High-Grade Contact Metamorphism of Calcareous Rocks from the Oslo Rift, Southern Norway

Total Page:16

File Type:pdf, Size:1020Kb

High-Grade Contact Metamorphism of Calcareous Rocks from the Oslo Rift, Southern Norway American Mineralogist, Volume 82, pages 1241±1254, 1997 High-grade contact metamorphism of calcareous rocks from the Oslo Rift, Southern Norway BJùRN JAMTVEIT,1 SVEN DAHLGREN,2 AND HAAKON AUSTRHEIM3 1Department of Geology, University of Oslo, P.O. Box 1047 Blindern, N-0316 Oslo, Norway 2The Norwegian Petroleum Directorate, P.O. Box 600, 4001 Stavanger, Norway 3Mineralogical-Geological Museum, Sars gt.1, N-0562 Oslo, Norway ABSTRACT Shallow-level plutons caused extensive contact metamorphism of Lower Paleozoic shale and carbonate sequences in the Permian Oslo Rift. A .500 m long and 100 m wide shale- limestone xenolith embedded within monzonites belonging to the Skrim plutonic complex experienced high-grade contact metamorphism and generation of minerals and mineral assemblages rarely reported from metamorphic rocks. The peak metamorphic (Stage I) assemblages in calcite-saturated rocks include wollastonite, melilites, fassaitic pyroxenes, phlogopite, titanian grossular, kalsilite, nepheline, perovskite, cuspidine, baghdadite, pyr- rhotite, and occasional graphite. Mineral reactions involving detrital apatite produced a series of silicate apatites, including the new mineral species Ca3.5(Th,U)1.5Si3O12(OH). This assemblage equilibrated at T 5 820±870 8C with a C-rich, internally buffered pore-¯uid (20±40 mol% CO2 1 CH4). During cooling the shale-limestone xenolith experienced in®l- tration of C-poor (, 0.1 mol% CO2) ¯uids, triggering the formation of retrograde (Stage II) mineral assemblages comprising monticellite, tilleyite, vesuvianite, grandite garnets, diopside, and occasional hillebrandite. Rare potassium iron sul®des (rasvumite and djer- ®sherite) formed at the expense of primary pyrrhotite. These assemblages probably formed near 700 8C. Formation of diffuse sodalite-bearing veinlets was associated with breakdown of nepheline and the replacement of kalsilite and wollastonite by potassium feldspar. The sodalite-bearing Stage III assemblage formed by the in®ltration of saline brines at a max- imum temperature of 550 8C. Low-temperature (Stage IV) retrogression of the Stage I-III assemblage produced scawtite, giuseppettite, hydrogrossulars, phillipsite, thomsonite, and three hitherto undescribed mineral species. INTRODUCTION et al. 1992a, 1992b; Jamtveit and Andersen 1993; Sven- Mineral assemblages and mineral reactions occurring sen and Jamtveit 1998). Here, we present the ®rst de- during contact metamorphism of calcareous rocks have scription of high-grade mineral assemblages in contact been extensively studied and described since the pio- metamorphic carbonates from the Oslo rift. A large xe- neering work by Goldschmidt (1911) in the Oslo rift. Ob- nolith of Lower Paleozoic sedimentary rock within the served mineral assemblages re¯ect a wide range of tem- Permian Skrim monzonite complex in the Southern Oslo perature and ¯uid-composition space (Tracy and Frost rift experienced metamorphic temperatures exceeding the 1991). Equilibrium temperatures approaching and even solidus of the crystallizing monzonite. Mineral reactions exceeding 1000 8C are reported for limestone assem- involving carbonate and silicate minerals led to the pro- blages in aureoles around ma®c intrusions (e.g., Joesten duction of various of Si-poor silicates, including numer- 1983). Because most ma®c intrusions crystallize without ous phases rarely or never previously reported from meta- releasing large quantities of volatiles, most high-grade morphic rocks. Reactions between silicates and pyrrhotite contact metamorphic carbonate rocks have buffered the produced rare potassium iron sul®des, and reactions in- local