(Adhd) Quantity Limitation Utilization Management Criteria
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(19) United States (12) Patent Application Publication (10) Pub
US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist. -
Methylphenidate Versus Dexamphetamine in Children with Attention Deficit Hyperactivity Disorder: a Double-Blind, Crossover Trial
Methylphenidate Versus Dexamphetamine in Children With Attention Deficit Hyperactivity Disorder: A Double-blind, Crossover Trial Daryl Efron, FRACP; Frederick Jarman, FRACP; and Melinda Barker, Grad Dip Ed Psych ABSTRACT. Objective. To compare methylphenidate behavioral, academic, and social functioning. Many (MPH) and dexamphetamine (DEX) in a sample of chil- well-designed, placebo-controlled studies have dem- dren with attention deficit hyperactivity disorder onstrated beyond doubt the benefits of stimulants in (ADHD). the vast majority of children with ADHD.2–4 In a Method. A total of 125 children with ADHD received review of 110 studies on the effects of stimulant both MPH (0.3 mg/kg twice daily) and DEX (0.15 mg/kg drugs on more than 4200 children with ADHD, twice daily) for 2 weeks a double-blind, crossover study. 4 ; Outcome measures were Conners’ Parent Rating Scale– Barkley found that 75% of subjects were regarded Revised, Conners’ Teacher Rating Scale–Revised, a Par- as improved on stimulants. The mean placebo re- ent Global Perceptions questionnaire, the Continuous sponse was 39%. Performance Test, and the Barkley Side Effects Rating Methylphenidate (MPH) and dexamphetamine Scale. (DEX) are the two stimulants prescribed most fre- Results. There were significant group mean im- quently and have been shown to have similar types provements from baseline score on all measures for of positive effects in children with ADHD. However, both stimulants. On the Conners’ Teacher Rating Scal- it is not known whether one is more efficacious than e–Revised, response was greater on MPH than DEX on the other in terms of probability of producing a the conduct problems and hyperactivity factors, as well positive response, magnitude of response, quality of as on the hyperactivity index. -
Pharmacology and Toxicology of Amphetamine and Related Designer Drugs
Pharmacology and Toxicology of Amphetamine and Related Designer Drugs U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES • Public Health Service • Alcohol Drug Abuse and Mental Health Administration Pharmacology and Toxicology of Amphetamine and Related Designer Drugs Editors: Khursheed Asghar, Ph.D. Division of Preclinical Research National Institute on Drug Abuse Errol De Souza, Ph.D. Addiction Research Center National Institute on Drug Abuse NIDA Research Monograph 94 1989 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Alcohol, Drug Abuse, and Mental Health Administration National Institute on Drug Abuse 5600 Fishers Lane Rockville, MD 20857 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, DC 20402 Pharmacology and Toxicology of Amphetamine and Related Designer Drugs ACKNOWLEDGMENT This monograph is based upon papers and discussion from a technical review on pharmacology and toxicology of amphetamine and related designer drugs that took place on August 2 through 4, 1988, in Bethesda, MD. The review meeting was sponsored by the Biomedical Branch, Division of Preclinical Research, and the Addiction Research Center, National Institute on Drug Abuse. COPYRIGHT STATUS The National Institute on Drug Abuse has obtained permission from the copyright holders to reproduce certain previously published material as noted in the text. Further reproduction of this copyrighted material is permitted only as part of a reprinting of the entire publication or chapter. For any other use, the copyright holder’s permission is required. All other matieral in this volume except quoted passages from copyrighted sources is in the public domain and may be used or reproduced without permission from the Institute or the authors. -
Methamphetamine (Canadian Drug Summary)
