1. Introduction an Unknotting Tunnel System for a Link L in S3 Is a Collection of Prop- Erly Embedded Disjoint Arcs {T1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(1,1)-Decompositions of Rational Pretzel Knots
East Asian Math. J. Vol. 32 (2016), No. 1, pp. 077{084 http://dx.doi.org/10.7858/eamj.2016.008 (1,1)-DECOMPOSITIONS OF RATIONAL PRETZEL KNOTS Hyun-Jong Song* Abstract. We explicitly derive diagrams representing (1,1)-decompositions of rational pretzel knots Kβ = M((−2; 1); (3; 1); (j6β + 1j; β)) from four unknotting tunnels for β = 1; −2 and 2. 1. Preliminaries Let V be an unknotted solid torus and let α be a properly embedded arc in V . We say that α is trivial in V if and only if there exists an arc β in @V joining the two end points of α , and a 2-disk D in V such that the boundary @D of D is a union of α and β. Such a disk D is called a cancelling disk of α. Equivalently α is trivial in V if and only if H = V − N(α)◦, the complement of the open tubular neighbourhood N(α) of α in V is a handlebody of genus 2. Note that a cancelling disk of the trivial arc α and a meridian disk of V disjoint from α contribute a meridian disk system of the handlebody H A knot K in S3 is referred to as admitting genus 1, 1-bridge decomposition 3 or (1,1)-decomposition for short if and only if (S ;K) is split into pairs (Vi; αi) (i = 1; 2) of trivial arcs in solid tori determined by a Heegaard torus T = @Vi of S3. Namely we have: 3 (S ;K) = (V1; α1) [T (V2; α2) . -
Arxiv:1208.5857V2 [Math.GT] 27 Nov 2012 Hscs Ecncnie Utetspace Quotient a Consider Can We Case This Hoe 1.1
A GOOD PRESENTATION OF (−2, 3, 2s + 1)-TYPE PRETZEL KNOT GROUP AND R-COVERED FOLIATION YASUHARU NAKAE Abstract. Let Ks bea(−2, 3, 2s+1)-type Pretzel knot (s ≧ 3) and EKs (p/q) be a closed manifold obtained by Dehn surgery along Ks with a slope p/q. We prove that if q > 0, p/q ≧ 4s + 7 and p is odd, then EKs (p/q) cannot contain an R-covered foliation. This result is an extended theorem of a part of works of Jinha Jun for (−2, 3, 7)-Pretzel knot. 1. Introduction In this paper, we will discuss non-existence of R-covered foliations on a closed 3-manifold obtained by Dehn surgery along some class of a Pretzel knot. A codimension one, transversely oriented foliation F on a closed 3-manifold M is called a Reebless foliation if F does not contain a Reeb component. By the theorems of Novikov [13], Rosenberg [17], and Palmeira [14], if M is not homeo- morphic to S2 × S1 and contains a Reebless foliation, then M has properties that the fundamental group of M is infinite, the universal cover M is homeomorphic to R3 and all leaves of its lifted foliation F on M are homeomorphic to a plane. In this case we can consider a quotient space T = M/F, and Tfis called a leaf space of F. The leaf space T becomes a simplye connectedf 1-manifold, but it might be a non-Hausdorff space. If the leaf space is homeomorphicf e to R, F is called an R- covered foliation. -
Mapping Class Group of a Handlebody
FUNDAMENTA MATHEMATICAE 158 (1998) Mapping class group of a handlebody by Bronis law W a j n r y b (Haifa) Abstract. Let B be a 3-dimensional handlebody of genus g. Let M be the group of the isotopy classes of orientation preserving homeomorphisms of B. We construct a 2-dimensional simplicial complex X, connected and simply-connected, on which M acts by simplicial transformations and has only a finite number of orbits. From this action we derive an explicit finite presentation of M. We consider a 3-dimensional handlebody B = Bg of genus g > 0. We may think of B as a solid 3-ball with g solid handles attached to it (see Figure 1). Our goal is to determine an explicit presentation of the map- ping class group of B, the group Mg of the isotopy classes of orientation preserving homeomorphisms of B. Every homeomorphism h of B induces a homeomorphism of the boundary S = ∂B of B and we get an embedding of Mg into the mapping class group MCG(S) of the surface S. z-axis α α α α 1 2 i i+1 . . β β 1 2 ε x-axis i δ -2, i Fig. 1. Handlebody An explicit and quite simple presentation of MCG(S) is now known, but it took a lot of time and effort of many people to reach it (see [1], [3], [12], 1991 Mathematics Subject Classification: 20F05, 20F38, 57M05, 57M60. This research was partially supported by the fund for the promotion of research at the Technion. [195] 196 B.Wajnryb [9], [7], [11], [6], [14]). -
