2015 Lististahan Ng Mga Sakop Na Gamot (Formulary)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
House Bill No. 2191
SECOND REGULAR SESSION HOUSE BILL NO. 2191 99TH GENERAL ASSEMBLY INTRODUCED BY REPRESENTATIVE QUADE. 5582H.01I D. ADAM CRUMBLISS, Chief Clerk AN ACT To repeal section 579.060, RSMo, and to enact in lieu thereof one new section relating to controlled substances, with penalty provisions. Be it enacted by the General Assembly of the state of Missouri, as follows: Section A. Section 579.060, RSMo, is repealed and one new section enacted in lieu 2 thereof, to be known as section 579.060, to read as follows: 579.060. 1. A person commits the offense of unlawful sale, distribution, or purchase of 2 over-the-counter methamphetamine precursor drugs if he or she knowingly: 3 (1) Sells, distributes, dispenses, or otherwise provides any number of packages of any 4 drug product containing detectable amounts of ephedrine, levomethamphetamine, 5 phenylpropanolamine, propylhexedrine, or pseudoephedrine, or any of their salts, optical 6 isomers, or salts of optical isomers, in a total amount greater than nine grams to the same 7 individual within a thirty-day period, unless the amount is dispensed, sold, or distributed 8 pursuant to a valid prescription; or 9 (2) Purchases, receives, or otherwise acquires within a thirty-day period any number of 10 packages of any drug product containing any detectable amount of ephedrine, 11 levomethamphetamine, phenylpropanolamine, propylhexedrine, or pseudoephedrine, or any 12 of their salts or optical isomers, or salts of optical isomers in a total amount greater than nine 13 grams, without regard to the number of transactions, unless the amount is purchased, received, 14 or acquired pursuant to a valid prescription; or 15 (3) Purchases, receives, or otherwise acquires within a twenty-four-hour period any 16 number of packages of any drug product containing any detectable amount of ephedrine, 17 levomethamphetamine, phenylpropanolamine, propylhexedrine, or pseudoephedrine, or any EXPLANATION — Matter enclosed in bold-faced brackets [thus] in the above bill is not enacted and is intended to be omitted from the law. -
Investigating Interactions Between Phentermine, Dexfenfluramine, and 5-HT2C Agonists, on Food Intake in the Rat
Psychopharmacology DOI 10.1007/s00213-014-3829-2 ORIGINAL INVESTIGATION Investigating interactions between phentermine, dexfenfluramine, and 5-HT2C agonists, on food intake in the rat Andrew J. Grottick & Kevin Whelan & Erin K. Sanabria & Dominic P. Behan & Michael Morgan & Carleton Sage Received: 2 October 2014 /Accepted: 20 November 2014 # The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Conclusions Dex-phen synergy in the rat is caused by a Rationale Synergistic or supra-additive interactions between pharmacokinetic interaction, resulting in increased central the anorectics (dex)fenfluramine and phentermine have been concentrations of phentermine. reported previously in the rat and in the clinic. Studies with 5- HT2C antagonists and 5-HT2C knockouts have demonstrated Keywords Synergy . BELVIQ® . Lorcaserin . Isobologram . dexfenfluramine hypophagia in the rodent to be mediated by Fen-phen actions at the 5-HT2C receptor. Given the recent FDA approv- al of the selective 5-HT2C agonist lorcaserin (BELVIQ®) for weight management, we investigated the interaction between Introduction phentermine and 5-HT2C agonists on food intake. Objectives This study aims to confirm dexfenfluramine- Fenfluramine (Pondimin) and dexfenfluramine (Redux) are phentermine (dex-phen) synergy in a rat food intake assay, anorectic agents which act to enhance serotonergic transmission to extend these findings to other 5-HT2C agonists, and to both through inhibition of 5-HT reuptake by the parent com- determine whether pharmacokinetic interactions could ex- pounds, and through their major circulating des-ethylated me- plain synergistic findings with particular drug combinations. tabolite, (dex)norfenfluramine, which is a 5-HT reuptake inhib- Methods Isobolographic analyses were performed in which itor, a 5-HT and noradrenaline releasing agent, and a potent phentermine was paired with either dexfenfluramine, the 5- agonist at postsynaptic 5-HT2 receptors (Curzon et al. -
