Compositions and Methods for Improving
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arvola Joona Opinnayte.Pdf (3.130Mb)
Hydrolysoituvien tanniinien rakenteen vaikutus niiden makromolekyyliaffiniteettiin Joona Arvola Pro gradu -tutkielma Luonnonyhdistekemian tutkimusryhmä Kemian laitos Turun yliopisto Joulukuu 2019 Turun yliopiston laatujärjestelmän mukaisesti tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -järjestelmällä. _________________________________________________________________________ TURUN YLIOPISTO Kemian laitos ARVOLA, JOONA: Hydrolysoituvien tanniinien rakenteen vaikutus niiden makromolekyyliaffiniteettiin Pro gradu -tutkielma, 80 s., liitteet 10 s. Kemia Joulukuu 2019 Hydrolysoituvat tanniinit ovat rakeenteiltaan hyvin monipuolinen joukko luonnonyhdisteitä, joilla on havaittu olevan kyky sitoutua makromolekyyleihin. Eniten on tutkittu niiden kykyä sitoutua proteiineihin, mutta myös mm. polysakkaridien kanssa on tehty tutkimuksia. Kun hydrolysoituvat tanniinit sitoutuvat makromolekyyleihin, muodostavat ne liukoisia ja liukenemattomia tanniini–makromolekyyli -komplekseja, joita voidaan tutkia monilla erilaisilla menetelmillä. Eniten on tutkittu tanniini–proteiini -komplekseja, jotka ovat muodostuneet heikkojen vuorovaikutusten johdosta. Heikkoja vuorovaikutuksia ovat hydrofobiset voimat ja vetysidokset, jotka muodostuvat hydrolysoituvien tanniinien fenolisten ryhmien ja proteiinien hydrofobisten ja hydrofiilisten kohtien välille. Hydrolysoituvien tanniinien proteiiniaffiniteettiin vaikuttavat eniten fenolisten ryhmien lukumäärä niiden rakenteessa, mutta erilaiset fenoliset ryhmät vaikuttavat kuitenkin eri tavoin yhdisteiden -
Walnut Polyphenol
ORYZA OIL & FAT CHEMICAL CO., L TD. WALNUT POLYPHENOL Hepatoprotective & Anti-oxidative Extract For Metabolic Syndrome ■ WALNUT POLYPHENOL-P10,P30 (Powder,Food Grade) ■ WALNUT POLYPHENOL-WSP10 (Water-soluble Powder,Food Grade) ■ WALNUT POLYPHENOL-PC10,PC30 (Powder,Cosmetic Grade) ■ WALNUT POLYPHENOL-WSPC10 (Water-soluble Powder,Cosmetic Grade) ■ WALNUT POLYPHENOL-LC (Water-soluble Liquid,Cosmetic Grade) ■ WALNUT SEED OIL (Oil,Food & Cosmetic Grade) ORYZA OIL & FAT CHEMICAL CO., LTD ver. 1.0 HS WALNUT POLYPHENOL ver.1.0 HS WALNUT POLYPHENOL Hepatoprotective & Anti-oxidative Extract For Metabolic Syndrome 1. Introduction Recently, there is an increased awareness on metabolic syndrome – a condition characterized by a group of metabolic risk factors in one person. They include abdominal obesity, atherogenic dyslipidemia, elevated blood pressure, insulin resistance, prothrombotic state & proinflammatory state. The dominant underlying risk factors appear to be abdominal obesity and insulin resistance. In addition, non-alcoholic fatty liver disease (NAFLD) is the most commonly associated “liver” manifestation of metabolic syndrome which can progress to advance liver disease (e.g. cirrhosis) with associated morbidity and mortality. Lifestyle therapies such as weight loss significantly improve all aspects of metabolic syndrome, as well as reducing progression of NAFLD and cardiovascular mortality. Walnut (Juglans regia L. seed) is one the most popular nuts consumed in the world. It is loaded in polyunsaturated fatty acids – linoleic acid (LA), oleic acid and α-linolenic acid (ALA), an ω3 fatty acid. It has been used since ancient times and epidemiological studies have revealed that incorporating walnuts in a healthy diet reduces the risk of cardiovascular diseases. Recent investigations reported that walnut diet improves the function of blood vessels and lower serum cholesterol. -
Diabetic Neuropathy)