www.ccsa.ca • www.ccdus.ca March 2020 Canadian Drug Summary Methamphetamine Key Points • The prevalence of methamphetamine use in the Canadian population is low (~0.2%). • Several jurisdictions report at least a three-fold increase in the use of methamphetamine over the past five years among individuals accessing treatment or harm reduction services. • Notable increases for rates of criminal violations involving methamphetamine have been observed in the last five years (2013–2018). Introduction Methamphetamine is a synthetic drug classified as a central nervous system (CNS) stimulant or psychostimulant. CNS stimulants cover a wide range of substances that act on the body by increasing the level of activity of the CNS and include caffeine, nicotine, amphetamine (e.g., Adderall®), methylphenidate (e.g., Ritalin®), MDMA (“ecstasy”), cocaine (including crack cocaine) and methamphetamine (including crystal meth).1,2 While both methamphetamine and amphetamine are psychostimulants and often grouped together, they are different drugs. A slight chemical modification of amphetamine produces methamphetamine, which has a different pharmacological profile that results in a larger release of certain neurochemicals in the brain and a stronger and more rapid physiological response. Some amphetamines are prescribed in Canada for attention-deficit hyperactivity disorder (ADHD) and narcolepsy (e.g., Adderall and Vyvanse®), but methamphetamine use is currently illegal. Methamphetamine is often made in illegal, clandestine laboratories with commonly available, inexpensive chemicals, such as ephedrine and pseudoephedrine, found in medications, among other sources. The use of these medications as precursor chemicals for methamphetamine led to stricter regulations introduced in Canada in 2006, limiting access to them by requiring they be kept behind the counter of pharmacies.3 Illegal production can be dangerous due to the toxicity of the chemicals used and the high risk of explosions. -
Amphetamine/Dextroamphetamine IR Generic
GEORGIA MEDICAID FEE-FOR-SERVICE STIMULANT AND RELATED AGENTS PA SUMMARY Preferred Non-Preferred Amphetamine/dextroamphetamine IR generic Adzenys ER (amphetamine ER oral suspension) Armodafinil generic Adzenys XR (amphetamine ER dispersible tab) Atomoxetine generic Amphetamine/dextroamphetamine ER (generic Concerta (methylphenidate ER/SA) Adderall XR) Dextroamphetamine IR tablets generic Aptensio XR (methylphenidate ER) Focalin (dexmethylphenidate) Clonidine ER generic Focalin XR (dexmethylphenidate ER) Cotempla XR (methylphenidate ER disintegrating Guanfacine ER generic tablet) Methylin oral solution (methylphenidate) Daytrana (methylphenidate TD patch) Methylphenidate CD/CR/ER generic by Lannett Desoxyn (methamphetamine) [NDCs 00527-####-##] and Kremers Urban [NDCs Dexmethylphenidate IR generic 62175-####-##] (generic Metadate CD) Dexmethylphenidate ER generic Methylphenidate IR generic Dextroamphetamine ER capsules generic Modafinil generic Dextroamphetamine oral solution generic Quillichew ER (methylphenidate ER chew tabs) Dyanavel XR (amphetamine ER oral suspension) Quillivant XR (methylphenidate ER oral suspension) Evekeo (amphetamine tablets) Vyvanse (lisdexamfetamine) Methamphetamine generic Zenzedi 5 mg, 10 mg IR tablets (dextroamphetamine) Methylphenidate IR chewable tablets generic Methylphenidate ER/SA (generic Concerta) Methylphenidate ER/LA/SR (generic Ritalin LA, Ritalin SR, Metadate ER) Methylphenidate ER/SA 72 mg generic Methylphenidate oral solution generic Mydayis (amphetamine/dextroamphetamine ER) Ritalin LA 10 mg -
A Comparison of Ritalin and Adderall: Efficacy and Time-Course in Children with Attention-Deficit/Hyperactivity Disorder
