Genetic Analysis of Anthocyanin Content in Purple Waxy Corn (Zea Mays L

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Analysis of Anthocyanin Content in Purple Waxy Corn (Zea Mays L Agronomy Publications Agronomy 2016 Genetic analysis of anthocyanin content in purple waxy corn (Zea mays L. var. ceratina Kulesh) kernel and cob B. Harakotr Thammasat University B. Suriharn Khon Kaen University K. Lertrat Khon Kaen University M. P. Scott United States Department of Agriculture, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/agron_pubs Part of the Agricultural Science Commons, Agronomy and Crop Sciences Commons, and the Plant Breeding and Genetics Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ agron_pubs/181. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Agronomy at Iowa State University Digital Repository. It has been accepted for inclusion in Agronomy Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. RESEARCH ARTICLE SABRAO Journal of Breeding and Genetics 48 (2) 230-239, 2016 GENETIC ANALYSIS OF ANTHOCYANIN CONTENT IN PURPLE WAXY CORN (Zea mays L. var. ceratina Kulesh) KERNEL AND COB B. HARAKOTR1*, B. SURIHARN2, K. LERTRAT2 and M.P. SCOTT3 1 Department of Agricultural Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani, Thailand 2 Plant Breeding Research Center for Sustainable Agriculture, Khon Kaen University, Khon Kaen, Thailand 3 Corn Insects and Crop Genetics Research, USDA-ARS, Ames (I.A.), USA *Corresponding author’s email: [email protected] Co-authors’ email addresses: [email protected], [email protected], [email protected] SUMMARY Anthocyanins of pigmented corn become a topic of increasing interest recently due to consumer awareness of their various health benefits. A better understanding on the gene effects to anthocyanin is an important for high antioxidants breeding programs. The objective of the present study was to determine gene effect controlling of anthocyanin content in purple waxy corn kernel and cob by generation mean analysis. For the cross of KND 10- 4P (P1) × BW (P2), F2, and backcross generations were developed. All generations were planted in the randomized complete block design (RCB) with 3 replications at the Khon Kaen University, Thailand. Genetic analysis showed that the additive gene effects appeared to be a major contribution to the inheritance for pelargonidin-3-glucosid and peonidin-3-glucoside in the purple corn cob, indicate that selection for these anthocyanins is made at early breeding generations may be possible. Moreover, dominance and dominance × dominance epistatic effects were important for all studied traits in the corn kernel and cyanidin-3-glucoside in purple corn cob so initial selection can be carried out in large populations of later generations with increased homozygosity. Key words: Additive and dominance gene effects, epistasis, anthocyanin, pigmented maize Key findings: The results confirmed gene effects governing the inheritance of major anthocyanins in waxy corn kernel and cob were dominance and its epistatic effects and that selection for high these antioxidants level would be effective even in later generations. This information would help corn breeders to select for high anthocyanin level. Manuscript received: September 6, 2015; Decision on manuscript: May 5, 2016; Manuscript accepted: May 17, 2016. © Society for the Advancement of Breeding Research in Asia and Oceania (SABRAO) 2016 Communicating Editor: Bertrand Collard INTRODUCTION health benefits are attributed to the phytonutrients or phytochemicals appear in Epidemiological studies have confirmed that a edible plants. Thus, functional foods from high consumption of fruits, vegetables, and pigmented corn especially purple corn, have whole grains is strongly reduce risk against received great interesting in recent years due non-communicable diseases (NCDs), also to there are rich source of valuable nutrients. known as chronic disease such as; Particularly, it is rich in anthocyanins and cardiovascular disease (CVD), which is today other phenolic compounds in the aleurone the largest single contributor to global layer of corn kernel and cob that have long mortality and will continue to dominate been used by the people of the Peruvian Andes mortality trends in the future (Fuster and to color foods and sweet beverages (Aoki et Kelly, 2010; Isabelle et al., 2010). These al., 2002; Cevallos-Casals and Cisneros- 230 SABRAO J. Breed. Genet. 