Ecophysiology of Amphibians: Information for Best Mechanistic Models
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Perspectives of Forest Ecophysiological Research in the Context of Mediterranean Basin M
Invest Agrar: Sist Recur For (2005) 14(3), 538-549 Perspectives of forest ecophysiological research in the context of Mediterranean Basin M. Fernández* and R. Tapias Departamento de Ciencias Agroforestales. Escuela Politécnica Superior. Huelva University. 21819 Palos de la Frontera. Huelva. Spain Abstract The mediterranean-climate regions are linked to the presence of the unusual global conditions of cool rainy winters and warm dry summers. Thus, the common drought periods, frost nights, summer heat and fires and soil erosion disturb plants life. These regions have a global significance by their floristic richness. Nevertheless, these areas have been more heavily impacted by human activities than almost any other ecosystem. The foreseeable global change will most likely influence plant life, and the Mediterranean Basin will be specially affected (e.g. a decrease in spring and winter rainfalls, an increase in mean annual temperature), affecting the delicate equilibrium of these ecosystems. Ecophysiology is a powerful tool to examine the controlling mechanisms behind the functioning, distribution, abundance, and productivity of forest tree species and their response to a changing environment. This science discipline can help to the forest management by physiological approaches of the response of plant processes to the biotic and abiotic constraints imposed by the environment. Key words: Tree research, forest ecosystems, plant physiological ecology. Resumen Perspectivas en la investigación ecofisiológica forestal en el contexto de la cuenca mediterránea Las regiones de clima mediterráneo se caracterizan por presentar las precipitaciones concentradas en la época fría y veranos secos y calurosos. Ello conduce a la frecuente aparición de períodos de sequía, heladas, altas temperaturas estivales, fuegos forestales y fenómenos de erosión edáfica que afectan la vida de las plantas. -
Plant Ecophysiology – Biology 2210 (Or ES 2223)
Fall, 2019 Plant Ecophysiology – Biology 2210 (or ES 2223) Young Spruces - Rockwell Kent Professor Barry Logan Laboratory Instructor: Jaret Reblin Lecture: MWF: 10:40 – 11:35AM Laboratory: Tu, W or Th: 1:15 – 4:10PM Roux 207 Druckenmiller 222 Barry Logan Jaret Reblin Druckenmiller 220A Druckenmiller 222A 725-3944 725-3166 [email protected] [email protected] Office Hours: Tu. 9:15-10:25AM & W. 4:15-5:15PM M. 11:40 – 12:40PM & Th. 11:00 – 12:00PM (or by appointment) (or by appointment) Prerequisites: Biology 1102, 1109 or recommendation of the Biology Department Fall, 2019 Plant Ecophysiology – Biology 2210 (or ES 2223) Course Description: Examines the functional attributes of plants and the manner in which they vary across the plant kingdom by the processes of evolution and acclimation. Topics of focus include photosynthesis and protection against high-light stress, the acquisition and distribution of water and mineral nutrients, and environmental and hormonal control of development. Special topics discussed may include plant parasitism, carnivory, the origins and present state of agriculture, plant responses to global climate change, plant life in extreme environments, and the impacts of local land-use history on plant communities. Contemporary research instrumentation is used in weekly laboratories, some conducted in the field, to enable first-hand exploration of phenomena discussed in lecture. Inquiry in the Natural Sciences & Mathematical, Computational and Statistical Reasoning requirements: This course can be completed to satisfy either the INS or MCSR Distribution Requirement. This course is dedicated to understanding plant function, distribution and responses to the environment. We will pursue this through lecture; guided problem solving and critical thinking; reading and discussion of journal articles describing original research, review articles & chapters; field excursions; and field/lab exercises designed to offer you opportunities to pursue authentic research using contemporary instrumentation. -
(Vell.) Mart. (Mimosaceae) Seeds Subjected to Hypoxia and Anoxia1