Use of Ceftaroline Fosamil in Children: Review of Current Knowledge and Its Application
Infect Dis Ther (2017) 6:57–67 DOI 10.1007/s40121-016-0144-8 REVIEW Use of Ceftaroline Fosamil in Children: Review of Current Knowledge and its Application Juwon Yim . Leah M. Molloy . Jason G. Newland Received: November 10, 2016 / Published online: December 30, 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com ABSTRACT infections, CABP caused by penicillin- and ceftriaxone-resistant S. pneumoniae and Ceftaroline is a novel cephalosporin recently resistant Gram-positive infections that fail approved in children for treatment of acute first-line antimicrobial agents. However, bacterial skin and soft tissue infections and limited data are available on tolerability in community-acquired bacterial pneumonia neonates and infants younger than 2 months (CABP) caused by methicillin-resistant of age, and on pharmacokinetic characteristics Staphylococcus aureus, Streptococcus pneumoniae in children with chronic medical conditions and other susceptible bacteria. With a favorable and those with invasive, complicated tolerability profile and efficacy proven in infections. In this review, the microbiological pediatric patients and excellent in vitro profile of ceftaroline, its mechanism of action, activity against resistant Gram-positive and and pharmacokinetic profile will be presented. Gram-negative bacteria, ceftaroline may serve Additionally, clinical evidence for use in as a therapeutic option for polymicrobial pediatric patients and proposed place in therapy is discussed. Enhanced content To view enhanced content for this article go to http://www.medengine.com/Redeem/ 1F47F0601BB3F2DD. Keywords: Antibiotic resistance; Ceftaroline J. Yim (&) fosamil; Children; Methicillin-resistant St. John Hospital and Medical Center, Detroit, MI, Staphylococcus aureus; Streptococcus pneumoniae USA e-mail: [email protected] L. -
The Stimulants and Hallucinogens Under Consideration: a Brief Overview of Their Chemistry and Pharmacology
Drug and Alcohol Dependence, 17 (1986) 107-118 107 Elsevier Scientific Publishers Ireland Ltd. THE STIMULANTS AND HALLUCINOGENS UNDER CONSIDERATION: A BRIEF OVERVIEW OF THEIR CHEMISTRY AND PHARMACOLOGY LOUIS S. HARRIS Dcparlmcnl of Pharmacology, Medical College of Virginia, Virginia Commonwealth Unwersity, Richmond, VA 23298 (U.S.A.) SUMMARY The substances under review are a heterogenous set of compounds from a pharmacological point of view, though many have a common phenylethyl- amine structure. Variations in structure lead to marked changes in potency and characteristic action. The introductory material presented here is meant to provide a set of chemical and pharmacological highlights of the 28 substances under con- sideration. The most commonly used names or INN names, Chemical Abstract (CA) names and numbers, and elemental formulae are provided in the accompanying figures. This provides both some basic information on the substances and a starting point for the more detailed information that follows in the individual papers by contributors to the symposium. Key words: Stimulants, their chemistry and pharmacology - Hallucinogens, their chemistry and pharmacology INTRODUCTION Cathine (Fig. 1) is one of the active principles of khat (Catha edulis). The structure has two asymmetric centers and exists as two geometric isomers, each of which has been resolved into its optical isomers. In the plant it exists as d-nor-pseudoephedrine. It is a typical sympathomimetic amine with a strong component of amphetamine-like activity. The racemic mixture is known generically in this country and others as phenylpropanolamine (dl- norephedrine). It is widely available as an over-the-counter (OTC) anti- appetite agent and nasal decongestant. -
Adverse Drug Reactions Sample Chapter
