Evaluation of Electric Solid Propellant Responses to Electrical Factors and Electrode Configurations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supercapattery: Merit-Merge of Capacitive and Nernstian Charge Storage Mechanisms
Supercapattery: Merit-merge of capacitive and Nernstian charge storage mechanisms George Zheng Chen University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo, 315100, Zhejiang, China. First published 2020 This work is made available under the terms of the Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 The work is licenced to the University of Nottingham Ningbo China under the Global University Publication Licence: https://www.nottingham.edu.cn/en/library/documents/research- support/global-university-publications-licence-2.0.pdf Supercapattery: Merit-merge of capacitive and Nernstian charge storage mechanisms George Zheng Chen1,2 1 Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK 2 Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, University Park, Ningbo 315100, China Email: [email protected] Abstract Supercapattery is the generic name for hybrids of supercapacitor and rechargeable battery. Batteries store charge via Faradaic processes, involving reversible transfer of localised or zone-delocalised valence electrons. The former is governed by the Nernst equation. The latter leads to pseudocapacitance (or Faradaic capacitance) which may be differentiated from electric double layer capacitance with spectroscopic assistance such as electron spin resonance. Since capacitive storage is the basis of supercapacitors, the combination of capacitive and Nernstian mechanisms has dominated supercapattery research since 2018, covering nanostructured and compounded metal oxides and sulfides, water-in-salt and redox active electrolytes and bipolar stacks of multi-cells. The technical achievements so far, such as specific energy of 270 Wh/kg in aqueous electrolyte, and charging-discharging for over 5000 cycles, benchmark a challenging but promising future of supercapattery. -
History of Transistors
TRANSISTOR MUSEUM™ HISTORY OF TRANSISTORS VOLUME 1 THE FIRST GERMANIUM HOBBYIST TRANSISTORS Special Collection of Historic Transistors Designed for the Historian, Engineer, Experimenter, Researcher and Hobbyist INCLUDED ARE CLASSIC EXAMPLES OF THESE 1950/60s GERMANIUM HOBBYIST TRANSISTORS 2N35 2N107 SURFACE BARRIER 2N170 CK78X A Publication of the Transistor Museum™ Copyright © 2009 by Jack Ward ABOUT THIS BOOK AND THE TRANSISTOR MUSEUM™ This book is the first of a series of History of Transistors publications developed by the Transistor Museum™. The History of Transistors Volume 1 documents The First Germanium Hobbyist Transistors, a subject that should be of great interest to the modern-day experimenter, engineer, historian, researcher and hobbyist. Included in the book are technical descriptions, historical commentary, circuits, and photographs of the famous germanium transistors that first appeared in the 1950s and have had a profound effect on the world of electronics ever since. Also included are working examples of some of the best remembered hobbyist transistors – 2N35, 2N107, Surface Barrier, 2N170, and CK78X. The web version of this book is available as a pdf at this url: http://www.semiconductormuseum.com/MuseumLibrary/HistoryOfTransistorsVolume1.pdf You can purchase a hardcopy version of the book, which also includes packaged examples of all five hobbyist transistors listed above, as well as additional storage/display envelopes for starting your own collection. You can visit the Transistor Museum™ Store for details on how to purchase this book as well as numerous other historic semiconductors and publications. http://www.semiconductormuseum.com/MuseumStore/MuseumStore_Index.htm The Transistor Museum™ is a virtual museum that has been developed to help preserve the history of the greatest invention of the 20TH century – the TRANSISTOR. -