48 (2) 230-239 Zevallos, 2004). Researches show that this attention. Generation mean analysis provides pigment may have potential effects in information on the relative importance of suppression the risk of cardiovascular diseases average of effects of the genes (additive and cancers, anti-inflammatory, type 2 effects), dominance deviations, and effects due diabetes and chemoprotective properties to non-allelic genic interactions, in (Jones, 2005). Therefore, pigmented corn determining genotypic values of the breeding has become an important aspect for individuals and, consequently, mean genotypic bio-enhanced that is improved through values of families and generation (Said, 2014). biological means such as conventional plant Generation mean analysis is a useful technique breeding. that provides the estimation of gene effects for Waxy corn (Zea mays L. var. ceratina quantitative traits such as yield and yield Kulesh) is a special type of corn that is rich in components, is great merit lying in the ability anthocyanins and other antioxidant to estimate 3 types of epistatic gene effects compounds, and has widely cultivated and including additive × additive, additive × consumed in Thailand and other Asian dominance, and dominance × dominance countries (Harakotr et al., 2014; Hu and Xu, (Mather and Jinks, 1977; Singh and Singh, 2011). This corn type is harvested prior 1992). The genetic mechanisms governing maturity as fresh foods and matures as whole agronomic traits, yield, and yield attributes in grain foods, which are sold as processed corn corn have been reported (Dofing et al., 1991; kernels, fresh corn kernels, and frozen corn Leng, 1963; Shahrokhi et al., 2013). However, ears in the European and US markets there are very few reports concerning (Harakotr et al., 2014; Ketthaisong et al., information on anthocyanin level in corn 2014). Waxy corn have a various kernel color kernel and cob. Thus, this study was carried ranging from white to black colors that are out to estimate the relative importance of correlated to phytochemical constituents and additive and non-additive gene effects in concentrations. Grain colors in corn naturally controlling the inheritance of anthocyanin and occur from pigments and other substances, its derivatives content in both purple waxy including carotenoids, phenols and corn kernel and cob. It is hoped that results anthocyanin, which establish coloration in the from this work would be value for corn pericarp, aleurone layer, and/or endosperm breeders. (Ford, 2000). Increasing the levels of these bioactive compounds and pigments in waxy corn kernels should increase the nutritional MATERIALS AND METHODS quality of corn. Dark colored corn such as purple, blue and red are found generally in the Plant material aleurone and/or pericarp of corn kernels (Mahan et al., 2013). The intensity of these Two inbred lines (KND10-4P and BW) with colors depends upon the concentration of different kernel and cob colors were use as anthocyanins, presents in the corn kernel and genetic material in this study. These inbred cob. This pigment is primarily decided by lines were developed by the Plant Breeding genetic factors with some modifications of Research Center for Sustainable Agriculture, environmental conditions (Liang et al., 2009). Khon Kaen University, Thailand. KND10-4P is Corn breeders have studied the a waxy corn inbred line with purple kernels prospects for improvement of waxy corn and purple cobs, high anthocyanin content hybrids containing various kernel colors to (Figure 1A). This inbred line was developed enhance the functional and antioxidant from the cross between field corn population materials (Ji et al., 2010). Although, variations with dark purple kernel and cob, and waxy in the color of corn kernel have attracted corn population with white kernels, white geneticists since the early 1900s when studies cobs, good eating quality, stay green and high on the inheritance patterns of kernel color yield. The seeds of the F1 generation showing helped validate classical genetics (Ford, 2001). waxy endosperm were identified by using Further understanding regarding the qualitative potassium iodide (KI). The purple kernel and and quantitative genetic control of colored- purple cob inbred was obtained from kernel and cob corn and hence