pore-¯uid composition during heating and devola- volving detritial apatite produced LREE and Th-rich sil- tilization. High-grade assemblages re¯ecting equilibration icate apatites including a new mineral species [Ca3.5Th1.5Si3O12 (OH)]. with H2O-dominated ¯uids are rarely reported from shal- low level (P # 1000 bars) environments (see however, Williams-Jones 1981 and Inderst 1987). GEOLOGICAL SETTING In the Oslo area, contact metamorphism is related to The Permo-Carboniferous Oslo paleorift is situated in various shallow level intrusions. Frequently devolatiliza- the southwestern part of the Baltic shield. The exposed tion reactions in calcareous rocks are driven by in®ltra- parts of the rift are composed of two half grabens ®lled tion of externally derived H2O-dominated ¯uids (Jamtveit with Carboniferous sedimentary rocks, alkaline volcanic 0003±004X/97/1112±1241$05.00 1241 1242 JAMTVEIT ET AL.: CONTACT METAMORPHISM OF CALCAREOUS ROCKS [§] Lake Flekkeren Metamorphic Carboniferous • Permian Late Proterozoic • Faull [j) Fen Carbonatite Complex ' Ordovician Limestones r~~~l Various batholiths Permian Skrim Batholith Mesoproterozoic ~Major fault Mesoproterozoic D Volcanics l+t+tl Pegmatites li: \\~ Alkali syenite !SSJ Amphibolites and Metaleucogabbro Cambrian ·Silurian '\?.- Gabbro and Amphibolite t~ ~ ~ ~ Larvikite t:::: ::j Quartzofeldspathic gneisses [IS! Shales, limestones ~ Various gneisses RLN%0904317 FIGURE I. Simplified geological maps of the Flekkeren area (left; Dahlgren 1998) and the Southern margin of the Oslo rift (right; Dahlgren 1998). and intrusive rocks, and Lower Paleozoic sedimentary 1992b; Svensen 1996), consistent with dominantly con­ rocks (Fig. 1). The latter are dominated by shales and ductive heating of the aureoles. limestones (Bjfllrlykke 1974). Extensive intrusive activity Recent stable isotope results have demonstrated wide­ in the time interval 300-250 Ma (Sundvoll et a!. 1990) spread pervasive infiltration of aqueous fluids with a included emplacement of various monzonitiG "to granitic magmatic 0 isotope signature around the various cooling rocks and caused widespread contact metamorphism and intrusions (Jamtveit et al. 1992a, 1992b, 1997). Decar­ hydrothermal activity within the originally unmetamor­ bonation reactions leading to formation of the contact phosed sedimentary rocks. metamorphic mineral assemblages are to a large extent The Lower Paleozoic shales are composed of illite, driven by this infiltration. Reaction-enhanced porosity chlorite, quartz, diagenetic feldspar, and occasional do­ and permeability at the shale-carbonate contacts was a lomite, whereas the limestones are dominated by calcite significant factor in controlling fluid release from these (Bjfllrlykke 1974). Both shales and limestones contain sig­ shallow intrusions (Jamtveit et a!. 1997). The current nificant but generally low contents of organic carbon ( < model for fluid flow during peak contact metamorphic I wt%). During contact metamorphism, the most notable conditions around granitoig intrusions in the Oslo rift in­ metamorphic reactions took place at the carbonate-shale cludes early pervasive and slow infiltration of magmatic contacts where metasomatic calc-silicate zones formed at fluids of low salinity in an overpressurized system (rela­ the expense of the carbonate and shale layers. Maximum tive to hydrostatic), interrupted by rapid and focused re­ temperature conditions near the intrusive contacts were lease of saline solutions with associated pressure drops in estimated to be in the range 400-550 oc (Jamtveit et a!. high permeability zones. JAMTVEIT ET AL.: CONTACT METAMORPHISM OF CALCAREOUS ROCKS 1243 TABLE 1. Abbreviations and formulas for observed minerals in limestones and calc-silicate rocks from Flekkeren Name Formula Petrogra®c status ab albite NaAlSi3O8 Stage IV ad andradite