Sample copyright Pharmaceutical Press www.pharmpress.com 5 Drug-induced skin reactions Anne Lee and John Thomson Introduction Cutaneous drug eruptions are one of the most common types of adverse reaction to drug therapy, with an overall incidence rate of 2–3% in hos- pitalised patients.1–3 Almost any medicine can induce skin reactions, and certain drug classes, such as non-steroidal anti-inflammatory drugs (NSAIDs), antibiotics and antiepileptics, have drug eruption rates approaching 1–5%.4 Although most drug-related skin eruptions are not serious, some are severe and potentially life-threatening. Serious reac- tions include angio-oedema, erythroderma, Stevens–Johnson syndrome and toxic epidermal necrolysis. Drug eruptions can also occur as part of a spectrum of multiorgan involvement, for example in drug-induced sys- temic lupus erythematosus (see Chapter 11). As with other types of drug reaction, the pathogenesis of these eruptions may be either immunological or non-immunological. Healthcare professionals should carefully evalu- ate all drug-associated rashes. It is important that skin reactions are identified and documented in the patient record so that their recurrence can be avoided. This chapter describes common, serious and distinctive cutaneous reactions (excluding contact dermatitis, which may be due to any external irritant, including drugs and excipients), with guidance on diagnosis and management. A cutaneous drug reaction should be suspected in any patient who develops a rash during a course of drug therapy. The reaction may be due to any medicine the patient is currently taking or has recently been exposed to, including prescribed and over-the-counter medicines, herbal or homoeopathic preparations, vaccines or contrast media. -
(19) United States (12) Patent Application Publication (10) Pub
US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist. -
Reflections on Contagious Off-Label Use of Phentermine and Fenfluramine
University of Massachusetts Medical School eScholarship@UMMS Population and Quantitative Health Sciences Publications Population and Quantitative Health Sciences 2008 Weighing in 10 Years Later: Reflections on Contagious Off-Label Use of Phentermine and Fenfluramine Regina C. Grebla Brown University Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/qhs_pp Part of the Bioinformatics Commons, Biostatistics Commons, Epidemiology Commons, and the Health Services Research Commons Repository Citation Grebla RC, Waring ME. (2008). Weighing in 10 Years Later: Reflections on Contagious Off-Label Use of Phentermine and Fenfluramine. Population and Quantitative Health Sciences Publications. Retrieved from https://escholarship.umassmed.edu/qhs_pp/379 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Population and Quantitative Health Sciences Publications by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. Looking Back, Learning Forward History doesn’t repeat itself -- at best it sometimes rhymes. Mark Twain Weighing in 10 years later: Reflections on Contagious off-label use of Phentermine and Fenfluramine Contributed by Regina C. Grebla, MGA, MPH PhD(c) Molly E. Waring AM PhD(c) Graduate students, Brown Medical School The piece for this edition of Scribe focuses on the phentermine and fenfluramine story. This edition comes to you from two students in my advanced pharmacoepidemiology course, shortened significantly to meet the needs of this column. I welcome contributions which stay true to the theme of reflecting and learning about past challenges in pharmacoepidemiology. Please forward ideas to : [email protected] . -
Methylphenidate Versus Dexamphetamine in Children with Attention Deficit Hyperactivity Disorder: a Double-Blind, Crossover Trial
Methylphenidate Versus Dexamphetamine in Children With Attention Deficit Hyperactivity Disorder: A Double-blind, Crossover Trial Daryl Efron, FRACP; Frederick Jarman, FRACP; and Melinda Barker, Grad Dip Ed Psych ABSTRACT. Objective. To compare methylphenidate behavioral, academic, and social functioning. Many (MPH) and dexamphetamine (DEX) in a sample of chil- well-designed, placebo-controlled studies have dem- dren with attention deficit hyperactivity disorder onstrated beyond doubt the benefits of stimulants in (ADHD). the vast majority of children with ADHD.2–4 In a Method. A total of 125 children with ADHD received review of 110 studies on the effects of stimulant both MPH (0.3 mg/kg twice daily) and DEX (0.15 mg/kg drugs on more than 4200 children with ADHD, twice daily) for 2 weeks a double-blind, crossover study. 