genetic consecutively self-pollination for 5 researchers on colored-corn has attracted great generations. BW is a waxy corn inbred with 231 Harakotr et al. (2016) white kernels and white cobs, high general combining ability (Figure 1B). A C B D Figure 1. Kernel and cob colors for parental lines [KND10-4p; P1 (A) and BW; P2 (B)], F1 (C), and F2 (D) generations. This inbred line was derived from commercial The seeds of the F1, F2, BC11, BC12 waxy corn variety with good eating quality, generations and their patents were use in the good standing ability and high yield. This experiment. The entries were planted in inbred line was also obtained after 5 Randomized Complete Block design
Recommended publications
  • What Is Still Limiting the Deployment of Cellulosic Ethanol? Analysis of the Current Status of the Sector
    applied sciences Review What is still Limiting the Deployment of Cellulosic Ethanol? Analysis of the Current Status of the Sector Monica Padella *, Adrian O’Connell and Matteo Prussi European Commission, Joint Research Centre, Directorate C-Energy, Transport and Climate, Energy Efficiency and Renewables Unit C.2-Via E. Fermi 2749, 21027 Ispra, Italy; [email protected] (A.O.); [email protected] (M.P.) * Correspondence: [email protected] Received: 16 September 2019; Accepted: 15 October 2019; Published: 24 October 2019 Abstract: Ethanol production from cellulosic material is considered one of the most promising options for future biofuel production contributing to both the energy diversification and decarbonization of the transport sector, especially where electricity is not a viable option (e.g., aviation). Compared to conventional (or first generation) ethanol production from food and feed crops (mainly sugar and starch based crops), cellulosic (or second generation) ethanol provides better performance in terms of greenhouse gas (GHG) emissions savings and low risk of direct and indirect land-use change. However, despite the policy support (in terms of targets) and significant R&D funding in the last decade (both in EU and outside the EU), cellulosic ethanol production appears to be still limited. The paper provides a comprehensive overview of the status of cellulosic ethanol production in EU and outside EU, reviewing available literature and highlighting technical and non-technical barriers that still limit its production at commercial scale. The review shows that the cellulosic ethanol sector appears to be still stagnating, characterized by technical difficulties as well as high production costs.
    [Show full text]
  • Amaizingly Good for You® Suntava Purple Corn.®
    AMAIZINGLY GOOD FOR YOU® SUNTAVA PURPLE CORN.® DISCOVER NATURE’S HEALTHIEST, HIGHEST ANTIOXIDANT CORN. “ WHY WE’RE THE NATURAL, HEALTHFUL, SUSTAINABLE WE’VE UNLOCKED THE POWER OF PURPLE. Suntava Purple Corn® is unmatched in its consistent GOLD color, texture, taste, quality, and value-added nutritional benefits. Healthy Food Ingredients (HFI) offers superior supply chain management and GFSI facilities. STANDARD • Non-GMO Project Verified FOR PURPLE CORN • GFSI Certified • Certified Gluten-Free by NSF • Certified Organic • Identity Preserved (IP) • Naturally brimming with healthful anthocyanins, polyphenols, and flavonoids • Whole Grain • Cultivated from an ancient species of Andean purple corn NON GMO Project VERI F I E D nongmoproject.org For too long, nutrition has been bred out of our food. Suntava is excited to be part of the movement to cultivate foods that are naturally fortified from “seed to table. — BILL PETRICH, President, Suntava We began with excellence, working from a special strain THINK OF THE POSSIBILITIES of Andean maize. And we kept improving it, meticulously” WITH PURPLE. cultivating by hand, year after year. The result? A purple corn that’s unsurpassed in terms of quality, consistency, Suntava Purple Corn is Non-GMO Project Verified, gluten- and anthocyanin/antioxidant value. free, Identity Preserved (IP), and available in conventional and Certified Organic. It’s ideal for these applications, and we’re open to exploring more: WE MAKE IT EASY TO PARTNER ON MULTIPLE INGREDIENTS. • Tortilla Chips • Baby Food As a part of the Healthy Food Ingredients (HFI) family, • Snacks (chips, extruded, • Freeze Dried Meals we’re connected to an array of best-quality ingredients puffed, popped) • Meal Replacement and expertise.