Fibered Knots and Potential Counterexamples to the Property 2R and Slice-Ribbon Conjectures
Fibered knots and potential counterexamples to the Property 2R and Slice-Ribbon Conjectures with Bob Gompf and Abby Thompson June 2011 Berkeley FreedmanFest Theorem (Gabai 1987) If surgery on a knot K ⊂ S3 gives S1 × S2, then K is the unknot. Question: If surgery on a link L of n components gives 1 2 #n(S × S ), what is L? Homology argument shows that each pair of components in L is algebraically unlinked and the surgery framing on each component of L is the 0-framing. Conjecture (Naive) 1 2 If surgery on a link L of n components gives #n(S × S ), then L is the unlink. Why naive? The result of surgery is unchanged when one component of L is replaced by a band-sum to another. So here's a counterexample: The 4-dimensional view of the band-sum operation: Integral surgery on L ⊂ S3 $ 2-handle addition to @B4. Band-sum operation corresponds to a 2-handle slide U' V' U V Effect on dual handles: U slid over V $ V 0 slid over U0. The fallback: Conjecture (Generalized Property R) 3 1 2 If surgery on an n component link L ⊂ S gives #n(S × S ), then, perhaps after some handle-slides, L becomes the unlink. Conjecture is unknown even for n = 2. Questions: If it's not true, what's the simplest counterexample? What's the simplest knot that could be part of a counterexample? A potential counterexample must be slice in some homotopy 4-ball: 3 S L 3-handles L 2-handles Slice complement is built from link complement by: attaching copies of (D2 − f0g) × D2 to (D2 − f0g) × S1, i. -
[Math.GT] 31 Mar 2004
CORES OF S-COBORDISMS OF 4-MANIFOLDS Frank Quinn March 2004 Abstract. The main result is that an s-cobordism (topological or smooth) of 4- manifolds has a product structure outside a “core” sub s-cobordism. These cores are arranged to have quite a bit of structure, for example they are smooth and abstractly (forgetting boundary structure) diffeomorphic to a standard neighborhood of a 1-complex. The decomposition is highly nonunique so cannot be used to define an invariant, but it shows the topological s-cobordism question reduces to the core case. The simply-connected version of the decomposition (with 1-complex a point) is due to Curtis, Freedman, Hsiang and Stong. Controlled surgery is used to reduce topological triviality of core s-cobordisms to a question about controlled homotopy equivalence of 4-manifolds. There are speculations about further reductions. 1. Introduction The classical s-cobordism theorem asserts that an s-cobordism of n-manifolds (the bordism itself has dimension n + 1) is isomorphic to a product if n ≥ 5. “Isomorphic” means smooth, PL or topological, depending on the structure of the s-cobordism. In dimension 4 it is known that there are smooth s-cobordisms without smooth product structures; existence was demonstrated by Donaldson [3], and spe- cific examples identified by Akbulut [1]. In the topological case product structures follow from disk embedding theorems. The best current results require “small” fun- damental group, Freedman-Teichner [5], Krushkal-Quinn [9] so s-cobordisms with these groups are topologically products. The large fundamental group question is still open. Freedman has developed several link questions equivalent to the 4-dimensional “surgery conjecture” for arbitrary fundamental groups. -
The Tree of Knot Tunnels