A PROSPECTIVE OPEN LABELLED NON RANDOMIZED PHASE-II CLINICAL TRIAL OF “KADUKKAI CHOORANAM FOR “AKKINI SELATHUMAM” (DIABETIC NEUROPATHY) Dissertation submitted to THE TAMILNADU DR. MGR. MEDICAL UNIVERSITY CHENNAI-32 For the partial fulfillment of the requirements to the Degree of DOCTOR OF MEDICINE (SIDDHA) BRANCH-I DEPARTMENT OF POTHU MARUTHUVAM DEPARTMENT OF POTHU MARUTHUVAM GOVERNMENT SIDDHA MEDICAL COLLEGE PALAYAMKOTTAI - 627 002 TAMIL NADU, INDIA. OCTOBER 2019 GOVERNMENT SIDDHA MEDICAL COLLEGE PALAYAMKOTTAI - 627 002 TAMIL NADU, INDIA. BONAFIDE CERTIFICATE This is to certify that the dissertation entitled “A PROSPECTIVE OPEN LABELLED NON RANDOMIZED PHASE-II CLINICAL TRIAL OF “KADUKKAI CHOORANAM FOR AKKINI SELATHUMAM (DIABETIC NEUROPATHY)” is abonafide work done by Dr.RAJENDRAM AJANTHAN (Reg. No.321611008) Govt. Siddha Medical College, Palayamkottai - 627 002 in partial fulfilment of the university rules and regulations for award for MD (S) POTHU MARUTHUVAM (BRANCH-I) under my guidance and supervision during the academic year OCTOBER 2016-2019. Supervisor and Guide Prof. Dr.A.MANOHARAN, MD (S),( Ph.D). Head, Department of PothuMaruthuvam, Govt. Siddha Medical College, Palayamkottai. Name and signature of the HOD Name and signature of the Principal Prof. Dr. A.MANOHARAN, MD (S),( Ph.D). Prof. Dr.S.Victoria,MD(S) Dept. of PothuMaruthuvam, Govt. Siddha Medical College Govt. Siddha Medical College, Palayamkottai. Palayamkottai. GOVERNMENT SIDDHA MEDICAL COLLEGE PALAYAMKOTTAI - 627 002 TAMIL NADU, INDIA. CERTIFICATE Certified that I have gone through the dissertation entitled “A PROSPECTIVE OPEN LABELLED NON RANDOMIZED PHASE-II CLINICAL TRIAL OF “KADUKKAI CHOORANAM FOR AKKINI SELATHUMAM (DIABETIC NEUROPATHY)” submitted by Dr.RAJENDRAM AJANTHAN (Reg. No.321611008) a student of final year MD(S) Department of Pothu Maruthuvam (Branch-I)of this college and the dissertation work has been carried out by the individual only. -
Chemical Composition, Antioxidant Activity, and Sensory Characterization of Commercial Pomegranate Juices
antioxidants Article Chemical Composition, Antioxidant Activity, and Sensory Characterization of Commercial Pomegranate Juices Sonia Esposto, Gianluca Veneziani, Agnese Taticchi, Stefania Urbani, Roberto Selvaggini, Beatrice Sordini * , Luigi Daidone, Giacomo Gironi and Maurizio Servili Department of Agricultural, Food and Environmental Sciences, University of Perugia, Via San Costanzo s.n.c., 06126 Perugia, Italy; [email protected] (S.E.); [email protected] (G.V.); [email protected] (A.T.); [email protected] (S.U.); [email protected] (R.S.); [email protected] (L.D.); [email protected] (G.G.); [email protected] (M.S.) * Correspondence: [email protected]; Tel.: +39-075-5857951; Fax: +39-075-5857916 Abstract: We undertook a qualitative and quantitative assessment of the bioactive compounds, volatile substances, sensory profile, and antioxidant activity of eight different commercial pomegranate juices (PJs) differing by cultivation area, processing (from concentrate (CPJ) or not (NCPJ)), and mi- crobial stabilization. Punicalins were the main ellagitannins, whereas the predominant anthocyanin was cyanidin 3,5-diglucoside, followed by cyanidin 3-glucoside. Total phenols, tannins, hydrolyzable tannins, and anthocyanins in the investigated juices ranged from 1379.9 to 3748.8 mg gallic acid equivalent (GAE)/L, 394.8 to 895.2 mg GAE/L, 150.8 to 2374.2 mg ellagic acid/L, and 0 to 281 mg • cyanidin 3-glucoside/L, respectively. Antioxidant activity, determined by DPPH , FRAP, and ABTS, was positively correlated with the total phenolic compounds and hydrolyzable tannins. Alcohols, Citation: Esposto, S.; Veneziani, G.; acids, and furans were the volatile groups that best described the differences between juices. -