    [Show full text]
  • Table of Contents
    Table of Contents Foreword . 2 Introduction. 3 Industrial Uses of Refined Corn Products . 7 Industrial Markets for Starch and Corn-derived Chemicals . 11 The Enzyme Advantage . 15 Plastics from Corn—The Vision Becomes Reality . 19 Renewable Resources Bring Sustainability to DuPont’s Newest Polymer Platform . 22 Corn Industry Statistics Shipments of Products of the Corn Refining Industry - 2000 . 3 Member Company Products . 5 Corn for Grain: Yield and Production . 14 Corn: Food and Industrial Uses . 16 U.S. Per Capita Sweetener Consumption . 18 World Corn Production, Consumption and Stocks . 21 Corn: Supply and Disappearance . 23 Exports of Products from Corn . 24 2001 Corn Annual Foreword The 2001 Corn Annual focuses on industrial uses and markets for refined corn products. Of the tradi- tional products of the industry—corn starch, sweeteners, oil and feedstuffs—starch has been the leader in industrial applications. In several industrial sectors, the use of starch is well established, but development of new uses and the extension of existing applications continue. Applications for sweeteners are rooted in food manufacturing, but advances in processing technology have opened several opportunities. By exploring the uses of starch in the established sectors of paper, adhesives and textiles, we hope to convey a better understanding of how starch can advance the production process. The review is also intended to provide an appreciation for product characteristics attributable to starch. An examination of the current and potential industrial markets for corn starch and corn-derived Charles F. Conner chemicals shows promising growth for the corn wet milling industry. This market analysis is President intended to provide insight to the dynamic of the relationship between supplier and consumer Corn Refiners as well as identify the factors that will influence growth.
    [Show full text]
  • Corn Has Diverse Uses and Can Be Transformed Into Varied Products
    Maize Based Products Compiled and Edited by Dr Shruti Sethi, Principal Scientist & Dr. S. K. Jha, Principal Scientist & Professor Division of Food Science and Postharvest Technology ICAR-Indian Agricultural Research Institute, Pusa New Delhi 110012 Maize is also known as Corn or Makka in Hindi. It is one of the most versatile crops having adaptability under varied agro-climatic conditions. Globally, it is known as queen of cereals due to its highest genetic yield potential among the cereals. In India, Maize is grown throughout the year. It is predominantly a kharif crop with 85 per cent of the area under cultivation in the season. The United States of America (USA) is the largest producer of maize contributing about 36% of the total production. Production of maize ranks third in the country after rice and wheat. About 26 million tonnes corn was produced in 2016-17 from 9.6 Mha area. The country exported 3,70,066.11 MT of maize to the world for the worth of Rs. 1,019.29 crores/ 142.76 USD Millions in 2019-20. Major export destinations included Nepal, Bangladesh Pr, Myanmar, Pakistan Ir, Bhutan The corn kernel has highest energy density (365 kcal/100 g) among the cereals and also contains vitamins namely, vitamin B1 (thiamine), B2 (niacin), B3 (riboflavin), B5 (pantothenic acid) and B6. Although maize kernels contain many macro and micronutrients necessary for human metabolic needs, normal corn is inherently deficient in two essential amino acids, viz lysine and tryptophan. Maize is staple food for human being and quality feed for animals.
    [Show full text]
  • Identification of Valuable Corn Quality Traits for Starch Production
    Identification of Valuable Corn Quality Traits for Starch Production By: Lawrence A. Johnson Center for Crops Utilization Research Food Science and Human Nutrition C. Phillip Baumel Economics Connie L. Hardy Center for Crops Utilization Research Pamela J. White Food Science and Human Nutrition A project of the Iowa Grain Quality Initiative Traits Task Team Funded by the Iowa Corn Promotion Board 306 West Towers 1200 35th St. West Des Moines, IA 50266 October 1999 Center for Crops Utilization Research Iowa Agriculture & Home Economics Experiment Station Iowa State University, Ames, IA 2 Acknowledgment This report is intended to provoke discussion and debate that will lead to a vision among researchers in public institutions, seed companies, and the starch processing and food industries for modifying corn traits for starch (and other complex carbohydrates) production to enhance utilization and profitability of growing corn. The report attempts to provide direction to farmer organizations and to the corn industry about potential targets for investing research funds. One should recognize that some of the modifications considered required speculation about functional properties and potential applications. Additional research on the relationship between the structures of starch and other complex carbohydrates and functionality in food and industrial applications may refute some of that speculation. Also, this document is a consensus report taking into account the recommendations and reviews of the consultants and advisors identified below. Dr. Jay-lin Jane, Food Science and Human Nutrition, Iowa State University, Ames, IA Dr. Morton W. Rutenberg, Emmar Consultants, North Plainfield, NJ Dr. Henry Zobel, ABCV Starch, Darien, IL Dr. Robert Friedman, Cerestar USA, Inc., Hammond, IN Dr.