Ca3Fe2Si3O12 Stage IV ak akermanite Ca2MgSi2O7 Stage I al alabandite MnS Stage I? an anorthite CaAl2Si2O8 Stage I* ap apatite Ca5(PO4)3(OH) detrital au augite (fassaite) Ca(Mg,Fe,Al,Ti)(Si,Al)2O6 Stage I ba baddeleyite ZrO2 inclusions in zircon bg baghdadite Ca3ZrSi2O9 Stage I br britholite (LREE,Ca)5(SiO4,PO4)3(OH) Stage I cc calsite CaCO3 all assemblages cr chromite FeCr2O4 detrital cu cuspidine Ca4Si2O7(F,OH)2 Stage I di diopside CaMgSi2O6 Stage II dj djer®sherite K6(Fe,Ni)25S26Cl Stage II ga galena PbS detrital gp graphite C Stage I? gr grossular Ca3Al2Si3O12 Stage II gu giuseppettite (Na,K,Ca)7±8(Si,Al)12O24(SO4,Cl)1±2 Stage IV hb hillebrandite Ca2SiO3(OH)2 Stage II? hi hibschite Ca3Al2Si32xO12(OH)4x (x 5 0.2±1.5) Stage IV ka katoite Ca3Al2Si32xO12(OH)4x (x 5 1.5±3) Stage IV kfs K-feldspar KAlSi3O8 Stage II or III ki kimzeyite Ca3(Zr,Ti)2(Si,Al)3O12 Stage I ks kalsilite KAlSiO4 Stage I loÈloÈllingite FeAs2 detrital? ma marialite Na4Al3Si9O24Cl Stage I* mc marcasite FeS2 Stage IV mg magnetite Fe3O4 detrital mo monticellite CaMgSiO4 Stage II ne nepheline NaAlSiO4 Stage I op opal SiO2 Stage IV pe perovskite CaTiO3 Stage I ph phlogopite KMg3AlSi3O10(OH)2 Stage I pi phillipsite (K,Na,Ca)1±2(Si,Al)8O16´6 H2O Stage IV pt pentlandite (Fe,Ni)9S8 Stage I py pyrite FeS2 Stage IV pyh pyrrhotite Fe12xS Stage I qz quartz SiO2 Stage I* rs rasvumite KFe2S3 Stage II sa saponite (Ca/2,Na)0.3(Mg,Fe)3(Si,Al)4O10(OH)2´4 H2O Stage IV sc scawtite Ca7Si6(CO3)O18´2 H2O Stage IV sd sodalite Na8Al6Si6O24Cl2 Stage III sh scheelite CaWO4 detrital so schorlomite Ca3Ti2(Fe,Si)3O12 Stage I sph sphalerite ZnS detrital ta thaumasite? Ca6Si2(CO3)2(SO4)2(OH)12´24 H2O Stage IV tb tobermorite Ca9Si12O30(OH)6´4 H2O Stage IV th thorite ThSiO4 detrital ti titanite CaTiSiO5 Stage I* tm thomsonite NaCa2Al5Si5O20´6 H2O Stage IV to thorianite ThO2 Stage IV ty tilleyite Ca5Si2O7(CO3)2 Stage II ur uraninite UO2 detrital uv uvarovite Ca3Cr2Si3O12 Stage I vs vesuvianite Ca10Mg2Al4(SiO4)5(Si2O7)2(OH)4 Stage II wo wollastonite CaSiO3 Stage I±III zrn zircon ZrSiO4 Stage I* X1 new species Ca3.5(Th,U)1.5(SiO4)3(OH)
Recommended publications
  • The Regional Distribution of Zeolites in the Basalts of the Faroe Islands and the Significance of Zeolites As Palaeo- Temperature Indicators
    The regional distribution of zeolites in the basalts of the Faroe Islands and the significance of zeolites as palaeo- temperature indicators Ole Jørgensen The first maps of the regional distribution of zeolites in the Palaeogene basalt plateau of the Faroe Islands are presented. The zeolite zones (thomsonite-chabazite, analcite, mesolite, stilbite-heulandite, laumontite) continue below sea level and reach a depth of 2200 m in the Lopra-1/1A well. Below this level, a high temperature zone occurs characterised by prehnite and pumpellyite. The stilbite-heulan- dite zone is the dominant mineral zone on the northern island, Vágar, the analcite and mesolite zones are the dominant ones on the southern islands of Sandoy and Suðuroy and the thomsonite-chabazite zone is dominant on the two northeastern islands of Viðoy and Borðoy. It is estimated that zeolitisa- tion of the basalts took place at temperatures between about 40°C and 230°C. Palaeogeothermal gradients are estimated to have been 66 ± 9°C/km in the lower basalt formation of the Lopra area of Suðuroy, the southernmost island, 63 ± 8°C/km in the middle basalt formation on the northernmost island of Vágar and 56 ± 7°C/km in the upper basalt formation on the central island of Sandoy. A linear extrapolation of the gradient from the Lopra area places the palaeosurface of the basalt plateau near to the top of the lower basalt formation. On Vágar, the palaeosurface was somewhere between 1700 m and 2020 m above the lower formation while the palaeosurface on Sandoy was between 1550 m and 1924 m above the base of the upper formation.