Geometry & Topology 13 (2009) 769–815 769 The tree of knot tunnels SANGBUM CHO DARRYL MCCULLOUGH We present a new theory which describes the collection of all tunnels of tunnel number 1 knots in S 3 (up to orientation-preserving equivalence in the sense of Hee- gaard splittings) using the disk complex of the genus–2 handlebody and associated structures. It shows that each knot tunnel is obtained from the tunnel of the trivial knot by a uniquely determined sequence of simple cabling constructions. A cabling construction is determined by a single rational parameter, so there is a corresponding numerical parameterization of all tunnels by sequences of such parameters and some additional data. Up to superficial differences in definition, the final parameter of this sequence is the Scharlemann–Thompson invariant of the tunnel, and the other parameters are the Scharlemann–Thompson invariants of the intermediate tunnels produced by the constructions. We calculate the parameter sequences for tunnels of 2–bridge knots. The theory extends easily to links, and to allow equivalence of tunnels by homeomorphisms that may be orientation-reversing. 57M25 Introduction In this work we present a new descriptive theory of the tunnels of tunnel number 1 knots in S 3 , or equivalently, of genus–2 Heegaard splittings of tunnel number 1 knot exteriors. At its heart is a bijective correspondence between the set of equivalence classes of all tunnels of all tunnel number 1 knots and a subset of the vertices of a certain tree T . In fact, T is bipartite, and the tunnel vertex subset is exactly one of its two classes of vertices. -
Poincare Complexes: I
Poincare complexes: I By C. T. C. WALL Recent developments in differential and PL-topology have succeeded in reducing a large number of problems (classification and embedding, for ex- ample) to problems in homotopy theory. The classical methods of homotopy theory are available for these problems, but are often not strong enough to give the results needed. In this paper we attempt to develop a branch of homotopy theory applicable to the classification problem for compact manifolds. A Poincare complex is (approximately) a finite cw-complex which satisfies the Poincare duality theorem. A precise definition is given in ? 1, together with a discussion of chain complexes. In Chapter 2, we give a cutting and gluing theorem, define connected sum, and give a theorem on product decompositions. Chapter 3 is devoted to an account of the tangential proper- ties first introduced by M. Spivak (Princeton thesis, 1964). We then start our classification theorems; in Chapter 4, for dimensions up to 3, where the dominant invariant is the fundamental group; and in Chapter 5, for dimension 4, where we obtain a classification theorem when the fundamental group has prime order. It is complicated to use, but allows us to construct two inter- esting examples. In the second part of this paper, we intend to classify highly connected Poin- care complexes; to show how to perform surgery, and give some applications; by constructing handle decompositions and computing some cobordism groups. This paper was originally planned when the only known fact about topological manifolds (of dimension >3) was that they were Poincare com- plexes. -
How to Depict 5-Dimensional Manifolds
HOW TO DEPICT 5-DIMENSIONAL MANIFOLDS HANSJORG¨ GEIGES Abstract. We usually think of 2-dimensional manifolds as surfaces embedded in Euclidean 3-space. Since humans cannot visualise Euclidean spaces of higher dimensions, it appears to be impossible to give pictorial representations of higher-dimensional manifolds. However, one can in fact encode the topology of a surface in a 1-dimensional picture. By analogy, one can draw 2-dimensional pictures of 3-manifolds (Heegaard diagrams), and 3-dimensional pictures of 4- manifolds (Kirby diagrams). With the help of open books one can likewise represent at least some 5-manifolds by 3-dimensional diagrams, and contact geometry can be used to reduce these to drawings in the 2-plane. In this paper, I shall explain how to draw such pictures and how to use them for answering topological and geometric questions. The work on 5-manifolds is joint with Fan Ding and Otto van Koert. 