    [Show full text]
  • Corn - an A-Maizing Plant
    Corn - An A-Maizing Plant Grade Level: 4-6 Approximate Length of Activity: Two to three class periods Objectives: Teacher: 1. Guide students in a discussion on corn production. 2. Help students understand the history of corn production. Students: 1. Locate and label the states on a U.S. map that make up the "Corn Belt". 2. Become familiar with the parts of the corn kernel. 3. Recognize products made from corn used in our daily lives. 4. Be able to distinguish, through dissection, the four different parts of a corn kernel. Michigan Content Standards: (Social Studies) II.2.2; II.2.3; IV.2.3 Introduction: The Corn Belt is a group of states where most of the corn in the United States is produced. Illinois, Iowa, Nebraska, and Minnesota produce 50 percent of all the corn grown in the US. Other major corn growing states include Indiana, Wisconsin, Michigan, South Dakota, Kansas, Missouri, Kentucky, and Ohio. These 12 states make up the Corn Belt. Corn is the major feed grain grown by farmers in the U.S., leading all other crops in value and volume of production. Corn is a major component in foods like cereals, peanut butter, and snack foods. An ear of corn has an average of 16 rows with 800 kernels. A pound of corn consists of approximately 1,300 kernels. An acre (about the size of a football field) of corn, yielding 100 bushels, produces approximately 7,280,000 kernels. Most of the weight of a bushel of corn is the starch, oil, protein, and fiber, with some natural moisture.
    [Show full text]
  • Insights Into the Genetic and Environmental Bases of Mycotoxin Contamination in Kenyan Maize
    INSIGHTS INTO THE GENETIC AND ENVIRONMENTAL BASES OF MYCOTOXIN CONTAMINATION IN KENYAN MAIZE A Dissertation Presented To the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Samuel Kilonzo Mutiga January 2015 © 2015 Samuel Kilonzo Mutiga ii INSIGHTS INTO THE GENETIC AND ENVIRONMENTAL BASES OF MYCOTOXIN CONTAMINATION IN KENYAN MAIZE Samuel Kilonzo Mutiga, Ph.D. Cornell University, 2015 Mycotoxins are toxic fungal secondary metabolites that contaminate an estimated 25% of foods globally. Aflatoxin and fumonisin are major mycotoxins that contaminate maize in tropical countries. Kenya’s frequent aflatoxicosis outbreaks and the associated human fatality rates have received global attention. The objective of this dissertation was to investigate the extent and the drivers for mycotoxin contamination in Kenyan maize. Between May 2009 and March 2010, surveys were conducted in three provinces (Rift Valley, Western and Nyanza) of western Kenya, the country’s grain basket and a region where mycotoxin outbreak had not been recognized. Aflatoxin contamination above the regulatory limit of 10 ppb was observed in 15% of the flour samples that had been collected from the patrons of local mills. Drought and monocropping were identified as drivers for increased aflatoxin contamination. A longitudinal survey in farmers’ storage sheds and at local mills in Western Province revealed vulnerability of the most popular varieties to mycotoxins. Surveys were conducted in 10 districts of Eastern Province during an aflatoxin outbreak in 2010. Aflatoxin contamination above 10 ppb was observed in 39% of the flour samples from patrons (n=1500) of local mills, while 37% were above the 1 ppm regulatory limit for fumonisin.