    [Show full text]
  • Studies of the Zeolites Composition of Zeolites of the Natrolite Group and Compositional Relations Among Thomsonites Gonnardites, and Natrolites
    r-'1 ~ Q I ~ c lt') ~ r-'1 'JJ ~ Q.) < ~ ~ ......-~ ..,.;;j ~ <z 0 0 Q.) 1-4 rJ:J rJ:J N r-'1 ~ Q.) 0 ~ ..c ~ ~ ~ I r-'1 ~ > ~ 0 I ~ rJ:J 'JJ ..,.;;j Q.) < .....-~ 0 . 1-4 ~ C"-' 0 ~ ..,.;;j ~ 0 r-'1 00 C"-' Foster-STUDIES•. OF THE ZEOLITES-Geological Survey Professional Paper 504-D, E Studies of the Zeolites Composition of Zeolites of the Natrolite Group and Compositional Relations among Thomsonites Gonnardites, and Natrolites By MARGARET D. FOSTER SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 504-D, E UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1965 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretory GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows: Foster, Margaret Dorothy, 1895- Studies of the zeolites. D. Composition of zeolites of the natrolite group. E. Compositional relations among thom­ sonites, gonnardites, and natrolites. Washington, U.S. Govt. Print. Off., 1965. v, 7; iii, 10 p. diagrs., tables. 30 em. (U.S. Geological Survey. Professional paper 504-D, E) Shorter contributions to general geology. Each part also has separate title page. Includes bibliographies. (Continued on next card) Foster, Margaret Dorothy, 1895- Studies of the zeolites. 1965. (Card 2) 1. Zeolites. I. Title. II. Title: Composition of zeolites of the natro­ lite group. III. Title: Compositional relations among thomsonites, gonnardites, and natrolites. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 25 cents (paper cover) Studies of the Zeolites Composition of Zeolites of the N atrolite Group By MARGARET D.
    [Show full text]
  • The Thermal Dehydration of Natural Zeolites
    549.67:536.4 MEDEDELINGEN LANDBOUWHOGESCHOOL WAGENINGEN • NEDERLAND • 74-9 (1974) THE THERMAL DEHYDRATION OF NATURAL ZEOLITES (with a summary in Dutch) L. P. VAN REEUWIJK Department of Soil Science and Geology, Agricultural University, Wageningen, The Netherlands (Received 11-11-1974) H. VEENMAN & ZONEN B.V. - WAGENINGEN - 1974 Ml Mededelingen Landbouwhogeschool Wageningen 74-9 (1974) (Communications Agricultural University) is also published as a thesis CONTENTS 1. INTRODUCTION 1 1.1. History 1 1.2. Genesis and occurrence of natural zeolites 2 1.3. Structural classification 4 1.4. Practical applications of zeolites 8 2. THE DEHYDRATION OF ZEOLITES - A CRITICAL REVIEW 11 2.1. Introduction 11 2.2. DTA and TG 12 2.3. High temperature X-ray analysis 13 2.4. Vapour pressure 14 2.5. The reaction mechanism 15 2.6. Rehydration 16 3. THE COMPLEXITY OF THE DEHYDRATION PROCESS 17 3.1. Types of dehydration 17 3.2. Examples 18 3.3. Effect of pressure on dehydration 22 3.3.1. Qualitative aspect 22 3.3.2. Quantitative aspect - Calibration of pressure 25 3.4. Dehydration equilibrium and hysteresis 26 3.5. Internal and external adsorption 28 4. DEHYDRATION OF ZEOLITES OF THE NATROLITE GROUP 30 4.1. Materials and procedures 30 4.2. Results and discussion 31 4.2.1. Natrolite 31 4.2.2. Mesolite 33 4.2.3. Scolecite 36 4.2.4. Thomsonite 37 4.2.5. Gonnardite 37 4.2.6. Edingtonite 38 4.3. Conclusions 39 5. PRESSURE-TEMPERATURE RELATIONS 40 5.1. The Clausius-Clapeyron equation 41 5.2. Experimental 43 5.3.