Effects of Various Electrical Fields on Seed Germination Fredrick Warner Wheaton Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1968 Effects of various electrical fields on seed germination Fredrick Warner Wheaton Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, and the Bioresource and Agricultural Engineering Commons Recommended Citation Wheaton, Fredrick Warner, "Effects of various electrical fields on seed germination " (1968). Retrospective Theses and Dissertations. 3521. https://lib.dr.iastate.edu/rtd/3521 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 69-4288 WHEATON, Fredrick Warner, 1942- EFFECTS OF VARIOUS ELECTRICAL FIELDS ON SEED GERMINATION. Iowa State University, Ph.D., 1968 Engineering, agricultural University Microfilms, Inc., Ann Arbor, Michigan EFFECTS OF VARIOUS ELECTRICAL FIELDS ON SEED GERMINATION by Fredrick Warner Wheaton A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Agricultural Engineering Approved : Signature was redacted for privacy. Signature was redacted for privacy. Signature was -
Common Military List of the European Union
6.4.2016 EN Official Journal of the European Union C 122/1 IV (Notices) NOTICES FROM EUROPEAN UNION INSTITUTIONS, BODIES, OFFICES AND AGENCIES COUNCIL COMMON MILITARY LIST OF THE EUROPEAN UNION adopted by the Council on 14 March 2016 (equipment covered by Council Common Position 2008/944/CFSP defining common rules governing the control of exports of military technology and equipment) (updating and replacing the Common Military List of the European Union adopted by the Council on 9 February 2015 (1)) (CFSP) (2016/C 122/01) Note 1 Terms in ‘quotations’ are defined terms. Refer to ‘Definitions of Terms used in this List’ annexed to this List. Note 2 In some instances chemicals are listed by name and CAS number. The list applies to chemicals of the same structural formula (including hydrates) regardless of name or CAS number. CAS numbers are shown to assist in identifying a particular chemical or mixture, irrespective of nomenclature. CAS numbers cannot be used as unique identifiers because some forms of the listed chemical have different CAS numbers, and mixtures containing a listed chemical may also have different CAS numbers. ML1 Smooth-bore weapons with a calibre of less than 20 mm, other arms and automatic weapons with a calibre of 12,7 mm (calibre 0,50 inches) or less and accessories, as follows, and specially designed components therefor: Note ML1. does not apply to: a. Firearms specially designed for dummy ammunition and which are incapable of discharging a projectile; b. Firearms specially designed to launch tethered projectiles having no high explosive charge or communi cations link, to a range of less than or equal to 500 m; c. -
Recent Advances in Electrical Doping of 2D Semiconductor Materials: Methods, Analyses, and Applications
nanomaterials Review Recent Advances in Electrical Doping of 2D Semiconductor Materials: Methods, Analyses, and Applications Hocheon Yoo 1,2,† , Keun Heo 3,† , Md. Hasan Raza Ansari 1,2 and Seongjae Cho 1,2,* 1 Department of Electronic Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea; [email protected] (H.Y.); [email protected] (M.H.R.A.) 2 Graduate School of IT Convergence Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea 3 Department of Semiconductor Science & Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896, Korea; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Two-dimensional materials have garnered interest from the perspectives of physics, materi- als, and applied electronics owing to their outstanding physical and chemical properties. Advances in exfoliation and synthesis technologies have enabled preparation and electrical characterization of various atomically thin films of semiconductor transition metal dichalcogenides (TMDs). Their two-dimensional structures and electromagnetic spectra coupled to bandgaps in the visible region indicate their suitability for digital electronics and optoelectronics. To further expand the potential applications of these two-dimensional semiconductor materials, technologies capable of precisely controlling the electrical properties of the material are essential. Doping has been traditionally used to effectively change the electrical and electronic properties of materials through relatively simple processes. To change the electrical properties, substances that can donate or remove electrons are Citation: Yoo, H.; Heo, K.; added. Doping of atomically thin two-dimensional semiconductor materials is similar to that used Ansari, M..H.R.; Cho, S. -
