1 III. DESCRIPTION OF THE ENVIRONMENT 2 A. Physical Resources and Natural Environment 2 B. Ecological Resources 4 C. Human and Economic Development 4 D. Quality of Life Values 4 IV. ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES 5 A. Environmental Impacts Due to Location 5 B. Environmental Impacts Due to Project Design 7 C. Environmental Impacts During NSA Construction 8 D. Impacts During NSA Operation 10 V. ALTERNATIVES 12 VI. COST BENEFIT ANALYSES 13 A. Internal Rates of Return 13 B. Economic Benefits 13 C. Project Costs 14 D. Monitoring and Reporting Costs 14 E. Nonquantified Environmental Impacts 14 VII. INSTITUTIONAL REQUIREMENTS AND ENVIRONMENTAL MONITORING PROGRAM 14 A. Institutional Capability 14 B. Monitoring Program 15 C. Submission of Reports 16 VIII. PUBLIC INVOLVEMENT 16 IX. CONCLUSIONS 16 APPENDIX 18 4
    [Show full text]
  • OPTIMAL FORAGING on the ROOF of the WORLD: a FIELD STUDY of HIMALAYAN LANGURS a Dissertation Submitted to Kent State University
    OPTIMAL FORAGING ON THE ROOF OF THE WORLD: A FIELD STUDY OF HIMALAYAN LANGURS A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Kenneth A. Sayers May 2008 Dissertation written by Kenneth A. Sayers B.A., Anderson University, 1996 M.A., Kent State University, 1999 Ph.D., Kent State University, 2008 Approved by ____________________________________, Dr. Marilyn A. Norconk Chair, Doctoral Dissertation Committee ____________________________________, Dr. C. Owen Lovejoy Member, Doctoral Dissertation Committee ____________________________________, Dr. Richard S. Meindl Member, Doctoral Dissertation Committee ____________________________________, Dr. Charles R. Menzel Member, Doctoral Dissertation Committee Accepted by ____________________________________, Dr. Robert V. Dorman Director, School of Biomedical Sciences ____________________________________, Dr. John R. D. Stalvey Dean, College of Arts and Sciences ii TABLE OF CONTENTS LIST OF FIGURES ............................................................................................... vi LIST OF TABLES ............................................................................................... viii ACKNOWLEDGEMENTS .....................................................................................x Chapter I. PRIMATES AT THE EXTREMES ..................................................1 Introduction: Primates in marginal habitats ......................................1 Prosimii .............................................................................................2
    [Show full text]
  • THE BIRDS of BUKTT TIGAPULUH, SOUTHERN RIAU, SUMATRA By
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by KUKILA KUKILA 7 No. 2 (1995): 99 - 120 THE BIRDS OF BUKTT TIGAPULUH, SOUTHERN RIAU, SUMATRA by Finn Danielsen and Morten Heegaard (first draft received 21 July 1994) Summary A study was made of the avifauna of the Bukit Tigapuluh area in Riau and Jambi Provinces, Sumatra in July-September 1991. This is the first major study of the lowland bird fauna of mainland Riau in this century. A total of 193 bird species was recorded, including 18 species listed as globally threatened. Extensions to known ranges were made for 26 species of which 25 were new to Riau and 3 to Jambi- Data were also provided on 5 species for which there were no recent Sumatran records: Cresttess Fireback Pheasant Lophura erythropthalma. Garnet Pitta Pitta granatina, Striped Wren-babbler Kenopia striata. Large Wren-babbler Napothera macrodactyla and Chestnut- capped Thrush Zoothera interpres. In addition, information on breeding was provided for 51 species, of which 22 species were not previously documented to breed in Sumatra. Introduction Between 26 July and 30 September 1991, under the auspices of the Norwegian Indonesian Rain Forest and Resource Management Project, the authors surveyed the avifauna of Bukit Tiga Puluh, centered on 1°00'S, 102°30'E, in the lowlands of Riau Province, eastern Sumatra. Observations were made in primary forest, logged forests, 'jungle rubber', and plantations, concentrating on six study sites. From a review of Marle & Voous (1988) it is apparent that few ornithological surveys have been conducted in Riau Province.
    [Show full text]
  • Designs for Dewatering and Optimization of Pit Slopes in Saprolite Overburden: a Case Study of the Pt. Kayan Putra Utama Coal Project
    DESIGNS FOR DEWATERING AND OPTIMIZATION OF PIT SLOPES IN SAPROLITE OVERBURDEN: A CASE STUDY OF THE PT. KAYAN PUTRA UTAMA COAL PROJECT by Antony Lesmana B.A.Sc., University of British Columbia, 2010 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in The Faculty of Graduate Studies (Mining Engineering) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) September 2012 © Antony Lesmana, 2012 ABSTRACT Effective dewatering and environmental program poised to have a significant impact on the feasibility of saprolite mining operations. It is therefore necessary to strike a balance between an effective dewatering program and sound environmental policy. Using assessments such as rainfall, climate studies, groundwater flow, and aquifer characterizations, the Separi coal dewatering program includes the construction of water channels, flood protection levees, water wells, and placing various environmental monitoring sites. The construction of water channels and flood protection levees has reduced the water runoff that entered the mining area by approximately 75%. For a six- month testing period, the average pumping rate of the dewatering well was 24.78 m3/day. These pumping rates were determined to result in groundwater level that would generally be 10 meters below the lowest mining benches at all times. Ten meters is the recommended single bench height based on the slope stability analysis. After six months of dewatering, the groundwater level was lowered 10.88 meters, permitting the mining project may begin its mining operation to commence. A re-design of maximum pit slope angle is indicated in this research. During the testing period, the environmental management plan did not show any negative impacts of dewatering programs on surface and groundwater resources.
    [Show full text]