Use of MODIS Images to Study Eruptive Clouds from Volcán De Fuego De Colima (México) and Applications on Volcano Monitoring
Total Page:16
File Type:pdf, Size:1020Kb
GEOFÍSICA INTERNACIONAL (2011) 502: 199210 ORIGINAL PAPER Use of MODIS images to study eruptive clouds from Volcán de Fuego de Colima (México) and applications on volcano monitoring José Carlos JiménezEscalona, Hugo Delgado Granados and Vincent J. Realmuto @,',)?,-A$B"4'8$<<C$DE<EF$"'',3(,-A$G*?,.0,4$<7C$DE<EF$3&0!)#8,-$*+$!)+,A$B"4'8$DHC$DE<< Resumen Abstract El monitoreo volcánico utilizando imágenes de Volcano monitoring using satellite images may satélite constituye un método económico y ruti provide periodic information on gas emission nario. Las mediciones obtenidas con este método %&'(&"()*+#$#&'8$"#$9:2 emissions related to the permiten obtener información periódica sobre processes occurring inside volcanoes. This study !"#$%&'(&"')*+,#$-,$!"#$,.)#)*+,#$-,$/"#,#$("!,#$ analyses a period of 36 days (May 10 to June 15, como el SO2, que es relacionado con los procesos 2005) of processing 113 MODIS images for the internos del volcán. En este estudio se analiza un detection of SO2. Within this period it was also período de 36 días (10 de mayo al 15 de junio 3*##)0!,$(*$-,(,'($"+-$;&"+()25$7$*2$<=$,>3!*#)?,$ de 2005), donde se analizaron 113 imágenes events reported by the Washington VAAC. With MODIS para la detección de SO2. En este período the satellite images as tools for monitoring the (".0)1+$ 2&,$ 3*#)0!,$ -,(,'("4$ 5$ '&"+()6'"4$ 7$ -,$ volcanic emissions, it was possible to determine 15 eventos explosivos reportados por la VAAC three cases related to volcanic ashes: 1) follow de Washington. Tomando a las imágenes de up of volcanic ash and gases transported by satélite como herramienta para el monitoreo de wind, 2) calculation of ashcloud residence time emisiones volcánicas, fue posible estudiar tres in the atmosphere, 3) effects of shearing winds casos relacionados con las cenizas volcánicas: during the ascent of an ash plume. 1) seguimiento de ceniza volcánica y gases transportados por el viento, 2) cálculo del tiem Regarding the continuous monitoring of passive po de residencia de la nube de ceniza en la emissions of SO2, there is a relationship atmósfera, 3) efectos de los vientos cortantes among explosive events and increasing peaks en el ascenso de una columna de ceniza. of SO2 emission suggesting a difference of En cuanto al monitoreo continuo de las emisiones approximately 2 days between the two events pasivas de SO2, existe una relación entre los that may anticipate the type of behavior of the eventos explosivos y los picos de incremento volcano. de emisiones de SO2 que sugiere una diferencia de aproximadamente 2 días entre los dos Key words: remote sensing, volcanic emission, acontecimientos que podría indicar el tipo de MODIS, satellite image, Colima volcano, volcanic comportamiento del volcán. cloud. Palabras clave: percepción remota, emisiones volcánicas, MODIS, imagen de satélite, volcán de Colima, nube volcánica. J. C. JiménezEscalona H. Delgado Granados ESIME U. Ticomán Instituto de Geofísica Instituto Politécnico Nacional Universidad Nacional Autónoma de México Av. Ticomán 600 Ciudad Universitaria, Del. Gustavo A. Madero, 07340 Del. Coyoacán 04510 México D. F.; México México D. F., México Instituto de Geofísica V. Realmuto Universidad Nacional Autónoma de México Jet Propulsion Laboratory Ciudad Universitaria, California Institute of Technology Del. Coyoacán, 04510 I"#"-,+"C$J"!)2*4+)"C$H<<EH México D. F., México USA *Corresponding author: [email protected] 199 J. C. JiménezEscalona, H. Delgado Granados and V. Realmuto Introduction surveillance, in order to build up databases that may help to study the temporal behavior of the Development and application of remote sensing volcanic emissions. The combination of regular techniques for studying and monitoring volcanic monitoring of emissions along with other sources emissions is much needed at very active of volcanic information like seismicity can help volcanoes. Such techniques may allow following to understand eruptive activity and the goal is up eruptive activity and become valuable tools to have longstanding databases that eventually due to the capability to observe large areas allow having medium to short term forecasting rapidly and safely. Other advantages are the of ash emissions or largescale eruptions. relatively lowcost of remote sensing laboratories set up and data acquisition (when access to raw In this study, MODIS was used as a tool to data is permitted). initiate a volcanicemission database that allows the analysis of long standing degassing trends Some satellite sensors like the Total Ozone and comparing explosive activities characterized Mapping Spectrometer (TOMS) are capable by ash emissions, by looking for a signal or to detect ash and SO2, but it is not possible to patterns that may lead to forecast events. quantify the ash burden of a volcanic cloud. On the other hand, by using Advanced Very Setting of Volcán de Fuego de Colima High Resolution Radiometer (AVHRR) data it is possible to detect and quantify ash emissions but S*!'T+$ -,$ U&,/*$ -,$ J*!)