Table of Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Striga Hermonthica) GROWTH in ACID SOILS of KAKAMEGA AND
EFFECTS OF LIME AND INORGANIC FERTILIZERS ON MAIZE YIELD AND STRIGA (Striga hermonthica) GROWTH IN ACID SOILS OF KAKAMEGA AND SIAYA COUNTIES, KENYA DAVID MBAKAYA A THESIS SUBMITTED IN PARTIAL FULFILLMENT FOR THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY IN SOIL SCIENCE SCHOOL OF AGRICULTURE AND BIOTECHNOLOGY UNIVERSITY OF ELDORET, KENYA 2015 ii DECLARATION Declaration by the Candidate This thesis is my original work and has not been submitted for any academic award in any institution; and shall not be reproduced in part or full, or in any format without prior written permission from the author and/or University of Eldoret. Mbakaya David Signature ……………..… Date………….…. AGR/D.PHIL/05/09 Declaration by Supervisors This thesis has been submitted with our approval as University supervisors. Prof. John Robert Okalebo Signature ……………..… Date………….. University of Eldoret, Kenya Dr. Cornelius Serrem Signature ……………..… Date………….… University of Eldoret, Kenya Dr. George Ayaga Signature ……………..… Date………….…. Kenya Agricultural and Livestock Research Organization iii DEDICATION This Thesis is dedicated to Linet Nanjala Kisiangani, Rose Mukasia Mungahu and my children Diana Nasimiyu, Faith Nekesa, Defin Nelima, Glory Neema, Asaph Sipha and Abigail Afua for their encouragement, patience and understanding. The thesis is further dedicated to my surviving brother; Namukholi Mbakaya and sisters Ruth Werengekha and Perita Khasoa for their encouragement. It is also dedicated to my dear late father and mother Kepha Muse and Dina Namasindakusi respectively, brothers Luther Khaemba, Hebron Mbakaya and Francis Waswa, sister Sarah Nakhanu and maternal uncle Sikuku Wanakhoba, who passed on before enjoying the fruits of my achievement. To God is all the glory forever. -
Download and Print the Local Producers Guide (PDF)
Southwest Minnesota Local Food Guide WORKING TOGETHER TO BUILD HEALTH IN THE ECONOMY, ENVIRONMENT, AND PEOPLE OF THE SOUTHWEST MINNESOTA FOODSHED. ACKNOWLEDGMENTS This book was compiled to encourage and enable health-wise and ecologically-smart purchasing decisions in our local SW Minnesota food system. We want people to eat well. It was compiled to honor, encourage, and make visible those brave and committed souls who work hands-on with the natural systems to make available to our whole community the health-enhancing food that can be grown right in our own richly-blessed biome. We are lucky to have you here. We also honor those whose work is already in progress to make it convenient for our communities and our children to choose the foods that will help make them healthy and happy. Special thanks to those who have formed up Farmers’ Markets in their towns, and thanks to the city governments and regular customers who support them. And huge Thanks to those School Food Service Directors who stand at the ready to buy and serve locally sourced food to our children when- ever they can. You are improving the future of our food culture with every nutrient-dense food-choice you present. Special thanks to Land Stewardship Project for leading the way over the years, showing us steps toward collaboration as a tool in establishing better local food systems. Thanks to Dakota Rural Action for leading by example, developing an area producers directory, getting that catalog on the internet for ease of ordering, and by willingly sharing their information and experience. -
Corn Has Diverse Uses and Can Be Transformed Into Varied Products
Maize Based Products Compiled and Edited by Dr Shruti Sethi, Principal Scientist & Dr. S. K. Jha, Principal Scientist & Professor Division of Food Science and Postharvest Technology ICAR-Indian Agricultural Research Institute, Pusa New Delhi 110012 Maize is also known as Corn or Makka in Hindi. It is one of the most versatile crops having adaptability under varied agro-climatic conditions. Globally, it is known as queen of cereals due to its highest genetic yield potential among the cereals. In India, Maize is grown throughout the year. It is predominantly a kharif crop with 85 per cent of the area under cultivation in the season. The United States of America (USA) is the largest producer of maize contributing about 36% of the total production. Production of maize ranks third in the country after rice and wheat. About 26 million tonnes corn was produced in 2016-17 from 9.6 Mha area. The country exported 3,70,066.11 MT of maize to the world for the worth of Rs. 1,019.29 crores/ 142.76 USD Millions in 2019-20. Major export destinations included Nepal, Bangladesh Pr, Myanmar, Pakistan Ir, Bhutan The corn kernel has highest energy density (365 kcal/100 g) among the cereals and also contains vitamins namely, vitamin B1 (thiamine), B2 (niacin), B3 (riboflavin), B5 (pantothenic acid) and B6. Although maize kernels contain many macro and micronutrients necessary for human metabolic needs, normal corn is inherently deficient in two essential amino acids, viz lysine and tryptophan. Maize is staple food for human being and quality feed for animals. -