Punicalin Alleviates OGD/R-Triggered Cell Injury Via TGF-Β-Mediated Oxidative Stress and Cell Cycle in Neuroblastoma Cells SH-SY5Y
Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2021, Article ID 6671282, 11 pages https://doi.org/10.1155/2021/6671282 Research Article Punicalin Alleviates OGD/R-Triggered Cell Injury via TGF-β-Mediated Oxidative Stress and Cell Cycle in Neuroblastoma Cells SH-SY5Y Tiansong Yang,1 Qingyong Wang,2 Yuanyuan Qu,2 Yan Liu,1 Chuwen Feng,1 Yulin Wang,2 Weibo Sun,3 Zhongren Sun ,2 and Yulan Zhu4 1First affiliated hospital, Heilongjiang University of Chinese Medicine, Harbin, China 2Heilongjiang University of Chinese Medicine, Harbin, China 3Harbin Medical University, Harbin, China 4Department of Neurology, %e Second Affiliated Hospital of Harbin Medical University, Harbin, China Correspondence should be addressed to Zhongren Sun; [email protected] Received 21 October 2020; Revised 21 October 2020; Accepted 7 January 2021; Published 12 February 2021 Academic Editor: Muhammad Farrukh Nisar Copyright © 2021 Tiansong Yang et al. /is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Purpose. /e research aimed to identify the active component from Punica granatum L. to alleviate ischemia/reperfusion injury and clarify the underlying mechanism of the active component alleviating ischemia/reperfusion injury. Materials and Methods. /e SH-SY5Y cell model of oxygen-glucose deprivation/reoxygenation (OGD/R) was established to simulate the ischemia/ reperfusion injury. According to the strategy of bioassay-guided isolation, the active component of punicalin from Punica granatum L. was identified. Flow cytometry and Western blotting were employed to evaluate the effects of OGD/R and/or punicalin on cell cycle arrest. -
Punica Granatum L
Research Article Studies on antioxidant activity of red, white, and black pomegranate (Punica granatum L.) peel extract using DPPH radical scavenging method Uswatun Chasanah[1]* 1 Department of Pharmacy, Faculty of Health Science, University of Muhammadiyah Malangg, Malang, East Java, Indonesia * Corresponding Author’s Email: [email protected] ARTICLE INFO ABSTRACT Article History Pomegranate (Punica granatum L.) has high antioxidant activity. In Received September 1, 2020 Indonesia, there are red pomegranate, white pomegranate, and black Revised January 7, 2021 pomegranate. The purpose of this study was to determine the antioxidant Accepted January 14, 2021 activity of red pomegranate peel extract, white pomegranate peel extract, Published February 1, 2021 and black pomegranate peel extract. The extracts prepared by ultrasonic maceration in 96% ethanol, then evaporated until thick extract was Keywords obtained and its antioxidant activity was determined using the DPPH Antioxidant radical scavenging method. This study showed that all pomegranate peel Black pomegranate extract varieties have potent antioxidant activity and the black Red pomegranate pomegranate peel extract has the highest antioxidant power. White pomegranate Peel extract DPPH Doi 10.22219/farmasains.v5i2.13472 1. INTRODUCTION Pomegranate (Punica granatum L.) belongs to the Puricaceae family, a plant originating from the Middle East (Rana, Narzary & Ranade, 2010). All parts of the pomegranate, such as fruit (fruit juice, fruit seeds, peel fruit), leaves, flowers, roots, and bark, have therapeutic effects such as neuroprotective, antioxidant, repair vascular damage, and anti-inflammatory. The clinical application of this plant used in cancers, atherosclerosis, hyperlipidemia, carotid artery stenosis, myocardial perfusion, periodontal disease, bacterial infections, ultraviolet radiation, erectile dysfunction, male infertility, neonatal hypoxic-ischemic brain injury, Alzheimer's disease, and obesity (Jurenka, 2008; Mackler, Heber & Cooper, 2013). -