A Comparison of Ritalin and Adderall: Efficacy and Time-course in Children With Attention-deficit/Hyperactivity Disorder William E. Pelham, PhD*; Helen R. Aronoff, MD‡; Jill K. Midlam, MA*; Cheri J. Shapiro, PhD*; Elizabeth M. Gnagy, BS*; Andrea M. Chronis, BS*; Adia N. Onyango, BS*; Gregory Forehand, BS*; Anh Nguyen, BS*; and James Waxmonsky, MD‡ ABSTRACT. Objective. Very little research has fo- ratings were also made for evening behavior to assess cused on the efficacy of Adderall (Shire-Richwood Inc, possible rebound, and side effects ratings were obtained Florence, KY) in the treatment of children with attention- from parents, counselors, and teachers. Parents, counsel- deficit/hyperactivity disorder (ADHD), and no studies ors, and teachers also rated their perceptions of medica- have compared it with standardized doses of Ritalin tion status and whether they recommended the contin- (Novartis Pharmaceuticals, East Hanover, NJ). It is ued use of the medication given that day. Finally, a thought that Adderall has a longer half-life than Ritalin clinical team made recommendations for treatment tak- and might minimize the loss of efficacy that occurs 4 or 5 ing into account each child’s individual response. hours after Ritalin ingestion. We compared two doses of Results. Both drugs were routinely superior to pla- Ritalin and Adderall in the treatment of ADHD in chil- cebo and produced dramatic improvements in rates of dren in an acute study and assessed the medications’ negative behavior, academic productivity, and staff/par- time courses. ent ratings of behavior. The doses of Adderall that were Design. Within-subject, double-blind, placebo-con- assessed produced greater improvement than did the as- trolled, crossover design lasting 6 weeks. -
Stimulant and Related Medications: US Food and Drug
Stimulant and Related Medications: U.S. Food and Drug Administration-Approved Indications and Dosages for Use in Adults The therapeutic dosing recommendations for stimulant and related medications are based on U.S. Food and Drug Administration (FDA)-approved product labeling. Nevertheless, the dosing regimen is adjusted according to a patient’s individual response to pharmacotherapy. The FDA-approved dosages and indications for the use of stimulant and related medications in adults are provided in this table. All medication doses listed are for oral administration. Information on the generic availability of the stimulant and related medications can be found by searching the Electronic Orange Book at https://www.accessdata.fda.gov/scripts/cder/ob/default.cfm on the FDA website. Generic Medication Indication Dosing Information Other Information Availability amphetamine/dextroamphetamine ADHD Initial dose: May increase daily dose by 5 mg at Yes mixed salts[1] 5 mg once or twice a day; weekly intervals until optimal response Maximum dose: 40 mg per day is achieved. Only in rare cases will it be necessary to exceed a total of 40 mg per day. amphetamine/dextroamphetamine narcolepsy Initial dose: 10 mg per day; May increase daily dose by 10 mg at Yes mixed salts Usual dose: weekly intervals until optimal response 5 mg to 60 mg per day is achieved. Take first dose in divided doses upon awakening. amphetamine/dextroamphetamine ADHD Recommended dose: Patients switching from regular-release Yes mixed salts ER*[2] 20 mg once a day amphetamine/dextroamphetamine mixed salts may take the same total daily dose once a day. armodafinil[3] narcolepsy Recommended dose: Take as a single dose in the morning. -
What Every Clinician Should Know Before Starting a Patient on Meds
CARING FOR CHILDREN WITH ADHD: A RESOURCE TOOLKIT FOR CLINICIANS, 2ND EDITION Basic Facts: What Every Clinician Should Know Before Starting a Patient on Medication Studies have shown that treatment for attention-deficit/ • If you reach the maximum recommended dose without • hyperactivity disorder (ADHD) with medication is effective in noticeable improvement in symptoms, try a different stimulant treating the symptoms of ADHD alone or in combination with medication class. Approximately 80% of children will respond to behavioral interventions. at least 1 of the 2 stimulant classes tried. • Stimulant medications also improve academic productivity but • When changing medications, be