Role of Electrodes in Ambient Electrolytic Decomposition of Hydroxylammonium Nitrate (HAN) Solutions
Propulsion and Power Research 2013;2(3):194–200 http://ppr.buaa.edu.cn/ Propulsion and Power Research www.sciencedirect.com ORIGINAL ARTICLE Role of electrodes in ambient electrolytic decomposition of hydroxylammonium nitrate (HAN) solutions Kai Seng Koha, Jitkai China,n, Tengku F. Wahida Ku Chikb aFaculty of Engineering, University of Nottingham Malaysia Campus, Semenyih, Selangor 52000, Malaysia bNational Space Agency Malaysia (ANGKASA), Putrajaya, Wilayah Persekuatuan 62570, Malaysia Received 13 April 2013; accepted 17 June 2013 Available online 27 August 2013 KEYWORDS Abstract Decomposition of hydroxylammonium nitrate (HAN) solution with electrolytic decomposition method has attracted much attention in recent years due to its efficiencies and Electrolytic decomposition; practicability. However, the phenomenon has not been well-studied till now. By utilizing Hydroxylammonium mathematical model currently available, the effect of water content and power used for nitrate (HAN); decomposition was studied. Experiment data shows that sacrificial material such as copper or Copper wire; aluminum outperforms inert electrodes in the decomposition of HAN solution. In the case of using Inert carbon rod; copper wire to electrolyse HAN solutions, approximately 10 seconds is required to reach 100 1C Electrode regardless of concentration of HAN. In term of power consumption, 100 W–300 W was found to be the range in which decomposition could be triggered effectively using copper wire as electrodes. & 2013 National Laboratory for Aeronautics and Astronautics. Production and hosting by Elsevier B.V. All rights reserved. 1. Introduction n Hydroxylammonium nitrate (HAN), with the chemical Corresponding author: Tel.: +60 173310400. formula NH OHNO , has been widely recognized as a E-mail address: [email protected] (Jitkai Chin). -
Characterization & Analysis On
CHARACTERIZATION & ANALYSIS ON ELECTROLYTIC DECOMPOSITION OF HYDROXYLAMMONIUM NITRATE (HAN) TERNARY MIXTURES IN MICROREACTORS CHAI WAI SIONG, BEng. Thesis submitted to the University of Nottingham For the degree of Doctor of Philosophy 2017 1 | P a g e Abstract Rapid development of micropropulsion systems arose from growing interest on micro- and nanosatellites. Utilization of liquid energetic materials such as hydrazine and hydrogen peroxide as propellant in propulsion yielded promising results. However, safety issue remains a great concern as hydrazine is highly toxic. This drives the development of propellants towards lower toxicity and more environmental friendly, namely green propellants. Hydroxylammonium nitrate (HAN) was selected among three green propellants due to its high energy density in addition to ease in storage and handling properties. In order to understand the effect of addition of fuel into HAN binary solution, electrolytic decomposition of zero oxygen balance HAN ternary mixture in thermal isolated beaker was performed at macroscale. Addition of a fuel to binary HAN solution generally has more stages of decomposition, as opposed to single stage in binary HAN solution. Rate of temperature increase in the first stage of decomposition (Ṫ1) was found to be directly proportional to electrical resistivity of the HAN ternary mixture, while maximum electrolytic decomposition temperature (Tmax) of HAN ternary mixture obtained was dependent on fuel added. Visualization of HAN decomposition was demonstrated using transparent PDMS microreactors. A novel DPST integration in triggering the power supply and high speed camera was proposed. Such 2 | P a g e integration greatly reduced the cost of using a DAQ system, and was shown to capture the decomposition successfully at 5000 fps. -
Have Shown an Apical Transport of Heteroauxin (Indole-3-Acetic Acid)