4 ; Outcome measures were Conners’ Parent Rating Scale– Barkley found that 75% of subjects were regarded Revised, Conners’ Teacher Rating Scale–Revised, a Par- as improved on stimulants. The mean placebo re- ent Global Perceptions questionnaire, the Continuous sponse was 39%. Performance Test, and the Barkley Side Effects Rating Methylphenidate (MPH) and dexamphetamine Scale. (DEX) are the two stimulants prescribed most fre- Results. There were significant group mean im- quently and have been shown to have similar types provements from baseline score on all measures for of positive effects in children with ADHD. However, both stimulants. On the Conners’ Teacher Rating Scal- it is not known whether one is more efficacious than e–Revised, response was greater on MPH than DEX on the other in terms of probability of producing a the conduct problems and hyperactivity factors, as well positive response, magnitude of response, quality of as on the hyperactivity index. -
Pharmacology and Toxicology of Amphetamine and Related Designer Drugs
Pharmacology and Toxicology of Amphetamine and Related Designer Drugs U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES • Public Health Service • Alcohol Drug Abuse and Mental Health Administration Pharmacology and Toxicology of Amphetamine and Related Designer Drugs Editors: Khursheed Asghar, Ph.D. Division of Preclinical Research National Institute on Drug Abuse Errol De Souza, Ph.D. Addiction Research Center National Institute on Drug Abuse NIDA Research Monograph 94 1989 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Alcohol, Drug Abuse, and Mental Health Administration National Institute on Drug Abuse 5600 Fishers Lane Rockville, MD 20857 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, DC 20402 Pharmacology and Toxicology of Amphetamine and Related Designer Drugs ACKNOWLEDGMENT This monograph is based upon papers and discussion from a technical review on pharmacology and toxicology of amphetamine and related designer drugs that took place on August 2 through 4, 1988, in Bethesda, MD. The review meeting was sponsored by the Biomedical Branch, Division of Preclinical Research, and the Addiction Research Center, National Institute on Drug Abuse. COPYRIGHT STATUS The National Institute on Drug Abuse has obtained permission from the copyright holders to reproduce certain previously published material as noted in the text. Further reproduction of this copyrighted material is permitted only as part of a reprinting of the entire publication or chapter. For any other use, the copyright holder’s permission is required. All other matieral in this volume except quoted passages from copyrighted sources is in the public domain and may be used or reproduced without permission from the Institute or the authors. -
Methamphetamine (Canadian Drug Summary)
www.ccsa.ca • www.ccdus.ca March 2020 Canadian Drug Summary Methamphetamine Key Points • The prevalence of methamphetamine use in the Canadian population is low (~0.2%). • Several jurisdictions report at least a three-fold increase in the use of methamphetamine over the past five years among individuals accessing treatment or harm reduction services. • Notable increases for rates of criminal violations involving methamphetamine have been observed in the last five years (2013–2018). Introduction Methamphetamine is a synthetic drug classified as a central nervous system (CNS) stimulant or psychostimulant. CNS stimulants cover a wide range of substances that act on the body by increasing the level of activity of the CNS and include caffeine, nicotine, amphetamine (e.g., Adderall®), methylphenidate (e.g., Ritalin®), MDMA (“ecstasy”), cocaine (including crack cocaine) and methamphetamine (including crystal meth).1,2 While both methamphetamine and amphetamine are psychostimulants and often grouped together, they are different drugs. A slight chemical modification of amphetamine produces methamphetamine, which has a different pharmacological profile that results in a larger release of certain neurochemicals in the brain and a stronger and more rapid physiological response. Some