Revta brasil. Bot., São Paulo, V.23, n.1, p.51-57, mar. 2000 Ecophysiology and respiratory metabolism during the germination of Inga sessilis (Vell.) Mart. (Mimosaceae) seeds subjected to hypoxia and anoxia1 JANETE MAYUMI OKAMOTO2 and CARLOS ALFREDO JOLY2,3 (received: May 27, 1999; accepted: November 17, 1999) ABSTRACT - (Ecophysiology and respiratory metabolism during the germination of Inga sessilis (Vell.) Mart. (Mimosaceae) seeds subjected to hypoxia and anoxia). This paper presents a study on the respiratory metabolism of germinating seeds of Inga sessilis subjected to normoxia, hypoxia and anoxia. Although it is typical of environments where waterlogging seldom occurs, 40% of its seeds are able to germinate under hypoxia; yet, anoxia periods over 96 h are lethal to the seeds. Ethanol is the main product of the seeds anaerobic metabolism, but the steep increase in lactate after 24 h anoxia or 48 h hypoxia may explain the drop in seed viability. RESUMO - (Ecofisiologia da germinação e metabolismo respiratório de sementes de Inga sessilis (Vell.) Mart. (Mimosaceae) submetidas à hipoxia e anoxia). Os estudos referentes à germinação e ao metabolismo respiratório de sementes de Inga sessilis (Vell.) Mart. submetidas a normoxia, hipoxia e anoxia, mostraram que apesar de ser uma espécie típica de ambientes com solos bem drenados, 40% das sementes germinam sob hipoxia. A anoxia, por outro lado, é letal para as sementes. O etanol é o principal produto do metabolismo anaeróbico das sementes. A perda de viabilidade das sementes parece estar associada ao rápido aumento na concentração de lactato após 24 h de anoxia ou 48 h de hipoxia. -
Study of Natural Longlife Juvenility and Tissue Regeneration in Caudate Amphibians and Potential Application of Resulting Data in Biomedicine
Journal of Developmental Biology Review Study of Natural Longlife Juvenility and Tissue Regeneration in Caudate Amphibians and Potential Application of Resulting Data in Biomedicine Eleonora N. Grigoryan Kol’tsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia; [email protected]; Tel.: +7-(499)-1350052 Abstract: The review considers the molecular, cellular, organismal, and ontogenetic properties of Urodela that exhibit the highest regenerative abilities among tetrapods. The genome specifics and the expression of genes associated with cell plasticity are analyzed. The simplification of tissue structure is shown using the examples of the sensory retina and brain in mature Urodela. Cells of these and some other tissues are ready to initiate proliferation and manifest the plasticity of their phenotype as well as the correct integration into the pre-existing or de novo forming tissue structure. Without excluding other factors that determine regeneration, the pedomorphosis and juvenile properties, identified on different levels of Urodele amphibians, are assumed to be the main explanation for their high regenerative abilities. These properties, being fundamental for tissue regeneration, have been lost by amniotes. Experiments aimed at mammalian cell rejuvenation currently use various approaches. They include, in particular, methods that use secretomes from regenerating tissues of caudate amphibians and fish for inducing regenerative responses of cells. Such an approach, along with those developed on the basis of knowledge about the molecular and genetic nature and age dependence of regeneration, may become one more step in the development of regenerative medicine Citation: Grigoryan, E.N. Study of Keywords: salamanders; juvenile state; tissue regeneration; extracts; microvesicles; cell rejuvenation Natural Longlife Juvenility and Tissue Regeneration in Caudate Amphibians and Potential Application of Resulting Data in 1. -
Forage Plant Ecophysiology: a Discipline Come of Age
agriculture Editorial Forage Plant Ecophysiology: A Discipline Come of Age Cory Matthew 1,* and Lilian Elgalise Techio Pereira 2 1 Institute of Agriculture and Environment PN 433, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand 2 Animal Science Department, University of São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Av. Duque de Caxias Norte, 225, Pirassununga CEP 13635-900, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +64-6-356-9099 (ext. 84802); Fax: +64-6-350-5679 Received: 17 July 2017; Accepted: 24 July 2017; Published: 27 July 2017 1. Introduction The first use of the term “ecology” is credited to German scientist Ernst Haekel in 1866, who used the word to describe the total science of relationships between organisms and their environment [1]. Over time, the complexity of organism-environment interactions has led to the definition of specialist fields