    [Show full text]
  • Gonnardite Na2caal4si6o20 ² 7H2O C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Tetragonal
    Gonnardite Na2CaAl4Si6O20 ² 7H2O c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Tetragonal. Point Group: 42m: Fibrous crystals, at the centers of radiating spherulites, to 3 cm; massive. Physical Properties: Hardness = 5 D(meas.) = 2.25{2.36 D(calc.) = 2.33 Optical Properties: Translucent. Color: White, yellowish to salmon-red. Luster: Silky. Optical Class: Biaxial (+) or ({); commonly zoned. Orientation: X = c. ® = 1.497{1.508 ¯ = 1.498{1.510 ° = 1.499{1.513 2V(meas.) = 50± Cell Data: Space Group: I42d: a = 13.21(1) c = 6.622(4) Z = 2 X-ray Powder Pattern: Chaux de Bergonne, France; may be confused with natrolite and tetranatrolite. 2.92 (100), 5.93 (80), 6.70 (60), 4.44 (60), 4.74 (50), 3.23 (50), 3.12 (40) Chemistry: (1) (2) (3) SiO2 43.45 43.20 44.58 Al2O3 27.91 27.90 25.22 CaO 6.95 3.61 6.94 Na2O 8.69 13.16 7.66 H2O [13.00] 11.74 15.60 Total [100.00] 99.61 100.00 (1) Chaux de Bergonne, France; by electron microprobe, H2O by di®erence; corresponding to Na2:22Ca0:98Al4:32Si5:71O20 ² 5:70H2O: (2) Aci Trezza, Sicily, Italy; corresponds to Na3:5Ca0:5Al4:5 Si5:9O20:8 ² 5:35H2O: (3) Na2CaAl4Si6O20 ² 7H2O: Mineral Group: Zeolite group. Occurrence: In cavities in basalt, leucite tephrite, and altered skarn. Association: Zeolites, calcite. Distribution: Well characterized material from: in France, at Chaux de Bergonne, Gignat, Puy de D^ome. In Italy, from Capo di Bove, near Rome, Lazio; and at Aci Castello, Aci Trezza, Osilo, and other places on Sardinia.
    [Show full text]
  • Stitial Oxide Ions Synthesized by Direct Crystallization
    La2Ga3O7.5: a metastable ternary melilite with a super-excess of inter- stitial oxide ions synthesized by direct crystallization of the melt Jintai Fan, Vincent Sarou-Kanian, Xiaoyan Yang, Maria Diaz-Lopez, Franck Fayon, Xiaojun Kuang, Michael Pitcher, Mathieu Allix To cite this version: Jintai Fan, Vincent Sarou-Kanian, Xiaoyan Yang, Maria Diaz-Lopez, Franck Fayon, et al.. La2Ga3O7.5: a metastable ternary melilite with a super-excess of inter- stitial oxide ions synthe- sized by direct crystallization of the melt. Chemistry of Materials, American Chemical Society, 2020, 32 (20), pp.9016-9025. 10.1021/acs.chemmater.0c03441. hal-02959774 HAL Id: hal-02959774 https://hal.archives-ouvertes.fr/hal-02959774 Submitted on 7 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. La2Ga3O7.5: a metastable ternary melilite with a super-excess of inter- stitial oxide ions synthesized by direct crystallization of the melt Jintai Fan,1,2 Vincent Sarou-Kanian,1 Xiaoyan Yang,3 Maria Diaz-Lopez,4,5 Franck Fayon,1 Xiaojun Kuang,3,6 Michael J. Pitcher1* and Mathieu Allix1* 1 CNRS, CEMHTI UPR3079, 45071 Orléans, France 2 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, Shanghai, 201800, P.