A Review on Antihyperglycemic and Antihepatoprotective Activity of Eco-Friendly Punica Granatum Peel Waste
Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2013, Article ID 656172, 10 pages http://dx.doi.org/10.1155/2013/656172 Review Article A Review on Antihyperglycemic and Antihepatoprotective Activity of Eco-Friendly Punica granatum Peel Waste Sushil Kumar Middha,1 Talambedu Usha,2 and Veena Pande1 1 Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, Uttarakhand 263136, India 2 Department of Biotechnology & Biochemistry, Maharani Lakshmi Ammanni College for Women, Bangalore 560012, India Correspondence should be addressed to Veena Pande; veena [email protected] Received 28 December 2012; Revised 25 March 2013; Accepted 25 April 2013 Academic Editor: Edwin L. Cooper Copyright © 2013 Sushil Kumar Middha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Over the past decade, pomegranate (Punica granatum) is entitled as a wonder fruit because of its voluminous pharmacological properties. In 1830, P. g ranatum fruit was first recognized in United States Pharmacopeia; the Philadelphia edition introduced the rind of the fruit, the New York edition the bark of the root and further 1890 edition the stem bark was introduced. There are significant efforts and progress made in establishing thepharmacological mechanisms of peel (pericarp or rind) and the individual constituents responsible for them. This review provides an insight on the phytochemical components that contribute too antihyperglycemic, hepatoprotective, antihyperlipidemic effect, and numerous other effects of wonderful, economic, and eco- friendly pomegranate peel extract (PP). 1. Introduction containing sacs packed with a fleshy, juicy, red or whitish pulp. -
Comparative Studies of Corrosion Inhibitive Properties of Benzofuran
ISSN (Online) 2456-1290 International Journal of Engineering Research in Mechanical and Civil Engineering (IJERMCE) Vol 2, Issue 11,November 2017 Comparative studies of Corrosion Inhibitive Properties of Benzofuran-2-carboxylic acid & Amla Leaves Extract On Mild Steel in Acid Media [1] Abhishek Kumar, [2] Ankit Aggarwal, [3] Ashutosh Krishna Piyush, [4] Abhishek Kumar, [5] Aatiq ShafiqDar, [6] Angel Roy, [7] Dr Hari Krishna S [1][2][3][6] 1st Year Department Of Computer Science & Engineering, Sri SaiRam College Of Engineering, Bangalore, [4] 1st Year Department of Electrical & Electronics, Sri SaiRam College Of Engineering, Bangalore [5] 1st Year Department Of Mechanical Engineering, Sri SaiRam College Of Engineering, Bangalore [7] Assistant Professor, Department Of Chemistry, Sri SaiRam College Of Engineering, Bangalore Abstract:- The effects of Benzofuran-2-carboxylic acid (BF) & Amla (Emblica officinal is) leaves aqueous extract as a corrosion inhibitor, behaviour of mild steel has been investigated in hydrochloric acid solutions containing Experiments were performed by weight loss method for different time intervals and at room temperature. The inhibition efficiency of Benzofuran-2-carboxylic acid was found to increase with inhibitor concentration and also in the presence of sodium bromide and sodium iodide. Inhibition efficiency was found to increase with increasing concentration of inhibitor (0.2 g /l to 10 g/l) for 6 hours at room temperature. The maximum inhibition efficiency of Emblica officinal is leaving 87 % in 1 N Hydrochloric acid. From the comparative studies, it was investigated that the corrosion inhibition efficiency of Emblica officinal is leaving as aqueous extract is approximately equal to that of Benzofuran-2-carboxylic acid in hydrochloric acid. -