within the wider discipline of ecology, one of those being ‘ecophysiology’. The dictionary definition of ecophysiology is, “the science of the relationships between the physiology of organisms and their environment” [2]. The first use of the term ‘ecophysiology’ known to the authors was in 1956, by a French entomologist employed by L’Institut National de la Recherche Agronomique (INRA), Remy Chauvin [3]. Credit for forward thinking should be given to the staff of INRA, who in the mid-1980s established a centre at Lusignan initially known as the Station d’Ecophysiologie des Plantes Fourragères (SEPF), and later as the Unité d’Ecophysiologie des Plantes Fourragères (UEPF). In 2008, the UEPF was incorporated into the Unité de Recherche Pluridiciplinaire Prairies et Plantes Fourragères (URP3F) [4]. -
Urban Plant Ecophysiology
4 Urban Plant Ecophysiology Nancy Falxa Sonti* USDA Forest Service, Baltimore, Maryland Introduction understanding and managing the fluxes of heat, water, gases and nutrients that underlie Plants have long been cultivated to improve urban ecosystem science and that help make quality of life in dense human settlements, cities both liveable and sustainable (Alberti, mitigating the environmental stresses of ur- 2005). The past few decades have seen a rise ban living. Urban landscape elements include in research on plant community ecology, but gardens, trees and lawns designed to provide ecophysiological studies have lagged behind, aesthetic and functional benefits to local resi- possibly due to methodological challenges, or dents, as well as urban natural areas that re- due to the recent popularity of other topics in flect the native biome vegetation. Different plant biology (Beyschlag and Ryel, 2007). types of informal green space are typically A systematic approach to urban plant found in interstitial urban areas wherever ecophysiology that is tied to decision making plants find space, light, water and nutrients to can support efforts to improve both liveabil- grow (Rupprecht and Byrne, 2014). A grow- ity and sustainability of cities via plant physi- ing body of literature evaluates the health and ological function. Plants are the foundation of well- being benefits of these diverse types of most nature- based solutions to environmental, intentional and unintentional urban nature, social and economic challenges, and physi- and advocates for their inclusion in sustain- ological function is the engine that drives the able urban design (Konijnendijk et al., 2013; provision of associated ecosystem services. Kowarik, 2018; Threlfall and Kendal, 2018). -
Curriculum Vitae JERAMIAH J. SMITH
Curriculum Vitae JERAMIAH J. SMITH CURRENT ADDRESS University of Kentucky Department of Biology Lexington, KY 40506 Telephone: (859) 948-3674 Fax: (859) 257-1717 E-mail: [email protected] EDUCATION University of Kentucky, Ph.D. in Biology, 2007 Colorado State University, M.S. in Biology, 2002 Black Hills State University, B.S. in Biology, cum laude, 1998 APPOINTMENTS Associate Professor, University of Kentucky, Department of Biology (2017 - Current) Assistant Professor, University of Kentucky, Department of Biology (2011 - 2017) Postdoctoral Fellow, University of Washington Department of Genome Sciences and Benaroya Research Institute at Virginia Mason (2007 - 2011) Research Assistant, University of Kentucky (2002 - 2007) Research Fellow, University of Kentucky (2002 - 2003, 2006 - 2007) Research Assistant, Colorado State University (1999 - 2002) Teaching Assistant, Colorado State University (1999 - 2001) Undergraduate Research Assistant, Black Hills State University (1996 - 1999) GRANTS AND FELLOWSHIPS ACTIVE NIH R35 08/01/18 - 07/31/23 $1,852,090 Functional Analysis of Programmed Genome Rearrangement Goals - The major goals of this project are dissecting the underlying molecular mechanisms of programmed genome rearrangement and the functions of eliminated genes. Role - PI: 3.57 calendar months of effort per year. NSF MCB - Smith (PI) 07/15/18 - 06/30/22 $900,000 Reconstructing the Biology of Ancestral Vertebrate Genomes Goals - The major goals of this project are to characterize the evolution of genome biology and structure, over deep vertebrate ancestry. Role - PI: 1.0 calendar months of effort per year. NIH R24 - Voss (PI) 04/01/12 - 06/30/20 $4,124,739* Research Resources for Model Amphibians Goals - The major goals of this project are to support research using the Ambystoma mexicanum by developing a genome assembly and epigenomic datasets. -