    [Show full text]
  • New Minerals Approved Bythe Ima Commission on New
    NEW MINERALS APPROVED BY THE IMA COMMISSION ON NEW MINERALS AND MINERAL NAMES ALLABOGDANITE, (Fe,Ni)l Allabogdanite, a mineral dimorphous with barringerite, was discovered in the Onello iron meteorite (Ni-rich ataxite) found in 1997 in the alluvium of the Bol'shoy Dolguchan River, a tributary of the Onello River, Aldan River basin, South Yakutia (Republic of Sakha- Yakutia), Russia. The mineral occurs as light straw-yellow, with strong metallic luster, lamellar crystals up to 0.0 I x 0.1 x 0.4 rnrn, typically twinned, in plessite. Associated minerals are nickel phosphide, schreibersite, awaruite and graphite (Britvin e.a., 2002b). Name: in honour of Alia Nikolaevna BOG DAN OVA (1947-2004), Russian crys- tallographer, for her contribution to the study of new minerals; Geological Institute of Kola Science Center of Russian Academy of Sciences, Apatity. fMA No.: 2000-038. TS: PU 1/18632. ALLOCHALCOSELITE, Cu+Cu~+PbOZ(Se03)P5 Allochalcoselite was found in the fumarole products of the Second cinder cone, Northern Breakthrought of the Tolbachik Main Fracture Eruption (1975-1976), Tolbachik Volcano, Kamchatka, Russia. It occurs as transparent dark brown pris- matic crystals up to 0.1 mm long. Associated minerals are cotunnite, sofiite, ilin- skite, georgbokiite and burn site (Vergasova e.a., 2005). Name: for the chemical composition: presence of selenium and different oxidation states of copper, from the Greek aA.Ao~(different) and xaAxo~ (copper). fMA No.: 2004-025. TS: no reliable information. ALSAKHAROVITE-Zn, NaSrKZn(Ti,Nb)JSi401ZJz(0,OH)4·7HzO photo 1 Labuntsovite group Alsakharovite-Zn was discovered in the Pegmatite #45, Lepkhe-Nel'm MI.
    [Show full text]
  • Optical Properties of Common Rock-Forming Minerals
    AppendixA __________ Optical Properties of Common Rock-Forming Minerals 325 Optical Properties of Common Rock-Forming Minerals J. B. Lyons, S. A. Morse, and R. E. Stoiber Distinguishing Characteristics Chemical XI. System and Indices Birefringence "Characteristically parallel, but Mineral Composition Best Cleavage Sign,2V and Relief and Color see Fig. 13-3. A. High Positive Relief Zircon ZrSiO. Tet. (+) 111=1.940 High biref. Small euhedral grains show (.055) parallel" extinction; may cause pleochroic haloes if enclosed in other minerals Sphene CaTiSiOs Mon. (110) (+) 30-50 13=1.895 High biref. Wedge-shaped grains; may (Titanite) to 1.935 (0.108-.135) show (110) cleavage or (100) Often or (221) parting; ZI\c=51 0; brownish in very high relief; r>v extreme. color CtJI\) 0) Gamet AsB2(SiO.la where Iso. High Grandite often Very pale pink commonest A = R2+ and B = RS + 1.7-1.9 weakly color; inclusions common. birefracting. Indices vary widely with composition. Crystals often euhedraL Uvarovite green, very rare. Staurolite H2FeAI.Si2O'2 Orth. (010) (+) 2V = 87 13=1.750 Low biref. Pleochroic colorless to golden (approximately) (.012) yellow; one good cleavage; twins cruciform or oblique; metamorphic. Olivine Series Mg2SiO. Orth. (+) 2V=85 13=1.651 High biref. Colorless (Fo) to yellow or pale to to (.035) brown (Fa); high relief. Fe2SiO. Orth. (-) 2V=47 13=1.865 High biref. Shagreen (mottled) surface; (.051) often cracked and altered to %II - serpentine. Poor (010) and (100) cleavages. Extinction par- ~ ~ alleL" l~4~ Tourmaline Na(Mg,Fe,Mn,Li,Alk Hex. (-) 111=1.636 Mod. biref.
    [Show full text]
  • THE MELILITE (Gh50) SKARNS of ORAVIT¸A, BANAT, ROMANIA: TRANSITION to GEHLENITE (Gh85) and to VESUVIANITE
    1255 The Canadian Mineralogist Vol. 41, pp. 1255-1270 (2003) THE MELILITE (Gh50) SKARNS OF ORAVIT¸A, BANAT, ROMANIA: TRANSITION TO GEHLENITE (Gh85) AND TO VESUVIANITE ILDIKO KATONA Laboratoire de Pétrologie, Modélisation des Matériaux et Processus, Université Pierre et Marie Curie, 4, Place Jussieu, F-75252 Paris, Cedex 05, France MARIE-LOLA PASCAL§ CNRS–ISTO (Institut des Sciences de la Terre d’Orléans), 1A, rue de la Férollerie, F-45071 Orléans, Cedex 02, France MICHEL FONTEILLES Laboratoire de Pétrologie, Modélisation des Matériaux et Processus, Université Pierre et Marie Curie, 4, Place Jussieu, F-75252 Paris, Cedex 05, France JEAN VERKAEREN Unité de Géologie, Université Catholique de Louvain-la-Neuve, Bâtiment Mercator, 3, Place Louis Pasteur, Louvain-la-Neuve, Belgium ABSTRACT Almost monomineralic Mg-rich gehlenite (~Gh50Ak46Na-mel4) skarns occur in a very restricted area along the contact of a diorite intrusion at Oravit¸a, Banat, in Romania, elsewhere characterized by more typical vesuvianite–garnet skarns. In the vein- like body of apparently unaltered gehlenite, the textural relations of the associated minerals (interstitial granditic garnet and, locally, monticellite, rare cases of exsolution of magnetite in the core zone of melilite grains) suggest that the original composi- tion of the gehlenite may have been different, richer in Si, Mg, Fe (and perhaps Na), in accordance with the fact that skarns are the only terrestrial type of occurrence of gehlenite-dominant melilite. The same minerals, monticellite and a granditic garnet, appear in the retrograde evolution of the Mg-rich gehlenite toward compositions richer in Al, the successive stages of which are clearly displayed, along with the final transformation to vesuvianite.