Identification of Valuable Corn Quality Traits for Starch Production
Identification of Valuable Corn Quality Traits for Starch Production By: Lawrence A. Johnson Center for Crops Utilization Research Food Science and Human Nutrition C. Phillip Baumel Economics Connie L. Hardy Center for Crops Utilization Research Pamela J. White Food Science and Human Nutrition A project of the Iowa Grain Quality Initiative Traits Task Team Funded by the Iowa Corn Promotion Board 306 West Towers 1200 35th St. West Des Moines, IA 50266 October 1999 Center for Crops Utilization Research Iowa Agriculture & Home Economics Experiment Station Iowa State University, Ames, IA 2 Acknowledgment This report is intended to provoke discussion and debate that will lead to a vision among researchers in public institutions, seed companies, and the starch processing and food industries for modifying corn traits for starch (and other complex carbohydrates) production to enhance utilization and profitability of growing corn. The report attempts to provide direction to farmer organizations and to the corn industry about potential targets for investing research funds. One should recognize that some of the modifications considered required speculation about functional properties and potential applications. Additional research on the relationship between the structures of starch and other complex carbohydrates and functionality in food and industrial applications may refute some of that speculation. Also, this document is a consensus report taking into account the recommendations and reviews of the consultants and advisors identified below. Dr. Jay-lin Jane, Food Science and Human Nutrition, Iowa State University, Ames, IA Dr. Morton W. Rutenberg, Emmar Consultants, North Plainfield, NJ Dr. Henry Zobel, ABCV Starch, Darien, IL Dr. Robert Friedman, Cerestar USA, Inc., Hammond, IN Dr. -
Breeding for Grain Quality Traits L
Agronomy Publications Agronomy 2005 Breeding for grain quality traits L. M. Pollak United States Department of Agriculture M. P. Scott Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/agron_pubs Part of the Agricultural Science Commons, Agronomy and Crop Sciences Commons, and the Plant Breeding and Genetics Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ agron_pubs/170. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Agronomy at Iowa State University Digital Repository. It has been accepted for inclusion in Agronomy Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Maydica 50 (2005): 247-257 BREEDING FOR GRAIN QUALITY TRAITS L.M. Pollak*, M.P. Scott USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, Iowa 50011, USA Received February 9, 2005 ABSTRACT - Plant breeders have been extremely success- of vertically integrated grain utilization systems can ful at improving the yield of maize. Grain quality has re- capture the added value in an improved quality ceived less attention; however important advances have product. been made by breeders in this area as well. Maize with a The feasibility of breeding for grain quality in wide range of compositions and fractions within the major maize is best illustrated by the Illinois Long-Term grain components has resulted from breeders taking ad- Selection experiment for protein and oil. -
Biosecurity Preparedness Needed for FMD by Dr
Preparation key to Mundt’s Excellence in Agriculture award By Donna Sullivan, Editor I moved here to Kansas crease the availability of In a time when meet- I got connected with the broadband internet. “If ings have been canceled Pratt County Farm Bureau the sky was the limit and or presented virtually due and the collegiate chap- I had all the resources, I to the COVID-19 pandem- ter,” she said. Her commu- would deploy broadband ic, the 102nd American nity involvement includes to every home in Ameri- Farm Bureau Federation helping with 4-H, FFA, the ca,” she said. “Issues like convention held January collegiate Farm Bureau that drive me more than 10-13 was no exception. chapter at Pratt County recognition. When I think Farmers, ranchers and in- Community College and of the opportunities we dustry professionals still serving on the Chamber of miss on our farm and what met to discuss issues im- Commerce Board. rural America could gain portant to agriculture, it “One of the benefits of if they had that connection was just from computers the competition, whether – people deserve that the in their homes and offices you win or not, is it re- same as water and elec- rather than the San Diego ally does make you think tricity, to level the playing Convention Center as orig- about, how am I making field for rural communi- inally planned. a contribution?” she re- ties.” Contests were held via lated. “What is the true A lifetime of hard work Zoom as well, one of which impact I am trying to make and a whole lot of prepa- was the Excellence in here? How can I tell my ration put Mundt in the Agriculture competition, story and how can I be position to compete for which recognizes young more effective?” and win the Excellence Farm Bureau members While awards are nice, in Agriculture Award, who are active in their it’s the actual impact of but she deeply respects communities and avid sup- her work that Mundt most the work being done by porters of agriculture, but values. -