Review Article Plant Phenotypic Plasticity in Response to Environmental Factors
Hindawi Publishing Corporation Advances in Botany Volume 2014, Article ID 208747, 17 pages http://dx.doi.org/10.1155/2014/208747 Review Article Plant Phenotypic Plasticity in Response to Environmental Factors Loretta Gratani Department of Environmental Biology, Sapienza University of Rome, P.le A. Moro 5 00185, Rome, Italy Correspondence should be addressed to Loretta Gratani; [email protected] Received 8 December 2013; Revised 21 February 2014; Accepted 24 March 2014; Published 22 April 2014 Academic Editor: Shoji Mano Copyright © 2014 Loretta Gratani. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Plants are exposed to heterogeneity in the environment where new stress factors (i.e., climate change, land use change, and invasiveness) are introduced, and where inter- and intraspecies differences may reflect resource limitation and/or environmental stress factors. Phenotypic plasticity is considered one of the major means by which plants can cope with environmental factor variability. Nevertheless, the extent to which phenotypic plasticity may facilitate survival under environmental condition changes still remains largely unknown because results are sometimes controversial. Thus, it is important to identify plant functional traits in which plasticity may play a determinant role in plant response to global change as well as on the ecological consequences at an ecosystem level for the competition between wild and invasive species, considering that species with a greater adaptive plasticity may be more likely to survive in novel environmental conditions. In the near future, it will be important to increase long-term studies on natural populations in order to understand plant response to environmental factor fluctuations including climate change. -
Rangeland Ecophysiology - Jenesio I
RANGE AND ANIMAL SCIENCES AND RESOURCES MANAGEMENT - Vol. I ‐ Rangeland Ecophysiology - Jenesio I. Kinyamario, Victor R. Squires RANGELAND ECOPHYSIOLOGY Jenesio I. Kinyamario University of Nairobi, School of Biological Sciences, Nairobi, Kenya Victor R. Squires University of Adelaide, Australia Keywords: C3, C4, photosynthesis, water use efficiency, nitrogen, productivity, rangeland management, crassulacean acid metabolism (CAM), physiological processes, CO2 fixation, Leaf area index (LAI), photosynthetically active radiation (PAR) Contents 1. Implications of plant physiological processes for rangeland ecosystems 1.1. Plant Level Interactions 1.2. Management Implications: 2. Photosynthesis 2.1. C3, C4 Pathways in Photosynthesis 2.2. Crassulacean Acid Metabolism (CAM) 3. Geographical and ecological distribution of different photosynthetic pathway plants 4. Comparative analysis of photosynthetic pathways 4.1. CO2 Compensation Point 4.2. Light Saturation 4.3. Light Compensation Point 4.4. Temperature Optima 4.5. Water Use Efficiency 4.6. Nitrogen Use Efficiency 4.7. Photorespiration 5. Photosynthetic capacity, quantum yield, and productivity 6. Implications for Rangeland Management 6.1. Herbivory 6.2. Carbohydrate Reserves 6.3. Drought and Overgrazing Combine to Cause Much Stress 6. 4. Climate Change 6.5. Invasive Species 6.6. Fires 7. ConclusionsUNESCO – EOLSS Glossary Bibliography SAMPLE CHAPTERS Biographical Sketches Summary Plants fix radiant energy through fixation of carbon into biomass that is consumed by animals. Therefore, the rates of carbon fixation and factors that determine these rates will determine the number of grazers a rangeland can be able to optimally carry (carrying capacity). Environmental factors that determine bioproductivity rates are ©Encyclopedia of Life Support Systems (EOLSS) RANGE AND ANIMAL SCIENCES AND RESOURCES MANAGEMENT - Vol. -
Importance of Ecophysiology When Choosing Functional Traits for Studying Communities and Ecosystems
Essays & Perspectives Natureza & Conservação 11(1):15-22, July 2013 Copyright© 2013 ABECO Handling Editor: José Alexandre F. Diniz Filho Brazilian Journal of Nature Conservation http://dx.doi.org/10.4322/natcon.2013.002 Going Back to Basics: Importance of Ecophysiology when Choosing Functional Traits for Studying Communities and Ecosystems Bruno H. P. Rosado1*, André T. C. Dias2 & Eduardo A. de Mattos3 1 Departamento de Ecologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro – UERJ, Rio de Janeiro, RJ, Brasil 2 Department of Ecological Science, Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, The Netherlands 3 Departamento de Ecologia, Centro de Ciências da Saúde – CCS, Instituto de Biologia, Universidade Federal do Rio de Janeiro – UFRJ, Rio de Janeiro, RJ, Brasil Abstract Striking progress has been made on conceptual and methodological aspects linking species traits to community and ecosystem responses to environmental change. However, the first step when using a trait-based approach (i.e., choosing the adequate traits reflecting species response to a given environmental driver) deserves much more attention. The first broad comparative studies, using worldwide datasets, have identified a number of traits that are, for example, good indicators of plant responses to water and nutrient availability, or good indicators of plant species defense against herbivory and plant effects on litter decomposition. Due to the successful explanation of global patterns of trait variation and the relatively easy measurements, some functional traits have become widely used. However, it is starting to be questioned whether the status of such “fashionable traits” is always justified; especially considering that particular traits might be the result of underlying traits that respond to distinct environmental factors. -
De Novo Transcriptome Analysis of Dermal Tissue from the Rough-Skinned Newt, Taricha Granulosa, Enables Investigation of Tetrodo
bioRxiv preprint doi: https://doi.org/10.1101/653238; this version posted May 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 De novo transcriptome analysis of dermal tissue from the 2 rough-skinned newt, Taricha granulosa, enables 3 investigation of tetrodotoxin expression 4 5 Haley C. Glass*1, Amanda D. Melin2, Steven M. Vamosi1 6 7 1University of Calgary, Department of Biological Sciences, 2500 University Dr. NW 8 Calgary, AB T2N1N4 Canada 9 2University of Calgary, Department of Anthropology & Archaeology and Department of 10 Medical Genetics, 2500 University Dr. NW Calgary, AB T2N1N4 Canada 11 12 Contact Information 13 Haley C. Glass*; [email protected] (*corresponding author) 14 Amanda D. Melin; [email protected] 15 Steven M. Vamosi; [email protected] 16 17 18 19 20 21 22 1 bioRxiv preprint doi: https://doi.org/10.1101/653238; this version posted May 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 23 Abstract 24 Background 25 Tetrodotoxin (TTX) is a potent neurotoxin used in anti-predator defense by several 26 aquatic species, including the rough-skinned newt, Taricha granulosa. While several 27 possible biological sources of newt TTX have been investigated, mounting evidence 28 suggests a genetic, endogenous origin. -
Plant Ecophysiology – Biology 2210 (Or ES 2223)
Fall, 2015 Plant Ecophysiology – Biology 2210 (or ES 2223) Marcus Hirn Professor Barry Logan Laboratory Instructor: Jaret Reblin Lecture: MWF: 10:30 – 11:25AM Laboratory: Wed. or Thurs.: 1:00 - 3:55PM Banister 106 Druckenmiller 222 Barry Logan Jaret Reblin Hawthorne-Longfellow 214 Druckenmiller 222A 725-3944 725-3166(w) & 443-8089(h) [email protected] [email protected] Office Hours: Tues. 4-5PM & Wed. 9-10AM Mon. 9:30-10:30AM & Tues. 2-3PM (or other times by appointment) (or other times by appointment) Prerequisites: Biology 1102, 1109 or recommendation of Biology Department Fall, 2015 Plant Ecophysiology – Biology 2210 (or ES 2223) Texts: Plant Physiology and Development, 6th edition (Taiz, et al.); Physiological Ecology of North American Desert Plants (Smith, et al.). These texts will be supplemented by articles and book chapters shared as PDFs (placed in a repository on the course Blackboard site). A reading schedule will be posted to the course Blackboard site. Course Description: Examines the functional attributes of plants and the manner in which they vary across the plant kingdom by the processes of evolution and acclimation. Topics of focus include photosynthesis and protection against high-light stress, the acquisition and distribution of water and mineral nutrients, and environmental and hormonal control of development. Special topics discussed may include plant parasitism, carnivory, the origins and present state of agriculture, plant responses to global climate change, plant life in extreme environments, and the impacts of local land-use history on plant communities. Contemporary research instrumentation is used in weekly laboratories, some conducted in the field, to enable first-hand exploration of phenomena discussed in lecture.