    [Show full text]
  • The Crystal Structure of Synthetic Soda Melilite, Canaaisi207 1. Introduction
    Zeitschrift fUr Kristallographie, Bd. 131, S. 314--321 (1970) The crystal structure of synthetic soda melilite, CaNaAISi207 By S. JOHN LOUISNATHAN Department of the Geophysical Sciences, The University of Chicago, Chicago (Received 25 August 1969) Auszug Die Kristallstruktur von synthetischem N atriummelilith wurde aus Dif- fraktometerdaten bis R = 5,10/0 verfeinert. Die Verbindung hat die gleiche Struktur wie die iibrigen, natiirlich vorkommenden Melilithe. Die Aluminium- und Siliciumatome sind in der Struktur geordnet, die Calcium- und Natrium- atome statistisch verteilt. Abstract The crystal structure of synthetic soda melilite was refined to R = 5.10/0 from three-dimensional diffractometer data. Soda melilite is isostructural with the other naturally-occuring melilites. Aluminum and Si atoms are ordered in the structure while Ca and N a atoms are disordered. 1. Introduction The literature on the melilite group of minerals with a discussion of the various proposed end-members was reviewed by CHRISTIE (1961 a and b; 1962). After prolonged discussion it is now generally accepted that CaNaAlSi207, called soda melilite, can be established as an end member, partly represented in some natural melilites. YODER (1964) showed that pure soda melilite is stable only at pressures in excess of 4 kbar. Its optical properties were determined by SCHAIRER, YODER and TILLEY (1965). The crystal-structure determination of soda melilite was under- taken as a part of a systematic structural study of the melilite group. The general composition of a melilite can be written as (Ca,Na)2 (Mg,Al)(Al,Si)207. Order-disorder of Mg,Al and Si among the tetra- hedral sites and diadochy of Ca, N a etc.
    [Show full text]
  • 10Са9(Fе3+,Fе2+)
    Расцветаева Р. К., Пущаровский Д Ю., Виноградова Р. А. , Леков И. В. Кристаллическая структу- ра дашкесанита // Кристаллография. 1996. Т. 41. ](2 1. С. 65-69. Чуканов Н. В., Конилов А. Н., Задов А. Е., Белаковский Д и., Леков И. В. НОВЫЙ амфибол калие- вый хлоропаргасит и условия его формирования в гранулитовом комплексе Сальных тундр (Кольский полуостров) // ЗВМО. 2002. N~2. С. 58-61. Burke Е. А. J, Leake В. Е. «Named Amphiboles», а new category of amphiboles recognized Ьу the [гпег- national Mineralogical Association (lMA) and the ргорег order of prefixes to Ье used in amphibole names /1 Canad. Miner. 2004. Yol. 42. Р. 1881-1883. Jacobson S. S. Dashkesanite: high-chlorine amphibole from St. Paul's rock, Equatorial Atlantic and Transcaucasia, USSR 11 Smithson. Contrib. Earth Sci. 1975. Yol. 14. Р. 17-20. Leake В. Е. Nomenclature of amphiboles 11Amer. Мшег, 1978. Уоl. 63. Р. 1025-1052. Leake В. Е. е. а. Nomenclature ofamphiboles: Report ofthe subcommittee оп amphiboles ofthe Intemati- опа! Mineralogical Association, Commission оп New Minerals and Mineral Names 11Canad. Miner. 1997. Уоl. 35. Р. 219-246. Leake В. Е. е. а. Nomenclature of amphiboles: additions and revisions to the Intemational Mineralogical Association's amphibole nomenclature 11Canad. Miner. 2003. Yol. 41. Р. 1355-1362. Nickel Е. н., Mandarino J. А. Procedures involving the IMA Commission оп New Minerals and Mineral Names, and guidelines оп mineral nomenclature 11 Canad. Miner. 1987. Уо1. 25. Р. 353-377. Oberti R., Ungaretti L., СаnnШо Е., Hawthorne F. С. The mechanism of chlor incorporation in атпрпйю- lе 11Amer. Miner. 1993. Yol. 78.