1. Introduction A manifold of dimension n is a topological space M that locally ‘looks like’ Euclidean n-space Rn; more precisely, any point in M should have an open neigh- bourhood homeomorphic to an open subset of Rn. Simple examples (for n = 2) are provided by surfaces in R3, see Figure 1. Not all 2-dimensional manifolds, however, can be visualised in 3-space, even if we restrict attention to compact manifolds. Worse still, these pictures ‘use up’ all three spatial dimensions to which our brains are adapted by natural selection. arXiv:1704.00919v1 [math.GT] 4 Apr 2017 2 2 Figure 1. The 2-sphere S , the 2-torus T , and the surface Σ2 of genus two. -
Trisections of 4-Manifolds SPECIAL FEATURE: INTRODUCTION
SPECIAL FEATURE: INTRODUCTION Trisections of 4-manifolds SPECIAL FEATURE: INTRODUCTION Robion Kirbya,1 The study of n-dimensional manifolds has seen great group is good. If the manifolds are smooth, then advances in the last half century. In dimensions homeomorphism can be replaced by diffeomorphism greater than four, surgery theory has reduced classifi- if m > 4. We have assumed that the manifolds are cation to homotopy theory except when the funda- closed, connected, and oriented. Note that, if mental group is nontrivial, where serious algebraic π1ðM0Þ = 0, then simply homotopy equivalent is the issues remain. In dimension 3, the proof by Perelman same as homotopy equivalent. The point to this of Thurston’s Geometrization Conjecture (1) allows an theorem is that algebraic topological invariants algorithmic classification of 3-manifolds. The work are enough to produce homeomorphisms, a geo- of Freedman (2) classifies topological 4-manifolds metric conclusion. if the fundamental group is not too large. Also, In dimension 3, stronger results now hold due to gauge theory in the hands of Donaldson (3) has pro- Perelman (e.g., simple homotopy equivalence implies vided invariants leading to proofs that some topo- diffeomorphism). logical 4-manifolds have no smooth structure, that However, in dimension 4, we only have powerful many compact 4-manifolds have countably many invariants that distinguish different smooth structures smooth structures, and that many noncompact 4- on 4-manifolds but nothing like the s-cobordism manifolds, in particular 4D Euclidean space R4,have theorem, which can show that two smooth structures uncountably many. are the same. Conjecturally, trisections of 4-manifolds However, the gauge theory invariants run into may lead to progress. -
Seifert-Fibered Surgeries Which Do Not Arise from Primitive/Seifert-Fibered Constructions
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 358, Number 9, September 2006, Pages 4045–4055 S 0002-9947(05)03798-0 Article electronically published on September 22, 2005 SEIFERT-FIBERED SURGERIES WHICH DO NOT ARISE FROM PRIMITIVE/SEIFERT-FIBERED CONSTRUCTIONS THOMAS MATTMAN, KATURA MIYAZAKI, AND KIMIHIKO MOTEGI Dedicated to Cameron McA. Gordon on the occasion of his 60th birthday Abstract. We construct two infinite families of knots each of which admits a Seifert fibered surgery with none of these surgeries coming from Dean’s primitive/Seifert-fibered construction. This disproves a conjecture that all Seifert-fibered surgeries arise from Dean’s primitive/Seifert-fibered construc- tion. The (−3, 3, 5)-pretzel knot belongs to both of the infinite families. 1. Introduction Let K be a knot in the 3-sphere S3. Thenwedenoteby(K; γ) the 3-manifold obtained by γ-surgery on K, i.e., by attaching a solid torus to S3−intN(K)insuch awaythatγ bounds a meridian disk of the filling solid torus. Using the preferred meridian-longitude pair of K ⊂ S3, we parametrize slopes γ of K by r ∈ Q ∪{∞}; then we also write (K; r)for(K; γ). We begin by recalling Berge’s [1] construction, an explicit construction which yields several infinite families of knots each admitting a lens space Dehn surgery. Let K be a knot contained in a genus two Heegaard surface F for S3, i.e., 3 S = H ∪F H ,whereH and H denote genus two handlebodies. Suppose that K is nontrivial and that the manifolds H(K)andH(K) are both solid tori, where H(K)(resp. -