amphetamines are prescribed in Canada for attention-deficit hyperactivity disorder (ADHD) and narcolepsy (e.g., Adderall and Vyvanse®), but methamphetamine use is currently illegal. Methamphetamine is often made in illegal, clandestine laboratories with commonly available, inexpensive chemicals, such as ephedrine and pseudoephedrine, found in medications, among other sources. The use of these medications as precursor chemicals for methamphetamine led to stricter regulations introduced in Canada in 2006, limiting access to them by requiring they be kept behind the counter of pharmacies.3 Illegal production can be dangerous due to the toxicity of the chemicals used and the high risk of explosions. -
Amphetamine/Dextroamphetamine IR Generic
GEORGIA MEDICAID FEE-FOR-SERVICE STIMULANT AND RELATED AGENTS PA SUMMARY Preferred Non-Preferred Amphetamine/dextroamphetamine IR generic Adzenys ER (amphetamine ER oral suspension) Armodafinil generic Adzenys XR (amphetamine ER dispersible tab) Atomoxetine generic Amphetamine/dextroamphetamine ER (generic Concerta (methylphenidate ER/SA) Adderall XR) Dextroamphetamine IR tablets generic Aptensio XR (methylphenidate ER) Focalin (dexmethylphenidate) Clonidine ER generic Focalin XR (dexmethylphenidate ER) Cotempla XR (methylphenidate ER disintegrating Guanfacine ER generic tablet) Methylin oral solution (methylphenidate) Daytrana (methylphenidate TD patch) Methylphenidate CD/CR/ER generic by Lannett Desoxyn (methamphetamine) [NDCs 00527-####-##] and Kremers Urban [NDCs Dexmethylphenidate IR generic 62175-####-##] (generic Metadate CD) Dexmethylphenidate ER generic Methylphenidate IR generic Dextroamphetamine ER capsules generic Modafinil generic Dextroamphetamine oral solution generic Quillichew ER (methylphenidate ER chew tabs) Dyanavel XR (amphetamine ER oral suspension) Quillivant XR (methylphenidate ER oral suspension) Evekeo (amphetamine tablets) Vyvanse (lisdexamfetamine) Methamphetamine generic Zenzedi 5 mg, 10 mg IR tablets (dextroamphetamine) Methylphenidate IR chewable tablets generic Methylphenidate ER/SA (generic Concerta) Methylphenidate ER/LA/SR (generic Ritalin LA, Ritalin SR, Metadate ER) Methylphenidate ER/SA 72 mg generic Methylphenidate oral solution generic Mydayis (amphetamine/dextroamphetamine ER) Ritalin LA 10 mg -
A Comparison of Ritalin and Adderall: Efficacy and Time-Course in Children with Attention-Deficit/Hyperactivity Disorder
A Comparison of Ritalin and Adderall: Efficacy and Time-course in Children With Attention-deficit/Hyperactivity Disorder William E. Pelham, PhD*; Helen R. Aronoff, MD‡; Jill K. Midlam, MA*; Cheri J. Shapiro, PhD*; Elizabeth M. Gnagy, BS*; Andrea M. Chronis, BS*; Adia N. Onyango, BS*; Gregory Forehand, BS*; Anh Nguyen, BS*; and James Waxmonsky, MD‡ ABSTRACT. Objective. Very little research has fo- ratings were also made for evening behavior to assess cused on the efficacy of Adderall (Shire-Richwood Inc, possible rebound, and side effects ratings were obtained Florence, KY) in the treatment of children with attention- from parents, counselors, and teachers. Parents, counsel- deficit/hyperactivity disorder (ADHD), and no studies ors, and teachers also rated their perceptions of medica- have compared it with standardized doses of Ritalin tion status and whether they recommended the contin- (Novartis Pharmaceuticals, East Hanover, NJ). It is ued use of the medication given that day. Finally, a thought that Adderall has a longer half-life than Ritalin clinical team made recommendations for treatment tak- and might minimize the loss of efficacy that occurs 4 or 5 ing into account each child’s individual response. hours after Ritalin ingestion. We compared two doses of Results. Both drugs were routinely superior to pla- Ritalin and Adderall in the treatment of ADHD in chil- cebo and produced dramatic improvements in rates of dren in an acute study and assessed the medications’ negative behavior, academic productivity, and staff/par- time courses. ent ratings of behavior. The doses of Adderall that were Design. Within-subject, double-blind, placebo-con- assessed produced greater improvement than did the as- trolled, crossover design lasting 6 weeks.