    [Show full text]
  • Conversion of Corn-Kernel Fiber in Conventional Fuel-Ethanol Plants National Corn to Ethanol Research Center
    Project No. 0340-19-03 (short version) November 11, 2018 Conversion of Corn-Kernel Fiber in Conventional Fuel-Ethanol Plants National Corn to Ethanol Research Center Executive Summary Ethanol derived from corn-kernel fiber is qualified as cellulosic biofuel since its production results in a 60% reduction in greenhouse gas production relative to a 2005 baseline for petroleum fuels according to the Renewable Fuel Standard (RFS) (U.S. EPA). A conventional fuel-ethanol plant can achieve a potential 9% increase in ethanol production (compared with the starch based ethanol), if they can successfully convert and ferment the cellulose and hemicellulose (xylose and galactose) in corn-kernel fiber; and achieve an additional 3% increase in ethanol production if they can ferment the arabinose derived from hemicellulose. Although complete conversion of all the corn-kernel fiber sugars to ethanol (total of 12% increase) is not possible because some byproducts are always produced, the economic benefits through the production of cellulosic ethanol for a conventional fuel-ethanol plant are much greater than 12%. Commercial technologies have been developed to optimize the conversion of corn-kernel fiber to ethanol, and they are currently available in three categories: (1) in situ technologies, in which fiber is converted to ethanol simultaneously with starch conversion, (2) technologies in which fiber is physically separated from other components of the corn kernel followed by processing of the fiber-rich material independently of the starch process train, and (3) technologies in which post-distillation residual solids from the conventional starch-based ethanol process provide the feedstock for conversion of the fiber fraction into ethanol.
    [Show full text]
  • Breeding for Grain Quality Traits L
    Agronomy Publications Agronomy 2005 Breeding for grain quality traits L. M. Pollak United States Department of Agriculture M. P. Scott Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/agron_pubs Part of the Agricultural Science Commons, Agronomy and Crop Sciences Commons, and the Plant Breeding and Genetics Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ agron_pubs/170. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Agronomy at Iowa State University Digital Repository. It has been accepted for inclusion in Agronomy Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Maydica 50 (2005): 247-257 BREEDING FOR GRAIN QUALITY TRAITS L.M. Pollak*, M.P. Scott USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, Iowa 50011, USA Received February 9, 2005 ABSTRACT - Plant breeders have been extremely success- of vertically integrated grain utilization systems can ful at improving the yield of maize. Grain quality has re- capture the added value in an improved quality ceived less attention; however important advances have product. been made by breeders in this area as well. Maize with a The feasibility of breeding for grain quality in wide range of compositions and fractions within the major maize is best illustrated by the Illinois Long-Term grain components has resulted from breeders taking ad- Selection experiment for protein and oil.
    [Show full text]
  • Purple Corn (Zea Mays L.)
    Purple Corn (Zea mays L.) Purple corn was once a sacred crop to the ancient Incan PURPLE CORN BENEFITS civilizations. Now hundreds of years later, it is grown commercially • One of the most potent vegetable sources of the in its native land of Peru. Historically it was valued for its use as antioxidant-rich color pigments called anthocyanins a natural colorant for foods and beverages as well as for its role in • Supports healthy glucose and lipid metabolism making a popular drink called “chicha morada.” Today’s markets • Powerful antioxidant activity still acknowledge the more traditional uses while research into the • Promotes healthy aging and vascular integrity health benefits of this particular type of corn have made it a sought- after ingredient in the functional foods and supplements markets as PHYTONUTRIENT PROFILE well. Researchers have discovered the significant role of purple corn Contains one of the highest concentrations of and its effects on cellular health, obesity, diabetes, inflammation and • cyanidin-3-glucoside compared to other anthocyanin- vascular integrity. These health benefits are largely tied to purple rich fruits and vegetables corn’s high content of anthocyanins, the antioxidant-rich color • Unique and diverse anthocyanin profile containing pigments that give it its dark purple color. In fact, purple corn has predominantly cyanidins, pelargonidins, and one of the absolute highest levels of a particular anthocyanin— peonidins cyanidin-3-glucoside—that has been attributed to a number of • Rich in phenolic acids such as p-coumaric, vanillic acid, protocatechuric acid, and flavonoids such as significant health benefits in humans. Fun Fact: Offerings of purple quercetin corn were given to honor athletes just prior to their sacrifice to Incan gods.