Anti-Candida Targets and Cytotoxicity of Casuarinin Isolated from Plinia Cauliflora Leaves in a Bioactivity-Guided Study
Molecules 2013, 18, 8095-8108; doi:10.3390/molecules18078095 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Anti-Candida Targets and Cytotoxicity of Casuarinin Isolated from Plinia cauliflora Leaves in a Bioactivity-Guided Study Tatiana M. Souza-Moreira 1, Juliana A. Severi 1,†, Keunsook Lee 2, Kanya Preechasuth 2, Emerson Santos 1, Neil A. R. Gow 2, Carol A. Munro 2, Wagner Vilegas 3 and Rosemeire C. L. R. Pietro 1,* 1 Department of Drugs and Medicines, School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Rodovia Araraquara-Jau, km 1, Araraquara, 14801-902, São Paulo, Brazil; E-Mails: [email protected] (T.M.S.M.); [email protected] (J.A.S.); [email protected] (E.S.) 2 Department of Microbiology, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, Scotland, UK; E-Mails: [email protected] (K.L.); [email protected] (K.P.); [email protected] (N.A.R.G.); [email protected] (C.A.M.) 3 Department of Organic Chemistry, Institute of Chemistry, UNESP-Univ Estadual Paulista, R. Francisco Degni s/n, Araraquara, 14800-900, São Paulo, Brazil; E-Mail: [email protected] (W.V.) † Nowadays this author is at Department of Pharmacy and Nutrition, Centro de Ciências Agrárias, UFES-Univ Federal do Espírito Santo, Alto Universitário, Guararema, 29500-000, Alegre, ES, Brazil. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-16-3301-6965; Fax: +55-16-3301-6990. Received: 27 May 2013; in revised form: 5 July 2013 / Accepted: 5 July 2013 / Published: 9 July 2013 Abstract: In addition to the bio-guided investigation of the antifungal activity of Plinia cauliflora leaves against different Candida species, the major aim of the present study was the search for targets on the fungal cell. -
Intereferents in Condensed Tannins Quantification by the Vanillin Assay
INTEREFERENTS IN CONDENSED TANNINS QUANTIFICATION BY THE VANILLIN ASSAY IOANNA MAVRIKOU Dissertação para obtenção do Grau de Mestre em Vinifera EuroMaster – European Master of Sciences of Viticulture and Oenology Orientador: Professor Jorge Ricardo da Silva Júri: Presidente: Olga Laureano, Investigadora Coordenadora, UTL/ISA Vogais: - Antonio Morata, Professor, Universidad Politecnica de Madrid - Jorge Ricardo da Silva, Professor, UTL/ISA Lisboa, 2012 Acknowledgments First and foremost, I would like to thank the Vinifera EuroMaster consortium for giving me the opportunity to participate in the M.Sc. of Viticulture and Enology. Moreover, I would like to express my appreciation to the leading universities and the professors from all around the world for sharing their scientific knowledge and experiences with us and improving day by day the program through mobility. Furthermore, I would like to thank the ISA/UTL University of Lisbon and the personnel working in the laboratory of Enology for providing me with tools, help and a great working environment during the experimental period of this thesis. Special acknowledge to my Professor Jorge Ricardo Da Silva for tutoring me throughout my experiment, but also for the chance to think freely and go deeper to the field of phenols. Last but most important, I would like to extend my special thanks to my family and friends for being a true support and inspiration in every doubt and decision. 1 UTL/ISA University of Lisbon “Vinifera Euromaster” European Master of Science in Viticulture&Oenology Ioanna Mavrikou: Inteferents in condensed tannins quantification with vanillin assay MSc Thesis: 67 pages Key Words: Proanthocyanidins; Interference substances; Phenols; Vanillin assay Abstract Different methods have been established in order to perform accurately the quantification of the condensed tannins in various plant products and beverages. -