Evaluating the Environmental Impact of Corn Stover Collection for Biofuels Production Thesis Presented in Partial Fulfillment O
Evaluating the Environmental Impact of Corn Stover Collection for Biofuels Production Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University. By Asmita Khanal, B.E. Environmental Science Graduate Program The Ohio State University 2018 Master’s Examination Committee: Dr. Ajay Shah, Advisor Dr. Harold Keener Dr. Frederick Michel Dr. Shauna Brummet Copyright by Asmita Khanal 2018 Abstract Corn stover is the most readily available lignocellulosic feedstock for cellulosic biofuel production in the Midwestern U.S. Biofuels produced from corn stover could offset the environmental impact of fossil fuel combustion. Corn stover harvest for biofuels production removes potentially recyclable nutrients and carbon, increases the vulnerability of the soil to soil erosion, and produces emissions during harvest and collection due to operation and manufacture of the machinery, thus challenging the sustainability of the process. The main objective of this research was to evaluate the environmental impact of corn stover removal for biofuel production by first determining physical and compositional attributes of the corn stover in terms of dry matter, structural carbohydrates, lignin and nutrients, and then quantifying the environmental impact of corn stover collection for biofuel production. In 2016 and 2017, stover fractions below and above ear-level, and cobs contributed 42-56%, 31-38% and 13-18% to the total non-grain aboveground dry matter, respectively. Based on this dry matter contribution of the different fractions, three different corn stover removal scenarios were established: 1) removal of cobs, 2) removal of stover above ear level excluding cobs, and 3) removal of stover above half way between ground and ear level excluding cobs, to analyze the environmental impact in terms of greenhouse gases emissions in comparison to the base case scenario, i.e., no stover removal. -
Starch Structures and Properties Affected by Genetics and by Environment Hanyu Yangcheng Iowa State University
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2016 Starch structures and properties affected by genetics and by environment Hanyu Yangcheng Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Food Science Commons Recommended Citation Yangcheng, Hanyu, "Starch structures and properties affected by genetics and by environment" (2016). Graduate Theses and Dissertations. 15205. https://lib.dr.iastate.edu/etd/15205 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Starch structures and properties affected by genetics and by environment by Hanyu Yangcheng A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Food Science and Technology Program of Study committee: Jay-lin Jane, Major Professor Zhiyou Wen Buddhi Lamsal Paul Scott Michael Blanco Iowa State University Ames, Iowa 2016 Copyright © Hanyu Yangcheng, 2016. All rights reserved. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS iv ABSTRACT v DISSERTATION ORGANIZATION 1 GENERAL INTRODUCTION 2 CHAPTER 1. LITERATURE REVIEW 5 Structures of starch granules 5 Properties of starch 12 Starch biosynthesis 17 Waxy corn 19 Effects of growing conditions on starch physicochemical properties 21 References 24 CHAPTER 2. PHYSICOCHEMICAL PROPERTIES OF TIBETAN HULL-LESS BARLEY STARCH 38 Abstract 39 Introduction 40 Materials and methods 42 Results 46 Discussion 49 Conclusions 51 Acknowledgements 52 References 52 Tables and figures 58 CHAPTER 3. -
Designing and Engineering a New Biocomposite Material from Distillers' Grains and Bioplastics
Designing and Engineering a New Biocomposite Material from Distillers’ Grains and Bioplastics by Nima Zarrinbakhsh A Thesis Presented to The University of Guelph In partial fulfillment of requirements for the degree of Doctor of Philosophy in Engineering Guelph, Ontario, Canada © Nima Zarrinbakhsh, May, 2014 ABSTRACT DESIGNING AND ENGINEERING A NEW BIOCOMPOSITE MATERIAL FROM DISTILLERS’ GRAINS AND BIOPLASTICS Nima Zarrinbakhsh Co-Advisors: University of Guelph, 2014 Dr. Manjusri Misra Dr. Amar K. Mohanty In recent years, the expansion of the corn ethanol industry has generated surplus amounts of solid coproducts mainly in the form of dried distillers’ grains with solubles (DDGS). In order to help economic viability and sustainability of the industry, research is being conducted to find new, more profitable applications for this coproduct besides its traditional usage as animal feed. In the present project, the capabilities of DDGS are evaluated for using as a filler and/or reinforcement in producing green biocomposites with a number of bioplastics. The bioplastics used here are partially originated from renewable resources with end-life biodegradability in compost conditions. The focus of this research is to design and engineer material formulations with balanced performance. Extrusion and injection molding techniques have been employed to produce the biocomposites and the performance of the produced materials was evaluated through several mechanical, thermomechanical and physical properties. The discussions are augmented with thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The results are conclusive in that DDGS is a better filler for polymeric biocomposites when it undergoes a water treatment before processing with polymer melts. -