ELECTRICAL POLARITY AND AUXIN TRANSPORT W. G. CLARK (WITH TEN FIGURES) Introduction The polar basal transport of the growth substances (auxins, growth hormones) in plants is a well known phenomenon, demonstrated first by WENT (81), and studied in detail by VAN DER WEIJ (78, 80). These investi- gators used the Avena (oat) coleoptile.' That the phenomenon is more or less general is indicated by the polar transport of auxin in roots (CHOLODNY, 19; NAGAO 60); in hypocotyls of Raphanus (VAN OVERBEEK, 62), of Pisum (SKOOG, 74); in leaves (AVERY, 2); in the coleoptile of Avena (WENT, 81; LAIBACH and KORNMANN, 40; VAN DER WEIJ, 78, 80; and SKOOG, 74) and corn (VAN OVERBEEK, 63); in Elaeagnus (woody cutting) (VAN DER WEIJ, 79); in stems of Coleus, Vicia, and Phaseolus; and in hypocotyls of Vicia, Phaseolus, and Lupinus (MAI, 54). Other workers have reported non-polar transport of auxin in plants. HITCHCOCK and ZIMMERMAN (31) and ZIMMERMAN and WLCOXON (85) have shown an apical transport of heteroauxin (indole-3-acetic acid) and several other active compounds in stems of Helianthus tuberosus, Nicotiana tabacum, and in Lycopersicum esculentum, as indicated by induction of adventitious roots and by epinastic response of leaves. LOEHWING and BAUGUESS (45) have shown that heteroauxin could be absorbed by the root system of potted seedlings of Matthiola incana and be transported apically to increase the stem elongation over that of the controls. Both the Boyce- Thompson workers and LOEHWING and BAUGUESS have merely shown that auxin applied in high concentrations can be carried in the transpiration stream. This, of course, will not give polar transport. -
(12) United States Patent (10) Patent N0.: US 6,218,577 B1 Brand Et Al
US006218577B1 (12) United States Patent (10) Patent N0.: US 6,218,577 B1 Brand et al. (45) Date of Patent: Apr. 17, 2001 (54) ENEGETIC HYDRAZINIUM SALTS (58) Field Of Search ............................. .. 564/464; 149/36, 149/122 (75) Inventors: Adam J. Brand, Palmdale; Gregory W. Drake, Lancaster, both of CA (US) (56) References Cited (73) Assignee: The United States of America as US' PATENT DOCUMENTS represented by the Secretary of the 3,297,747 * 1/1967 Thornton et al. .................. .. 564/310 Air Force, Washington, DC (US) 3,314,837 * 4/1967 Heubusch . .. 525/410 4,310,696 * 1/1982 Hojo et al. ......................... .. 564/464 ( * ) Notice: Subject to any disclaimer, the term of this . * cited b examiner patent is extended or adJusted under 35 y U_S,C, 154(b) by 0 days, Primary Examiner—Johann Richter Assistant Examiner—Brian J. Davis (21) APPL NO; 09/356,227 (74) Attorney, Agent, or Firm—Thomas C. Stover (22) Filed: Jul. 16, 1999 (57) ABSTRACT Provided is a salt of hydroXyethylhydraZine of Related US. Application Data [HO—CH2—CH2—NH2—NH2+][X_] or [HO—CH2— (60) Provisional application No. 60/093,733, ?led on Jul. 20, 1998. CH2—NH2—NH32+][X_]2, Where X=NO3, c104, N(NO2)2 or C(NO2)3 and method of making same. (51) Int. Cl.7 ................................................. .. C07C 241/02 (52) US. Cl. ............................................................ .. 564/464 19 Claims, N0 Drawings US 6,218,577 B1 1 2 ENEGETIC HYDRAZINIUM SALTS HO—CH2—CH2—NH—NH2+m HXQ[HO—CH2— CH2—NH2—NH2+][X_] or [HO—CH2—CH2—NH2— This application claims priority from US. -
Light-Emitting Diode - Wikipedia, the Free Encyclopedia
Light-emitting diode - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Light-emitting_diode From Wikipedia, the free encyclopedia A light-emitting diode (LED) (pronounced /ˌɛl iː ˈdiː/[1]) is a semiconductor Light-emitting diode light source. LEDs are used as indicator lamps in many devices, and are increasingly used for lighting. Introduced as a practical electronic component in 1962,[2] early LEDs emitted low-intensity red light, but modern versions are available across the visible, ultraviolet and infrared wavelengths, with very high brightness. When a light-emitting diode is forward biased (switched on), electrons are able to recombine with holes within the device, releasing energy in the form of photons. This effect is called electroluminescence and the color of the light (corresponding to the energy of the photon) is determined by the energy gap of Red, green and blue LEDs of the 5mm type 2 the semiconductor. An LED is usually small in area (less than 1 mm ), and Type Passive, optoelectronic integrated optical components are used to shape its radiation pattern and assist in reflection.