careful about the dose not cognitive abilities or academic skills. equivalence of different stimulant medication classes; in general, equivalent doses for dexmethylphenidate and Stimulants can help reduce oppositional, aggressive, impulsive, • amphetamine-based stimulants are approximately half of a and delinquent behaviors in some children. methylphenidate dose. Several types of medications are Food and Drug Administration Non-stimulant medications may require 2 or more weeks to see • (FDA)-approved for the treatment of ADHD. • effects, so you should titrate up more slowly than you would • Stimulant medications: methylphenidate, dexmethylphenidate, for stimulant medications. Obtaining follow-up rating scales is dextroamphetamine, mixed amphetamine salts, even more important than for stimulant medications because lisdexamfetamine changes are more gradual. • Non-stimulant medications: atomoxetine, and extended-release • Managing side effects effectively can improve adherence to and guanfacine and clonidine satisfaction with stimulant medications. When choosing which stimulant and dose to start first, consider • Common side effects to discuss with families include • stomachache, headache, decreased appetite, sleep problems, Family preference and experience with the medication, including • and behavioral rebound. -
Alcohol Mixed with Other Drugs
Alcohol Mixed with Other Drugs Stimulants Stimulants or “uppers”: Drugs that temporarily +increase alertness and energy Examples: Adderall, Ritalin, cocaine, methamphetamine FOCUS: Alcohol + Adderall Adderall: Used to treat ADHD and narcolepsy. Some students misuse Adderall in hopes it will help them study. “Misuse” is defined as taking a medication that was not prescribed to you, taking more Alcohol than what was prescribed to you or taking it for a dierent purpose than prescribed. Eects: Because alcohol is a depressant Use CUPS to remember the and Adderall is a stimulant, Adderall will symptoms of alcohol poisoning: mask alcohol’s eects. Mixing alcohol with • Cold, clammy, pale or bluish skin. a stimulant makes you less aware of alcohol's • Unconscious or unable to be roused. intoxicating eects, which can result in an • Puking repeatedly or uncontrollably. overdose or death. Additionally, mixing alcohol with Adderall (or any other stimulant) • Slow or irregular breathing. can cause an irregular heartbeat and cause cardiovascular complications. Stat: 4.3 percent of UC Davis undergraduates reported using a prescription stimulant in the last 12 months that was not prescribed to them. Sedative Depressants or “downers”: Sedating drugs +that reduce stimulation Examples: opiates, Xanax, Valium FOCUS: Alcohol + Opiates/Opioids Opiates: A group of drugs that are used for treating pain -examples: heroin, morphine, codeine, oxycontin, vicodin, fentanyl Alcohol Eects: When alcohol and opioids are Symptoms: taken at the same time, the sedative • Slow or irregular breathing eects of both drugs will magnify. This • Lowered pulse and can depress or even stop involuntary blood pressure functions, such as breathing, and will • Unconscious or unable increase the risk of overdose and death. -
Phenylmorpholines and Analogues Thereof Phenylmorpholine Und Analoge Davon Phenylmorpholines Et Analogues De Celles-Ci
(19) TZZ __T (11) EP 2 571 858 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07D 265/30 (2006.01) A61K 31/5375 (2006.01) 20.06.2018 Bulletin 2018/25 A61P 25/24 (2006.01) A61P 25/16 (2006.01) A61P 25/18 (2006.01) (21) Application number: 11723158.9 (86) International application number: (22) Date of filing: 20.05.2011 PCT/US2011/037361 (87) International publication number: WO 2011/146850 (24.11.2011 Gazette 2011/47) (54) PHENYLMORPHOLINES AND ANALOGUES THEREOF PHENYLMORPHOLINE UND ANALOGE DAVON PHENYLMORPHOLINES ET ANALOGUES DE CELLES-CI (84) Designated Contracting States: • DECKER, Ann Marie AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Durham, North Carolina 27713 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR (74) Representative: Hoeger, Stellrecht & Partner Patentanwälte mbB (30) Priority: 21.05.2010 US 347259 P Uhlandstrasse 14c 70182 Stuttgart (DE) (43) Date of publication of application: 27.03.2013 Bulletin 2013/13 (56) References cited: WO-A1-2004/052372 WO-A1-2008/026046 (73) Proprietors: WO-A1-2008/087512 DE-B- 1 135 464 • Research Triangle Institute FR-A- 1 397 563 GB-A- 883 220 Research Triangle Park, North Carolina 27709 GB-A- 899 386 US-A1- 2005 267 096 (US) • United States of America, as represented by • R.A. GLENNON ET AL.: "Beta-Oxygenated The Secretary, Department of Health and Human Analogues of the 5-HT2A Serotonin Receptor Services Agonist Bethesda, Maryland 20892-7660 (US) 1-(4-Bromo-2,5-dimethoxyphenyl)-2-aminopro pane", JOURNAL OF MEDICINAL CHEMISTRY, (72) Inventors: vol. -
Chronic Amphetamine Exposure Causes Long Term Effects on Dopamine Uptake in Cultured Cells Nafisa Ferdous
University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2016 Chronic Amphetamine Exposure Causes Long Term Effects On Dopamine Uptake In Cultured Cells Nafisa Ferdous Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Ferdous, Nafisa, "Chronic Amphetamine Exposure Causes Long Term Effects On Dopamine Uptake In Cultured Cells" (2016). Theses and Dissertations. 2016. https://commons.und.edu/theses/2016 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. CHRONIC AMPHETAMINE EXPOSURE CAUSES LONG TERM EFFECTS ON DOPAMINE UPTAKE IN CULTURED CELLS By Nafisa Ferdous Bachelor of Science, North South University, Bangladesh 2012 A Thesis submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Master of Science Grand Forks, North Dakota December 2016 ii PERMISSION Title Chronic amphetamine exposure causes long term effects on dopamine uptake in cultured cells Department Biomedical Sciences Degree Master of Science In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my thesis work or, in his absence, by the Chairperson of the department or the Dean of the School of Graduate Studies. -
Randomized Controlled Trial of Dexamphetamine Maintenance for the Treatment of Methamphetamine
RESEARCH REPORT doi:10.1111/j.1360-0443.2009.02717.x Randomized controlled trial of dexamphetamine maintenance for the treatment of methamphetamine dependenceadd_2717 146..154 Marie Longo1, Wendy Wickes1, Matthew Smout1, Sonia Harrison1, Sharon Cahill1 & Jason M. White1,2 Pharmacotherapies Research Unit, Drug and Alcohol Services South Australia, Norwood, South Australia, Australia1 and Discipline of Pharmacology, University of Adelaide, Adelaide, South Australia, Australia2 ABSTRACT Aim To investigate the safety and efficacy of once-daily supervised oral administration of sustained-release dexam- phetamine in people dependent on methamphetamine. Design Randomized, double-blind, placebo-controlled trial. Participants Forty-nine methamphetamine-dependent drug users from Drug and Alcohol Services South Australia (DASSA) clinics. Intervention Participants were assigned randomly to receive up to 110 mg/day sustained- release dexamphetamine (n = 23) or placebo (n = 26) for a maximum of 12 weeks, with gradual reduction of the study medication over an additional 4 weeks. Medication was taken daily under pharmacist supervision. Measurements Primary outcome measures included treatment retention, measures of methamphetamine consump- tion (self-report and hair analysis), degree of methamphetamine dependence and severity of methamphetamine withdrawal. Hair samples were analysed for methamphetamine using liquid chromatography-mass spectrometry. Findings Treatment retention was significantly different between groups, with those who received dexamphetamine remaining in treatment for an average of 86.3 days compared with 48.6 days for those receiving placebo (P = 0.014). There were significant reductions in self-reported methamphetamine use between baseline and follow-up within each group (P < 0.0001), with a trend to a greater reduction among the dexamphetamine group (P = 0.086).