An Estimation of Available Cellulosic Biomass in Ten Counties in Northeastern Arkansas from 1999-2011 Thomas Jenkins University of Arkansas, Fayetteville
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarWorks@UARK University of Arkansas, Fayetteville ScholarWorks@UARK Biological and Agricultural Engineering Biological and Agricultural Engineering Undergraduate Honors Theses 5-2013 An Estimation of Available Cellulosic Biomass in Ten Counties in Northeastern Arkansas from 1999-2011 Thomas Jenkins University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/baeguht Recommended Citation Jenkins, Thomas, "An Estimation of Available Cellulosic Biomass in Ten Counties in Northeastern Arkansas from 1999-2011" (2013). Biological and Agricultural Engineering Undergraduate Honors Theses. 1. http://scholarworks.uark.edu/baeguht/1 This Thesis is brought to you for free and open access by the Biological and Agricultural Engineering at ScholarWorks@UARK. It has been accepted for inclusion in Biological and Agricultural Engineering Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected]. An Estimation of Available Cellulosic Biomass in Ten Counties in Northeastern Arkansas from 1999-2011 An Undergraduate Honors College Thesis in the Biological and Agricultural Engineering Department College of Engineering University of Arkansas Fayetteville, AR by Thomas Jenkins Faculty Mentor: Dr. Danielle Carrier April 26, 2013 1 2 Abstract The purpose of this research is to explore the possibility of siting a biorefinery that produces cellulosic ethanol in the Delta region of Arkansas, which is the main agricultural area of the state. Four major crops that the state of Arkansas produces on a yearly basis that could potentially be used for cellulosic ethanol production are: corn, rice, sorghum, and soybeans. -
Breeding Waxy Maize Hybrid for Fresh Quality: Integration Between Domestic and Exotic Germplasm
Available online www.jsaer.com Journal of Scientific and Engineering Research, 2017, 4(9):254-270 ISSN: 2394-2630 Review Article CODEN(USA): JSERBR Breeding Waxy Maize Hybrid for Fresh Quality: Integration between Domestic and Exotic Germplasm Vu V. Liet1*, Vu T.B. Hanh2, Pham Q. Tuan2, Nguyen V. Ha2, Tran T.T. Ha2, Hoang T. Thuy2, Duong T. Loan2, Nguyen V. Viet2, Nguyen T. Duc2, Nguyen T.N. Anh2, Le M. Thao3, Khuat H. Trung4, Tran D. Khanh4* 1Plant Breeding Department, Agronomical Faculty, Vietnam National University of Agriculture (VNUA), Hanoi, Vietnam 2Crop Research and Development Institute (CRDI), VNUA, Hanoi, Vietnam 3Thai Nguyen Agroforestry University (TUAF), Thai Nguyen, Vietnam 4Agricultural Genetics Insitute, Hanoi, Vietnam Abstract Waxy maize (Zea mays L. var. certain) hybrid program has been established since 2003 at Vietnam National University of Agriculture (VNUA), began upon collection activity of waxy maize nationwide germplasm. During 2003 to 2012, total 160 accessions of local waxy maize were collected based on the four ecosystem regions includedNorth-West mountain (Lai Chau, Dien Bien and Son La province); North-east mountain (Cao Bang, Bac Kan, Ha Giang, Tuyen Quang, Lang Son and Lao Cai provinces); mountain region of North coastal Central (Quang Tri province) and Highland central (Dac Lak, Gia Lai and Lam Dong provinces).Along with the collected local waxy maize germplasm, the 36 exotic waxy maize germplasm was also imported, exchanged and commercial waxy maize hybrids in Vietnam market. Evaluation of waxy maize germplasm diversity and identified usefultraits like drought tolerance, diseases -resistance, eating quality, especially thinner pericarp thickness, anthocyanin content for utilization and maize database establishment in VNUA. -
Innovative Methods for Corn Stover Collecting, Handling, Storing and Transporting
April 2004 • NREL/SR-510-33893 Innovative Methods for Corn Stover Collecting, Handling, Storing and Transporting March 2003 J.E. Atchison Atchison Consultants, Inc. J. R. Hettenhaus Chief Executive Assistance, Inc. Charlotte, North Carolina National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute • Battelle Contract No. DE-AC36-99-GO10337 April 2004 • NREL/SR-510-33893 Innovative Methods for Corn Stover Collecting, Handling, Storing and Transporting March 2003 J.E. Atchison Atchison Consultants, Inc. J. R. Hettenhaus Chief Executive Assistance, Inc. Charlotte, North Carolina NREL Technical Monitor: S.R. Thomas Prepared under Subcontract No. ACO-1-31042-01 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute • Battelle Contract No. DE-AC36-99-GO10337 This publication was reproduced from the best available copy Submitted by the subcontractor and received no editorial review at NREL NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof.