Cytotoxic Effects of Compounds Isolated from Ricinodendron Heudelotii

Total Page:16

File Type:pdf, Size:1020Kb

Cytotoxic Effects of Compounds Isolated from Ricinodendron Heudelotii molecules Article Cytotoxic Effects of Compounds Isolated from Ricinodendron heudelotii Omolara F. Yakubu 1,2, Abiodun H. Adebayo 1,*, Titilope M. Dokunmu 1 , Ying-Jun Zhang 2,* and Emeka E.J. Iweala 1 1 Department of Biochemistry, College of Science and Technology, Covenant University, Canaan Land, Ota PMB 1023, Ogun State, Nigeria; [email protected] (O.F.Y.); [email protected] (T.M.D.); [email protected] (E.E.J.I.) 2 State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany, Chinese Academy of Sciences. #132, Lanhei Road, Heilongtan, Kunming 650201, China * Correspondence: [email protected] (A.H.A.); [email protected] (Y.-J.Z.); Tel.: +234-80-3635-7197 (A.H.A.); +86-871-6522-3235 (Y.-J.Z.) Received: 10 August 2018; Accepted: 22 November 2018; Published: 2 January 2019 Abstract: This study was designed to explore the in vitro anticancer effects of the bioactive compounds isolated from Ricinodendron heudelotii on selected cancer cell lines. The leaves of the plant were extracted with ethanol and partitioned in sequence with petroleum ether, ethyl acetate, and n-butanol. The ethyl acetate fraction was phytochemically studied using thin layer chromatography (TLC) and column chromatography (CC). Structural elucidation of pure compounds obtained from the ethyl acetate fraction was done using mass spectra, 1H-NMR, and 13C-NMR analysis. The isolated compounds were subsequently screened using five different cancer cell lines: HL-60, SMMC-7721, A-549, MCF-7, SW-480, and normal lung epithelial cell line, BEAS-2B, to assess their cytotoxic effects. Nine compounds were isolated and structurally elucidated as gallic acid, gallic acid ethyl ester, corilagin, quercetin-3-O-rhamnoside, myricetin-3-O-rhamnoside, 1,4,6-tri-O-galloyl glucose, 3,4,6-tri-O-galloyl glucose, 1,2,6-tri-O-galloyl glucose, and 4,6-di-O-galloyl glucose. Corilagin exhibited the most cytotoxic activity with an IC50 value of 33.18 µg/mL against MCF-7 cells, which were comparable to cisplatin with an IC50 value of 27.43 µg/mL. The result suggests that corilagin isolated from R. heudelotii has the potential to be developed as an effective therapeutic agent against the growth of breast cancer cells. Keywords: anticancer; Ricinodendron heudelotii; chemoprevention 1. Introduction Cancer is a major cause of death across the globe, affecting all age groups [1]. The World Health Organization has predicted that cancer cases will increase from 14 million in 2012 to 22 million in the next four decades [2]. It has caused a great sense of burden both to individual lives and the society at large [3]. The absolute cure of cancer remains a big challenge despite available anticancer agents, awareness campaigns, and prevention strategies. Breast and prostate cancer have the highest incidence in women and men, respectively [4]. It is therefore pertinent to keep exploring for novel chemotherapeutic agents that can evade drug-resistant cancer cells. Natural or natural based anti-cancer drugs, such as vincristine, paclitaxel, bleomycin, and others, have been clinically used over the years [5]. Ricinodendron heudelotii (family: Euphorbiceae) plant parts have been used in traditional medicine to treat cough, stomach ailments, and pain related to child birth. Decoctions and infusions are mostly prepared from the leaves and stem bark. Traditional practitioners prescribe it for women suffering from miscarriages [6]. Phytochemical screening of the leaf extract revealed the Molecules 2019, 24, 145; doi:10.3390/molecules24010145 www.mdpi.com/journal/molecules Molecules 2019, 24, 145 2 of 11 presence of tannins, terpenoids, glycosides, and alkaloids, and it exhibited antimicrobial effects [7]. Two dinorditerpenoids, 1,2-dihydroheudelotinol and heudelotinone, and three other compounds, lupeol, E-ferullic acid octacosylate, and 3-methylmethylorsellinate, have been isolated from the stem bark and roots of R. heudelotii [8]. Seven new tetracyclic triterpenoids ricinodols with potential as 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitors has also been reported to be isolated from R. heudelotii [9]. Yakubu et al. [10] also reported the leaf extract to have regulatory effects on artemisinin toxicity when co-administered with artemisinin. This study aims to identify the chemical structure of isolated bioactive compounds in R. heudelotii as well as evaluate the compoundsfor in vitro cytotoxic activity against human leukemia (HL-60), human hepatocellular carcinoma (SMMC-7721), human lung adenocarcinoma (A549), human breast cancer cell (MCF-7), and colon adenocarcinoma (SW480) cell lines. 2. Results Nine compounds were isolated from the ethyl acetate fraction of R. heudelotii by employing column chromatography, including Sephadex LH-20 and MCI CHP20P gel. 2.1. Structural Elucidation of Isolated Compounds Structure elucidation of the isolated compounds was carried out using spectroscopic techniques: 1H- (600 MHz) and 13C-NMR (150 MHz) and DEPT along with 2D-NMR for some compounds (Figure1). Compound 1 was obtained as an off-white amorphous powder, showing a molecular − ion peak at m/z 170 [M] in the negative ESI-MS. The molecular formula, C7H6O5, was deduced from the combination of 1H-, 13C-NMR and DEPT spectroscopic data. Compound 1 was identified as gallic acid when the data was compared with those in the literature [11,12]. Compound 2, an off-white powder, showed a quasi-molecular ion peak at m/z 198 [M]− in the negative ESI-MS. 1 13 Combining with the H-, C-NMR and DEPT spectroscopic data, a molecular formula, C9H10O5, was deduced. Comparing the data with those in the literature, compound 2 was identified as gallic acid ethyl ester [13]. Compound 3 was obtained as a yellow amorphous powder, showing a molecular ion peak at m/z 633 [M]− in the negative ESI-MS. From 1H-, 13C-NMR, and DEPT spectroscopic data, the molecular formula of C27H22O18 was deduced. Comparing the data with those in the literature, compound 3 was identified as corilagin [14]. Compound 4 was obtained as a yellow amorphous powder. It showed a molecular ion peak at m/z 447 [M − H]− in the negative 1 13 ESI-MS while the molecular formula of C21H20O11, was deduced from the H-, C-NMR, and DEPT spectroscopic data. Likewise, by comparing the data with those in the literature, compound 4 was quercetin-3-O-rhamnoside [15,16]. Compound 5 was obtained as a pale yellow amorphous powder showing a quasi-molecular ion peak at m/z 463 [M − H]− in the negative ESI-MS, and the molecular 1 13 formula of C21H20O12, was deduced from H-, C-NMR, and DEPT spectroscopic data. By comparing the data with those in the literature, compound 5 was identified as myricetin-3-O-rhamnoside [12,17]. Compound 6 was obtained as an off white powder, showing a quasi-molecular ion peak at m/z 635 [M − H]− in the negative ESI-MS. Combining with the 1H-, 13C-NMR, and DEPT spectroscopic data, a molecular formula of C27H24O18 was deduced. By comparing the data with those in literature, compound 6 was identified as 1,4,6-tri-O-galloyl-β-D-glucose [18]. Compound 7 was obtained as a white amorphous powder. It showed a molecular ion peak at m/z 636 [M − H]− in the negative ESI-MS. Combining the 1H-, 13C-NMR, and DEPT spectroscopic data, a molecular formula of C27H24O18 was deduced. The data obtained correlates with those in the literature and compound 7 was identified as 3,4,6-tri-O-galloyl-D-glucose [19]. Compound 8, an off-white amorphous powder with a molecular ion peak at m/z 635 [M − H]− in the negative ESI-MS. A molecular formula of 1 13 C27H24O18, was deduced from the H-, C-NMR, and DEPT spectroscopic data. Comparing the data with those in the literature, compound 8 was identified as 1,2,6-tri-O-galloyl-β-D-glucose [20,21]. Compound 9 was obtained as a white amorphous powder showing a molecular ion peat at m/z 483 [M − H]− in the negative ESI-MS. A molecular formula was deduced from the 1H-, 13C-NMR, Molecules 2019, 24, 145 3 of 11 and DEPT spectroscopic data. By comparing the data with those in the literature, compound 9 was identified as 4,6-di-O-galloyl-D-glucose [22,23]. 2.2. Spectroscopic DataMolecules of Compounds 2018, 23, x FOR1–9 PEER REVIEW 3 of 11 − 1 Gallic acid (1): Off-white2.2.Spectroscopic amorphous Data of Compounds powder, C 17–H9 6O5, negative ESI-MS m/z: 170 [M] , H-NMR 13 (600 MHz, acetone-d6): δ 7.10Gallic (2H, acid s,(1 H-2,6),): Off-whiteC-NMR amorphous (150 powder, MHz, acetone-C7H6O5, negatived6): 121.0 ESI (C-1),-MS m/z 109.0: 170 (C-2,6),[M]−, 1H-NMR 145.9 (C-3,5), 138.3 (C-4),(600MHz, 168.0 acetone (C-7).-d6): δ 7.10 (2H, s, H-2,6), 13C-NMR (150MHz, acetone-d6): 121.0 (C-1), 109.0 (C-2,6), 145.9 (C-3,5), 138.3 (C-4), 168.0 (C-7). Gallic acid ethyl ester (2): Off-white amorphous powder, C9H10O5, negative ESI-MS m/z: − 198 [M]−, 1H-NMR (600 MHz,Gallic acetone-acid ethyld ester): δ (2):0.84Off-white (3H, t,amorphousJ = 7.1 Hz, powder, H-20), C 3.829H10O (2H,5, negative q, J = 7.1ESI- Hz,MS m/z H-1: 1980) [M] , 1 6 H 13 H-NMR (600MHz, acetone-d6): δH 0.84 (3H, t, J = 7.1 Hz, H-2′), 3.82 (2H, q, J = 7.1 Hz, H-1′) 7.05 (2H, 7.05 (2H, s, H-3,5); C-NMR (150 MHz, acetone-d6): δC 120.7 (C-1); 109.4 (C-2,6), 138.0 (C-4), 144.9 s, H-3,5); 13C-NMR (150 MHz, acetone-d6): δC 120.7(C-1); 109.4 (C-2,6), 138.0 (C-4), 144.9 (C-3, 5), 166.8 0 0 (C-3,5), 166.8 (C-7), 60.6(C-7), (C-1 60.6), (C 14.1-1′), (C-214.1 (C).-2′).
Recommended publications
  • Punicalin Alleviates OGD/R-Triggered Cell Injury Via TGF-Β-Mediated Oxidative Stress and Cell Cycle in Neuroblastoma Cells SH-SY5Y
    Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2021, Article ID 6671282, 11 pages https://doi.org/10.1155/2021/6671282 Research Article Punicalin Alleviates OGD/R-Triggered Cell Injury via TGF-β-Mediated Oxidative Stress and Cell Cycle in Neuroblastoma Cells SH-SY5Y Tiansong Yang,1 Qingyong Wang,2 Yuanyuan Qu,2 Yan Liu,1 Chuwen Feng,1 Yulin Wang,2 Weibo Sun,3 Zhongren Sun ,2 and Yulan Zhu4 1First affiliated hospital, Heilongjiang University of Chinese Medicine, Harbin, China 2Heilongjiang University of Chinese Medicine, Harbin, China 3Harbin Medical University, Harbin, China 4Department of Neurology, %e Second Affiliated Hospital of Harbin Medical University, Harbin, China Correspondence should be addressed to Zhongren Sun; [email protected] Received 21 October 2020; Revised 21 October 2020; Accepted 7 January 2021; Published 12 February 2021 Academic Editor: Muhammad Farrukh Nisar Copyright © 2021 Tiansong Yang et al. /is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Purpose. /e research aimed to identify the active component from Punica granatum L. to alleviate ischemia/reperfusion injury and clarify the underlying mechanism of the active component alleviating ischemia/reperfusion injury. Materials and Methods. /e SH-SY5Y cell model of oxygen-glucose deprivation/reoxygenation (OGD/R) was established to simulate the ischemia/ reperfusion injury. According to the strategy of bioassay-guided isolation, the active component of punicalin from Punica granatum L. was identified. Flow cytometry and Western blotting were employed to evaluate the effects of OGD/R and/or punicalin on cell cycle arrest.
    [Show full text]
  • Antioxidant Rich Extracts of Terminalia Ferdinandiana Inhibit the Growth of Foodborne Bacteria
    foods Article Antioxidant Rich Extracts of Terminalia ferdinandiana Inhibit the Growth of Foodborne Bacteria Saleha Akter 1 , Michael E. Netzel 1, Ujang Tinggi 2, Simone A. Osborne 3, Mary T. Fletcher 1 and Yasmina Sultanbawa 1,* 1 Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, 39 Kessels Rd, Coopers Plains, QLD 4108, Australia 2 Queensland Health Forensic and Scientific Services, 39 Kessels Rd, Coopers Plains, QLD 4108, Australia 3 CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD 4067, Australia * Correspondence: [email protected]; Tel.: +617-344-32471 Received: 26 June 2019; Accepted: 20 July 2019; Published: 24 July 2019 Abstract: Terminalia ferdinandiana (Kakadu plum) is a native Australian plant containing phytochemicals with antioxidant capacity. In the search for alternatives to synthetic preservatives, antioxidants from plants and herbs are increasingly being investigated for the preservation of food. In this study, extracts were prepared from Terminalia ferdinandiana fruit, leaves, seedcoats, and bark using different solvents. Hydrolysable and condensed tannin contents in the extracts were determined, as well as antioxidant capacity, by measuring the total phenolic content (TPC) and free radical scavenging activity using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay. Total phenolic content was higher in the fruits and barks with methanol extracts, containing the highest TPC, hydrolysable tannins, and DPPH-free radical scavenging capacity (12.2 2.8 g/100 g dry weight ± (DW), 55 2 mg/100 g DW, and 93% respectively). Saponins and condensed tannins were highest in ± bark extracts (7.0 0.2 and 6.5 0.7 g/100 g DW).
    [Show full text]
  • Pomegranate: Nutraceutical with Promising Benefits on Human Health
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 September 2020 Review Pomegranate: nutraceutical with promising benefits on human health Anna Caruso 1, +, Alexia Barbarossa 2,+, Antonio Tassone 1 , Jessica Ceramella 1, Alessia Carocci 2,*, Alessia Catalano 2,* Giovanna Basile 1, Alessia Fazio 1, Domenico Iacopetta 1, Carlo Franchini 2 and Maria Stefania Sinicropi 1 1 Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende (Italy); anna.caruso@unical .it (Ann.C.), [email protected] (A.T.), [email protected] (J.C.), [email protected] (G.B.), [email protected] (A.F.), [email protected] (D.I.), [email protected] (M.S.S.) 2 Department of Pharmacy‐Drug Sciences, University of Bari “Aldo Moro”, 70126, Bari (Italy); [email protected] (A.B.), [email protected] (Al.C.), [email protected] (A.C.), [email protected] (C.F.) + These authors equally contributed to this work. * Correspondence: [email protected] Abstract: The pomegranate, an ancient plant native to Central Asia, cultivated in different geographical areas including the Mediterranean basin and California, consists of flowers, roots, fruits and leaves. Presently, it is utilized not only for the exterior appearance of its fruit but above all, for the nutritional and health characteristics of the various parts composing this last one (carpellary membranes, arils, seeds and bark). The fruit, the pomegranate, is rich in numerous chemical compounds (flavonoids, ellagitannins, proanthocyanidins, mineral salts, vitamins, lipids, organic acids) of high biological and nutraceutical value that make it the object of study for many research groups, particularly in the pharmaceutical sector.
    [Show full text]
  • One Step Purification of Corilagin and Ellagic Acid from Phyllanthus
    PHYTOCHEMICAL ANALYSIS Phytochem. Anal. 13, 1–3 (2002) DOI: 10.1002/pca.608 One Step Purification of Corilagin and Ellagic Acid from Phyllanthus urinaria using High-Speed Countercurrent Chromatography Liu Jikai,1* Huang Yue,1 Thomas Henkel2 and Karlheinz Weber2 1Department of Phytochemistry, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming 650204, People s Republic of China 2Bayer AG, Pharma Research, D-42096 Wuppertal, Germany High-speed countercurrent chromatography (HSCCC) has been successfully applied to the preparative separation of corilagin and ellagic acid in one step from the Chinese medicinal plant Phyllanthus urinaria L. by use of direct and successive injections of a crude methanolic extract. Some aspects concerning the practical use of this technique in the described application are considered. Copyright # 2001 John Wiley & Sons, Ltd. Keywords: High-speed countercurrent chromatography (HSCCC); one step purification; corilagin; ellagic acid; Phyllanthus urinaria. INTRODUCTION al., 1993; Cheng et al., 1995) and infectious disease (anti- viral, Yoon et al., 2000). The present report deals with the one-step isolation of compounds 1 and 2 from the Most separations in the natural product field are methanolic extract of aerial parts of P. urinaria, and performed through chromatography on solid supports, demonstrates the rapid and efficient access of the but all-liquid techniques are currently attracting con- constituents using HSCCC. siderable interest. High-speed countercurrent chroma- tography (HSCCC) is an all-liquid technique that employs no solid support and functions using a multi- layer coil rotating at high speed in a device that creates a fluctuating acceleration field which produces successive bands of mixing and settling along a continuous tube (Conway, 1995).
    [Show full text]
  • Epilobium Angustifolium Isolated from Immunomodulatory Activity Of
    Immunomodulatory Activity of Oenothein B Isolated from Epilobium angustifolium Igor A. Schepetkin, Liliya N. Kirpotina, Larissa Jakiw, Andrei I. Khlebnikov, Christie L. Blaskovich, Mark A. Jutila This information is current as and Mark T. Quinn of September 23, 2021. J Immunol 2009; 183:6754-6766; Prepublished online 21 October 2009; doi: 10.4049/jimmunol.0901827 http://www.jimmunol.org/content/183/10/6754 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2009/10/21/jimmunol.090182 Material 7.DC1 http://www.jimmunol.org/ References This article cites 81 articles, 4 of which you can access for free at: http://www.jimmunol.org/content/183/10/6754.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 23, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Immunomodulatory Activity of Oenothein B Isolated from Epilobium angustifolium1 Igor A. Schepetkin,* Liliya N.
    [Show full text]
  • Biologically Plant-Based Pigments in Sustainable Innovations for Functional Textiles – the Role of Bioactive Plant Phytochemicals
    Heriot-Watt University Research Gateway Biologically plant-based pigments in sustainable innovations for functional textiles – The role of bioactive plant phytochemicals Citation for published version: Thakker, A & Sun, D 2021, 'Biologically plant-based pigments in sustainable innovations for functional textiles – The role of bioactive plant phytochemicals', Journal of Textile Science and Fashion Technology , vol. 8, no. 3, pp. 1-25. https://doi.org/10.33552/JTSFT.2021.08.000689 Digital Object Identifier (DOI): 10.33552/JTSFT.2021.08.000689 Link: Link to publication record in Heriot-Watt Research Portal Document Version: Publisher's PDF, also known as Version of record Published In: Journal of Textile Science and Fashion Technology General rights Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 25. Sep. 2021 ISSN: 2641-192X DOI: 10.33552/JTSFT.2021.08.000689 Journal of Textile Science & Fashion Technology Review Article Copyright © All rights are reserved by Alka Madhukar Thakker Biologically Plant-Based Pigments in Sustainable Innovations for Functional Textiles – The Role of Bioactive Plant Phytochemicals Alka Madhukar Thakker* and Danmei Sun School of Textiles and Design, Heriot-Watt University, UK *Corresponding author: Alka Madhukar Thakker, School of Textiles and Design, He- Received Date: March 29, 2021 riot-Watt University, TD1 3HF, UK.
    [Show full text]
  • Therapeutic Potential of Polyphenols from Epilobium Angustifolium (Fireweed)
    Therapeutic Potential of Polyphenols from Epilobium Angustifolium (Fireweed) Authors: Igor A. Schepetkin, Andrew G. Ramstead, Liliya N. Kirpotina, Jovanka M. Voyich, Mark A. Jutila, and Mark T. Quinn This is the peer reviewed version of the following article: [Schepetkin, IA, AG Ramstead, LN Kirpotina, JM Voyich, MA Jutila, and MT Quinn. "Therapeutic Potential of Polyphenols from Epilobium Angustifolium (Fireweed)." Phytotherapy Research 30, no. 8 (May 2016): 1287-1297.], which has been published in final form at https://dx.doi.org/10.1002/ptr.5648. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Made available through Montana State University’s ScholarWorks scholarworks.montana.edu Therapeutic Potential of Polyphenols from Epilobium Angustifolium (Fireweed) Igor A. Schepetkin, Andrew G. Ramstead, Liliya N. Kirpotina, Jovanka M. Voyich, Mark A. Jutila and Mark T. Quinn* Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA Epilobium angustifolium is a medicinal plant used around the world in traditional medicine for the treatment of many disorders and ailments. Experimental studies have demonstrated that Epilobium extracts possess a broad range of pharmacological and therapeutic effects, including antioxidant, anti-proliferative, anti-inflammatory, an- tibacterial, and anti-aging properties. Flavonoids and ellagitannins, such as oenothein B, are among the com- pounds considered to be the primary biologically active components in Epilobium extracts. In this review, we focus on the biological properties and the potential clinical usefulness of oenothein B, flavonoids, and other poly- phenols derived from E. angustifolium. Understanding the biochemical properties and therapeutic effects of polyphenols present in E.
    [Show full text]
  • Antifungal Activity and DNA Topoisomerase Inhibition of Hydrolysable Tannins from Punica Granatum L
    International Journal of Molecular Sciences Article Antifungal Activity and DNA Topoisomerase Inhibition of Hydrolysable Tannins from Punica granatum L. Virginia Brighenti 1, Ramona Iseppi 1 , Luca Pinzi 1, Annamaria Mincuzzi 2, Antonio Ippolito 2 , Patrizia Messi 1 , Simona Marianna Sanzani 3, Giulio Rastelli 1,* and Federica Pellati 1,* 1 Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103/287, 41125 Modena, Italy; [email protected] (V.B.); [email protected] (R.I.); [email protected] (L.P.); [email protected] (P.M.) 2 Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; [email protected] (A.M.); [email protected] (A.I.) 3 CIHEAM-Bari, Via Ceglie 9, 70010 Valenzano, Italy; [email protected] * Correspondence: [email protected] (G.R.); [email protected] (F.P.); Tel.: +39-059-2058564 (G.R.); +39-059-2058565 (F.P.) Abstract: Punica granatum L. (pomegranate) fruit is known to be an important source of bioactive phenolic compounds belonging to hydrolysable tannins. Pomegranate extracts have shown antifungal activity, but the compounds responsible for this activity and their mechanism/s of action have not been completely elucidated up to now. The aim of the present study was the investigation of the inhibition ability of a selection of pomegranate phenolic compounds (i.e., punicalagin, punicalin, ellagic acid, gallic acid) on both plant and human fungal pathogens. In addition, the biological target Citation: Brighenti, V.; Iseppi, R.; of punicalagin was identified here for the first time.
    [Show full text]
  • Corilagin in Cancer: a Critical Evaluation of Anticancer Activities and Molecular Mechanisms
    molecules Review Corilagin in Cancer: A Critical Evaluation of Anticancer Activities and Molecular Mechanisms Ashutosh Gupta 1 , Amit Kumar Singh 1 , Ramesh Kumar 1, Risha Ganguly 1, Harvesh Kumar Rana 1, Prabhash Kumar Pandey 1 , Gautam Sethi 2, Anupam Bishayee 3,* and Abhay K. Pandey 1,* 1 Department of Biochemistry, University of Allahabad, Allahabad 211 002, Uttar Pradesh, India; [email protected] (A.G.); [email protected] (A.K.S.); [email protected] (R.K.); [email protected] (R.G.); [email protected] (H.K.R.); [email protected] (P.K.P.) 2 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; [email protected] 3 Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA * Correspondence: [email protected] or [email protected] (A.B.); [email protected] or akpandey23@rediffmail.com (A.K.P.); Tel.: +1-941-782-5729 (A.B.); +91-983-952-1138 (A.K.P.) Academic Editor: Gianni Sacchetti Received: 28 August 2019; Accepted: 16 September 2019; Published: 19 September 2019 Abstract: Corilagin (β-1-O-galloyl-3,6-(R)-hexahydroxydiphenoyl-d-glucose), an ellagitannin, is one of the major bioactive compounds present in various plants. Ellagitannins belong to the hydrolyzable tannins, a group of polyphenols. Corilagin shows broad-spectrum biological, and therapeutic activities, such as antioxidant, anti-inflammatory, hepatoprotective, and antitumor actions. Natural compounds possessing antitumor activities have attracted significant attention for treatment of cancer. Corilagin has shown inhibitory activity against the growth of numerous cancer cells by prompting cell cycle arrest at the G2/M phase and augmented apoptosis.
    [Show full text]
  • Ellagitannins As Active Constituents of Medicinal Plants
    Review 117 Ellagitannins as Active Constituents of Medicinal Plants Takuo Okuda'2, Takashi Yoshida', and Tsutomu Hatano' Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700, Japan 2Addressfor correspondence Received: September 17, 1988 regarded as intractable mixtures having unfavorable biological Abstract activities, regardless of the structural differences among each tannin, the recent isolation and structural determination of a Isolation and structure determination, ac- number of ellagitannins, including their oligomers among companied by measurement of various biological activities which agrimonlin was the first one (2, 3), aided by the progress of each isolated tannin, particularly of ellagitannins, have in analysis methods (4) and in screening procedures for biolog- brought about a marked change in the concept of tannins as ical activities of each tannin thus brought about a marked active constituents of medicinal plants. Their biological ac- change in the concept of tannins. Ellagic acid, which has re- tivities should now be discussed on the basis of the struc- cently been a topic of interest because of its anti-carcinogenic tural differences among each tannin, in a way similar to that activity (5), should be considered as a compound derived from of the other types of natural organic compounds. The anti- ellagitannins, since ellagic acid is mostly produced by a hy- tumor activity exclusively exhibited by several oligomeric el- drolysis of ellagitannins taking place during their extraction lagitannins,
    [Show full text]
  • Longan (Euphoria Longana Lam.) Fruit
    Identification and Quantification of Polyphenolic Compounds in Longan (Euphoria longana Lam.) Fruit NUCHANART RANGKADILOK,† LUKSAMEE WORASUTTAYANGKURN,† RICHARD N. BENNETT,‡ AND JUTAMAAD SATAYAVIVAD*,†,§ Laboratory of Pharmacology, Chulabhorn Research Institute (CRI), Vipavadee-Rangsit Highway, Laksi, Bangkok 10210, Thailand, Nutrition Division, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK, and Department of Pharmacology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand Regular consumption of fruit and vegetables is associated with a lower risk of some chronic diseases including various forms of cancer and cardiovascular diseases. The health-promoting potential of these foods may be due, in part, to the phytochemical bioactive compounds present in the plants. Fruit of Euphoria longana Lam. (longan) are consumed throughout Asia and are a major crop in Thailand. In the present study phytochemicals were extracted with 70% methanol from peel, pulp, and seed tissues of longan fruit, and the major components were identified as gallic acid, corilagin (an ellagitannin), and ellagic acid. A high-through-put reversed phase HPLC method was developed to determine the content of these three compounds in different parts of the longan fruit and among different cultivars. The analyses showed that there was a large variation in the contents of gallic acid, corilagin, and ellagic acid in different plant tissues and cultivars. Seed contained the highest levels of the three phenolics, and pulp contained the lowest. Among commercial cultivars, Biewkiew and Edor contained the highest levels of gallic and ellagic acid while Srichompoo contained the highest content of corilagin. These three cultivars may be used in directed breeding and cultivation programs and to develop concentrated longan seed extracts to promote good health.
    [Show full text]
  • Plant-Derived Polyphenols Interact with Staphylococcal Enterotoxin a and Inhibit Toxin Activity
    RESEARCH ARTICLE Plant-Derived Polyphenols Interact with Staphylococcal Enterotoxin A and Inhibit Toxin Activity Yuko Shimamura1, Natsumi Aoki1, Yuka Sugiyama1, Takashi Tanaka2, Masatsune Murata3, Shuichi Masuda1* 1 School of Food and Nutritional Sciences, University of Shizuoka, 52–1 Yada, Suruga-ku, Shizuoka 422– 8526, Japan, 2 Graduate School of Biochemical Science, Nagasaki University, 1–14 Bukyo-machi, Nagasaki 852–8521, Japan, 3 Department of Nutrition and Food Science, Ochanomizu University, 2-1-1 a11111 Otsuka, Bunkyo-ku, Tokyo 112–8610, Japan * [email protected] Abstract OPEN ACCESS This study was performed to investigate the inhibitory effects of 16 different plant-derived polyphenols on the toxicity of staphylococcal enterotoxin A (SEA). Plant-derived polyphe- Citation: Shimamura Y, Aoki N, Sugiyama Y, Tanaka T, Murata M, Masuda S (2016) Plant-Derived nols were incubated with the cultured Staphylococcus aureus C-29 to investigate the effects Polyphenols Interact with Staphylococcal Enterotoxin of these samples on SEA produced from C-29 using Western blot analysis. Twelve polyphe- A and Inhibit Toxin Activity. PLoS ONE 11(6): nols (0.1–0.5 mg/mL) inhibited the interaction between the anti-SEA antibody and SEA. We e0157082. doi:10.1371/journal.pone.0157082 examined whether the polyphenols could directly interact with SEA after incubation of these Editor: Willem J.H. van Berkel, Wageningen test samples with SEA. As a result, 8 polyphenols (0.25 mg/mL) significantly decreased University, NETHERLANDS SEA protein levels. In addition, the polyphenols that interacted with SEA inactivated the Received: December 13, 2015 toxin activity of splenocyte proliferation induced by SEA.
    [Show full text]