."$ NSUJF$ <HVWEXO=Y$ SO2 cannot be detected due to the spectral range GC$ <EWVWZX$ RC$W7[E$ .$ "#!P$ )#$ (8,$ .*#($ "'()?,$ of the satellite. ?*!'"+*$)+$B,>)'*$NB,-)+"KB"4(\+,]C$<H7WF$^&84$ "+-$J"4.)'8",!C$<HHEF$_,$!"$J4&]K@,5+"C$<HHWF$ Moderate Resolution Imaging Spectrometer Bretón et al., 2002). Several small and medium (MODIS) instrument aboard the TERRA and size towns and cities of Colima and Jalisco AQUA satellites can detect the thermal infrared states lie in the surroundings, and have their )+$ "$ 4"+/,$ *2$ 7K<D$ L.$ M"?,!,+/(8$ N0"+-$ main airports around the volcano (Figure 1). 27 to band 32), and the signatures of ash, `334*>)."(,!5$WHECEEE$3,*3!,$!)?,$M)(8)+$OE$a.$ SO2, sulfates, and ice are present in these of the volcano (Bretón et al., 2002). The closest bands (Watson et al., 2004). By using MODIS and most important urban concentration (Colima imagery it is possible to detect and quantify ash City) is located 32 km SSW from the vent. During concentrations and ashcloud areas (Wen and past eruptions of VFC, other important cities like @*#,C$ <HHOPC$ "+-$ 9:2 concentrations and SO2 Guadalajara (located approximately 150 km N, plume areas (Realmuto et alQC$<HHOF$R"(#*+$et see inset of Figure 1) have been affected by al., 2004). The use of MODIS can constitute a ash fallout (Saucedo et al., 2010). The airport robust monitoring technique allowing a constant of Colima City is located approximately 30 km S Figure 1. Map showing the distribution of towns and airports around VFC. Dots show towns < 5,000 inhabitants. Inset shows the ash fall distribution -&4)+/$(8,$<H<W$,4&3()*+$N"2(,4$ Saucedo et alQC$<HHZPQ 200 VOLUME 50 NUMBER 2 GEOFÍSICA INTERNACIONAL from the vent and some small local airports near period of strong activity with eruptions. This period the zone might be affected in case of ash fall was well documented by Macías et al. (2006). events. Furthermore, volcanic products injected U4*.$(8,$2*4."()*+$*2$"$!"?"$-*.,$)+$<HH7C$SUJ$ into the atmosphere can be transported by the has been in a state of continuous activity. wind several thousands of kilometers away affecting commercial airways (see, Aeronautical The eruptive period that began in November Chart edited by JEPPESEN, LA (H/L) 1). With the <HHZ$ M"#$ 2*!!*M,-$ )+$ !"(,$ <HH7$ M)(8$ #,?,4"!$ increase of aeronautical operations, the hazard effusive events, with the collapse of the lava to civil aviation is always present. Reports of 24*+($ 34*-&')+/$ #,?,4"!$ 0!*'aK"+-K"#8$ %*M#Q$ several accidents, without casualties but with Taran et al. (2002) measured emission rates several millions of dollars spent in reparation and of 400 and 1600 ton/day, respectively, in late .")+(,+"+',$-*$,>)#($N,Q/QC$J"#"-,?"!!C$<HHOPQ$ :'(*0,4$ "+-$ .)-KG*?,.0,4C$<HH7Q$ j8,#,$ M,4,$ the highest emission rates measured in 3 years. The monitoring system deployed by the On November 26, the VFC discharged more than Universidad de Colima and the Universidad de 20,000 tons/day of SO2 (Taran et al., 2002). A Guadalajara consists of 5 seismological stations, !"4/,$ ,>3!*#)*+$ *+$ U,04&"45$ <EC$ <HHH$ 2*!!*M,-$ 2 video monitoring stations, 12 stations for the elevated SO2 emission rates. This explosion, -,2*4."()*+$ .*+)(*4)+/$ NW$ 0,+'8."4a#$ "+-$ H$ which produced an ash cloud covering an area of 4,%,'(*4#P$ Nb*0)+$ et al., 2002). Measurements ~150 km2C$M"#$(8,$64#($!"4/,$,>3!*#)*+$*2$SUJ$ are complemented with remote monitoring )+$(8,$!"#($7E$5,"4#Q$j8,$U,04&"45$<E$,>3!*#)*+$ techniques of gases such as COSPEC measure marked the end of the effusive phase. The ments (Taran et al., 2002) and ash cloud detection explosive period ended with the most violent using satellite images (Galindo and Domínguez, ,>3!*#)*+$*2$(8,$3,4)*-$*+$g&!5$<ZC$<HHHF$M8)'8$ 2002). Some studies have characterized the formed a column with a height of 10 km (Macías volcano activity (Galindo and Domínguez, 2002 et al., 2006). In late 2001 the eruptive phase "+-$ DEEWC$ 9(,?,+#*+$ "+-$ S"4!,5C$ DEE7F$ b*0)+$ changed to effusive again, now characterized by et al., 2002 and 2007). Galindo and Domínguez the appearance and growth of a new lava dome (2002) for instance, reported the presence N.">).&.$?*!&.,$<QOH$>$<E6 m3) and formation *+$ :'(*0,4$ W<C$ <HHZ$ *2$ "$ (8,4."!$ "+*."!5$ *2$ of 354*'!"#()'$ %*M#$ NS"4!,5$ et al., 2004). This D=VJ$"($(8,$#&..)($*2$(8,$?*!'"+*$-,(,'(,-$05$ phase ended in March 2003 with an increase in `Sc@@$-"("C$"+-$)-,+()6,-$"$#."!!$"#8$'!*&-$*+$ the number and energy of Vulcanian explosive November 1stC$<HHZQ$d#)+/$(8)#$(,'8+);&,$#,?,4"!$ events. Macías et al. (2006) reported a new ash and SO2 clouds were detected. explosive period began in late 2004. In March and April, 2005 were reported eruptions with Activity of Volcán de Fuego de Colima and columns reaching heights of about 3 km. In the emissions year 2005 VFC had one of the largest explosive events of the last 25 years, as reported by VFC historical data shows that more than 30 Volcán de Fuego de Colima Observatory (CVO).