    [Show full text]
  • Lima56 Is Vienna's First Peruvian Restaurant. Traditional
    Welcome! Lima56 is Vienna’s first Peruvian restaurant. Traditional Peruvian cuisine is a fusion of age-old Inca dishes and influences brought in by European, Asian and African immigrants. This poetic, exciting and truly unique blend of flavours, spices, colours and textures makes for the most delicious meals which we are sure you will love as much as we do. We look forward to serving you! Bienvenida! El restaurante Lima 56 es el primer restaurante peruano en Vienna. La cocina tradicional de Perú es una fusion de la cocina antigua de los Inkas y las influencia de los inmigrantes de Europa, Asia e Afrika. De esta emocionante mezcla, sensual y poética de sabores y especias, texturas y colores se ha creado una espléndida comida que le queríamos servir. BEBIDAS SIN ALCOHOL | SOFT DRINKS HOMEMADE LIME-MINT LEMONADE 0,5L € 5 , 1 0 LIMONADA PUNTA SAL € 5 , 5 0 Orange, Lemon, Elderflower syrup, Soda, Ice Naranja, Limón Amarillo, Sirope de saúco, Soda, Hielo CHICHA MORADA 0,25L € 3,60 | 1L € 14,00 Beverage from cooked purple corn, pineapple, cinnamon and cloves Refresco de Chicha Morada, Piña, Canela, Clavo de especia INKA COLA 0,355L € 4,50 (Can/Lata) | 1,5L € 14,00 MINERAL STILL | SPARKLING 0,25L € 2,90 | 0,75L € 5,90 SODA RASPBERRY | SODA ELDERFLOWER 0,25L € 1,90 | 0,5L € 3,80 SODA LEMON 0,25L € 1,90 | 0,5L € 3,80 SODA 0,25L € 1,50 | 0,5L € 3,00 APPLE | ORANGE | MANGO JUICE WITH SODA 0,25L € 2,50 | 0,5L € 4,10 PEPSI COLA | PEPSI MAX 0,33L € 2 , 9 0 SEVEN UP 0,33L € 2 , 9 0 RAUCH APPLE | ORANGE | APRICOT 0,2L € 2,90 EISTEA LEMON | PEACH 0,33L
    [Show full text]
  • AP-42, CH 9.9.7: Corn Wet Milling
    9.9.7 Corn Wet Milling 9.9.7.1 General1 Establishments in corn wet milling are engaged primarily in producing starch, syrup, oil, sugar, and byproducts such as gluten feed and meal, from wet milling of corn and sorghum. These facilities may also produce starch from other vegetables and grains, such as potatoes and wheat. In 1994, 27 corn wet milling facilities were reported to be operating in the United States. 9.9.7.2 Process Description1-4 The corn wet milling industry has grown in its 150 years of existence into the most diversified and integrated of the grain processing industries. The corn refining industry produces hundreds of products and byproducts, such as high fructose corn syrup (HFCS), corn syrup, starches, animal feed, oil, and alcohol. In the corn wet milling process, the corn kernel (see Figure 9.9.7-1) is separated into 3 principal parts: (1) the outer skin, called the bran or hull; (2) the germ, containing most of the oil; and (3) the endosperm (gluten and starch). From an average bushel of corn weighing 25 kilograms (kg) (56 pounds [lb]), approximately 14 kg (32 lb) of starch is produced, about 6.6 kg (14.5 lb) of feed and feed products, about 0.9 kg (2 lb) of oil, and the remainder is water. The overall corn wet milling process consists of numerous steps or stages, as shown schematically in Figure 9.9.7-2. Shelled corn is delivered to the wet milling plant primarily by rail and truck and is unloaded into a receiving pit.
    [Show full text]