[3] LEDs present many advantages over incandescent light sources Working principle Electroluminescence including lower energy consumption, longer lifetime, improved robustness, Invented Nick Holonyak Jr. (1962) smaller size, faster switching, and greater durability and reliability. LEDs powerful enough for room lighting are relatively expensive and require more Electronic symbol precise current and heat management than compact fluorescent lamp sources of comparable output. Pin configuration Anode and Cathode Light-emitting diodes are used in applications as diverse as replacements for aviation lighting, automotive lighting (particularly indicators) and in traffic signals. -
Enamel Rating Reference Guide
Enamel Rating: Reference Guide This reference guide is a collection of useful information relating to the widely used enamel rating test. The test itself is quite simple, but why it works and how to get the best from the test is not necessarily well known. What is enamel rating? Enamel rating is a test that checks the integrity of internal coatings applied to metal packaging. The test is carried out using an electronic gauge plus a device that holds the product and connects it to the gauge. If the internal coating of a can or end has not been adequately applied, some areas of the metal substrate will be exposed to the contents of the can, which may result in metal corrosion and contamination of the contents, depending on the product to be contained. Enamel rating is also sometimes referred to as a ‘metal exposure test’, ‘mA test’, or ‘porosity test’. How it works Cans are tested by filling them with a conductive electrolyte—typically salty water. Ends are tested with apparatus that dips the product side of the end in the electrolyte. A test probe is immersed in the electrolyte and the metal substrate is connected via exterior contacts. These are normally sharpened to cut through external lacquers and decoration. The electrolyte naturally conforms to the inner surface of the can or end, potentially creating an electrical circuit when a voltage (6.3VDC) is applied to the test probe for 4 seconds. Electricity can flow through electrolyte because negatively charged salt ions migrate towards the positive electrode (the contacts attached to the metal substrate) creating a current flow. -
Annex XV Dossier PROPOSAL for IDENTIFICATION of a SUBSTANCE AS a CATEGORY 1A OR 1B CMR, PBT, Vpvb OR a SUBSTANCE of an EQUIVALEN
ANNEX XV – IDENTIFICATION OF HYDRAZINE AS SVHC Annex XV dossier PROPOSAL FOR IDENTIFICATION OF A SUBSTANCE AS A CATEGORY 1A OR 1B CMR, PBT, vPvB OR A SUBSTANCE OF AN EQUIVALENT LEVEL OF CONCERN Substance Name(s): Hydrazine EC Number(s): 206-114-9 CAS Number(s): 302-01-2 Submitted by: European Chemical Agency on request of the European Commission Version: February 2011 PUBLIC VERSION: This report does not include the Confidential Annexes referred to in Part II. 1 ANNEX XV – IDENTIFICATION OF HYDRAZINE AS SVHC CONTENTS PROPOSAL FOR IDENTIFICATION OF A SUBSTANCE AS A CATEGORY 1A OR 1B CMR, PBT, VPVB OR A SUBSTANCE OF AN EQUIVALENT LEVEL OF CONCERN ................................................................................7 PART I..........................................................................................................................................................................8 JUSTIFICATION .........................................................................................................................................................8 1 IDENTITY OF THE SUBSTANCE AND PHYSICAL AND CHEMICAL PROPERTIES .................................8 1.1 Name and other identifiers of the substance...................................................................................................8 1.2 Composition of the substance.........................................................................................................................9 1.3 Physico-chemical properties...........................................................................................................................9