Glucosidase Inhibition and Antioxidant Activity of an Oenological Commercial Tannin
Food Chemistry 215 (2017) 50–60 Contents lists available at ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem a-Glucosidase inhibition and antioxidant activity of an oenological commercial tannin. Extraction, fractionation and analysis by HPLC/ESI-MS/MS and 1H NMR ⇑ ⇑ Vera Muccilli , Nunzio Cardullo, Carmela Spatafora , Vincenzo Cunsolo, Corrado Tringali Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy article info abstract Article history: Two batches of the oenological tannin Tan’Activ R, (toasted oak wood – Quercus robur), were extracted Received 6 November 2015 with ethanol. A fractionation on XAD-16 afforded four fractions for each extract. Extracts and fractions Received in revised form 27 May 2016 were evaluated for antioxidant activity (DPPH), polyphenol content (GAE) and yeast a-glucosidase inhi- Accepted 25 July 2016 bitory activity. Comparable results were obtained for both columns, fractions X1B and X2B showing the Available online 25 July 2016 highest antioxidant activity. Fractions X1C and X2C notably inhibited a-glucosidase, with IC50 = 9.89 and 8.05 lg/mL, respectively. Fractions were subjected to HPLC/ESI-MS/MS and 1H NMR analysis. The main Keywords: phenolic constituents of both X1B and X2B were a monogalloylglucose isomer (1), a HHDP-glucose Plant polyphenols isomer (2), castalin (3) gallic acid (4), vescalagin (5), and grandinin (or its isomer roburin E, 6). X1C Oenological tannins Quercus robur and X2C showed a complex composition, including non-phenolic constituents. Fractionation of X2C gave a l a-Glucosidase inhibition a subfraction, with enhanced -glucosidase inhibitory activity (IC50 = 6.15 g/mL), with castalagin (7)as HPLC/ESI-MS/MS the main constituent. -
In Vitro Bioaccessibility, Human Gut Microbiota Metabolites and Hepatoprotective Potential of Chebulic Ellagitannins: a Case of Padma Hepatenr Formulation
Article In Vitro Bioaccessibility, Human Gut Microbiota Metabolites and Hepatoprotective Potential of Chebulic Ellagitannins: A Case of Padma Hepatenr Formulation Daniil N. Olennikov 1,*, Nina I. Kashchenko 1,: and Nadezhda K. Chirikova 2,: Received: 28 August 2015 ; Accepted: 30 September 2015 ; Published: 13 October 2015 1 Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, Sakh’yanovoy Street 6, Ulan-Ude 670-047, Russia; [email protected] 2 Department of Biochemistry and Biotechnology, North-Eastern Federal University, 58 Belinsky Street, Yakutsk 677-027, Russian; [email protected] * Correspondence: [email protected]; Tel.: +7-9021-600-627; Fax: +7-3012-434-243 : These authors contributed equally to this work. Abstract: Chebulic ellagitannins (ChET) are plant-derived polyphenols containing chebulic acid subunits, possessing a wide spectrum of biological activities that might contribute to health benefits in humans. The herbal formulation Padma Hepaten containing ChETs as the main phenolics, is used as a hepatoprotective remedy. In the present study, an in vitro dynamic model simulating gastrointestinal digestion, including dialysability, was applied to estimate the bioaccessibility of the main phenolics of Padma Hepaten. Results indicated that phenolic release was mainly achieved during the gastric phase (recovery 59.38%–97.04%), with a slight further release during intestinal digestion. Dialysis experiments showed that dialysable phenolics were 64.11% and 22.93%–26.05% of their native concentrations, respectively, for gallic acid/simple gallate esters and ellagitanins/ellagic acid, in contrast to 20.67% and 28.37%–55.35% for the same groups in the non-dialyzed part of the intestinal media.