    [Show full text]
  • Iron Making in Argyll
    HISTORIC ARGYLL 2009 Iron smelting in Argyll, and the chemistry of the process by Julian Overnell, Kilmore. The history of local iron making, particularly the history of the Bonawe Furnace, is well described in the Historic Scotland publication of Tabraham (2008), and references therein. However, the chemistry of the processes used is not well described, and I hope to redress this here. The iron age started near the beginning of the first millennium BC, and by the end of the first millennium BC sufficient iron was being produced to equip thousands of troops in the Roman army with swords, spears, shovels etc. By then, local iron making was widely distributed around the globe; both local wood for making charcoal, and (in contrast to bronze making) local sources of ore were widely available. The most widely distributed ore was “bog iron ore”. This ore was, and still is, being produced in the following way: Vegetation in stagnant water starts to rot and soon uses up all the available oxygen, and so produces a water at the bottom with no oxygen (anaerobic) which also contains dissolved organic compounds. This solution is capable of slowly leaching iron from the soils beneath to produce a weak solution of dissolved iron (iron in the reduced, ferrous form). Under favourable conditions this solution percolates down until it meets some oxygen (or oxygenated water) at which point the iron precipitates (as the oxidized ferric form). This is bog iron ore and comprises a somewhat ill-defined brown compound called limonite (FeOOH.nH2O), often still associated with particles of sand etc.
    [Show full text]
  • Zeolites in Tasmania
    Mineral Resources Tasmania Tasmanian Geological Survey Record 1997/07 Tasmania Zeolites in Tasmania by R. S. Bottrill and J. L. Everard CONTENTS INTRODUCTION ……………………………………………………………………… 2 USES …………………………………………………………………………………… 2 ECONOMIC SIGNIFICANCE …………………………………………………………… 2 GEOLOGICAL OCCURRENCES ………………………………………………………… 2 TASMANIAN OCCURRENCES ………………………………………………………… 4 Devonian ………………………………………………………………………… 4 Permo-Triassic …………………………………………………………………… 4 Jurassic …………………………………………………………………………… 4 Cretaceous ………………………………………………………………………… 5 Tertiary …………………………………………………………………………… 5 EXPLORATION FOR ZEOLITES IN TASMANIA ………………………………………… 6 RESOURCE POTENTIAL ……………………………………………………………… 6 MINERAL OCCURRENCES …………………………………………………………… 7 Analcime (Analcite) NaAlSi2O6.H2O ……………………………………………… 7 Chabazite (Ca,Na2,K2)Al2Si4O12.6H2O …………………………………………… 7 Clinoptilolite (Ca,Na2,K2)2-3Al5Si13O36.12H2O ……………………………………… 7 Gismondine Ca2Al4Si4O16.9H2O …………………………………………………… 7 Gmelinite (Na2Ca)Al2Si4O12.6H2O7 ……………………………………………… 7 Gonnardite Na2CaAl5Si5O20.6H2O ………………………………………………… 10 Herschelite (Na,Ca,K)Al2Si4O12.6H2O……………………………………………… 10 Heulandite (Ca,Na2,K2)2-3Al5Si13O36.12H2O ……………………………………… 10 Laumontite CaAl2Si4O12.4H2O …………………………………………………… 10 Levyne (Ca2.5,Na)Al6Si12O36.6H2O ………………………………………………… 10 Mesolite Na2Ca2(Al6Si9O30).8H2O ………………………………………………… 10 Mordenite K2.8Na1.5Ca2(Al9Si39O96).29H2O ………………………………………… 10 Natrolite Na2(Al2Si3O10).2H2O …………………………………………………… 10 Phillipsite (Ca,Na,K)3Al3Si5O16.6H2O ……………………………………………… 11 Scolecite CaAl2Si3O10.3H20 ………………………………………………………
    [Show full text]