On Tunnel Number One Alternating Knots and Links
J. Math. Sci. Univ. Tokyo 5 (1998), 547–560. On Tunnel Number One Alternating Knots and Links By Koya Shimokawa Abstract. In this article we consider tunnel number one alternat- ing knots and links. We characterize tunnel number one alternating knots and links which have unknotting tunnels contained in regions of reduced alternating diagrams. We show that such a knot or link is a 2-bridge or a Montesinos knot or link or the connected sum of the Hopf link and a 2-bridge knot. §1. Introduction C. C. Adams [1] and M. Sakuma and J. Weeks [17] studied unknotting tunnels for hyperbolic knots and links in S3 by analyzing vertical geodesics and canonical decompositions of their complements. For tunnel number one hyperbolic alternating knots and links, the relation among unknotting tunnels, canonical decompositions of their complements and their reduced alternating diagrams is studied in [17]. Furthermore Sakuma proposed the following conjecture, Conjecture. Let L be a tunnel number one hyperbolic alternating knot or link. Then some unknotting tunnel for L is isotopic to the polar axis of some crossing ball of a reduced alternating diagram of L. Note that prime alternating knots other than (2,p)-torus knots are hy- perbolic. See [9], [10] and [14]. There are many knots and links satisfying the above conjecture. For example, upper and lower tunnels for 2-bridge knots and links satisfy the condition. See Figure 1.3(1). In this article, we consider tunnel number one alternating knots and links with unknotting tunnels satisfying a little weaker condition. We char- acterize an alternating diagram of a tunnel number one alternating knot 1991 Mathematics Subject Classification. -
Introduction to Surgery Theory
1 A brief introduction to surgery theory A 1-lecture reduction of a 3-lecture course given at Cambridge in 2005 http://www.maths.ed.ac.uk/~aar/slides/camb.pdf Andrew Ranicki Monday, 5 September, 2011 2 Time scale 1905 m-manifolds, duality (Poincar´e) 1910 Topological invariance of the dimension m of a manifold (Brouwer) 1925 Morse theory 1940 Embeddings (Whitney) 1950 Structure theory of differentiable manifolds, transversality, cobordism (Thom) 1956 Exotic spheres (Milnor) 1962 h-cobordism theorem for m > 5 (Smale) 1960's Development of surgery theory for differentiable manifolds with m > 5 (Browder, Novikov, Sullivan and Wall) 1965 Topological invariance of the rational Pontrjagin classes (Novikov) 1970 Structure and surgery theory of topological manifolds for m > 5 (Kirby and Siebenmann) 1970{ Much progress, but the foundations in place! 3 The fundamental questions of surgery theory I Surgery theory considers the existence and uniqueness of manifolds in homotopy theory: 1. When is a space homotopy equivalent to a manifold? 2. When is a homotopy equivalence of manifolds homotopic to a diffeomorphism? I Initially developed for differentiable manifolds, the theory also has PL(= piecewise linear) and topological versions. I Surgery theory works best for m > 5: 1-1 correspondence geometric surgeries on manifolds ∼ algebraic surgeries on quadratic forms and the fundamental questions for topological manifolds have algebraic answers. I Much harder for m = 3; 4: no such 1-1 correspondence in these dimensions in general. I Much easier for m = 0; 1; 2: don't need quadratic forms to quantify geometric surgeries in these dimensions. 4 The unreasonable effectiveness of surgery I The unreasonable effectiveness of mathematics in the natural sciences (title of 1960 paper by Eugene Wigner).