Am Broadcasting

Total Page:16

File Type:pdf, Size:1020Kb

Am Broadcasting AM BROADCASTING Demonstration of AM Broadcasting ......................................... 12 Tx ANTENNA.........................................................................................12 Rx ANTENNA.........................................................................................13 100 kHz Rx ANTENNA UTILITIES ......................................................13 Antenna Placement...................................................................................13 The Transmitter......................................................................... 13 The Power Amplifier................................................................................14 The Receiver ............................................................................. 14 Message Recovery - Demodulation..........................................................15 Oscilloscope Synchronization ..................................................................15 Some Qualitative Measurements............................................... 16 signal-to-noise ratio - SNR .................................................................16 the Rx BPF .........................................................................................16 Tutorial Questions..................................................................... 16 AM broadcasting TIMS Broadcast Supplement TH-02 - rev 1.0 - 11 AM BROADCASTING ACHIEVEMENTS: Introduction to the TIMS broadcasting accessories. Demonstration of wire-less broadcasting across the laboratory, using amplitude modulation - AM. PREREQUISITES: familiarisation with TIMS; completion of experiments dealing with amplitude modulation, envelopes, and envelope detection. EXTRA MODULES: Tx ANTENNA, Rx ANTENNA, 100 kHZ RX ANTENNA UTILITIES. Demonstration of AM Broadcasting In this experiment you will model an AM transmitter, making a signal of the type transmitted by your local AM broadcasting station. You will send a message, or program supplied at TRUNKS, via a pair of antennas, to a remote TIMS SYSTEM UNIT, where the message will be recovered by a receiver fitted with an envelope detector. Three special TIMS accessories, described below, are available to model the antenna systems. They allow you to simulate wire-less broadcasting. Tx ANTENNA Read about this accessory in the TIMS User Manual. The transmitting antenna is in the form of a square inductive loop, mounted on a 1 metre stand, and fed by a length of coaxial cable terminated in two 4 mm plugs. It is intended that the antenna be fed, via the coaxial cable, from the output of a standard BUFFER AMPLIFIER module. The signal level from this amplifier should be adjusted, in the first instance, to the TIMS STANDARD REFERENCE LEVEL 1. The antenna is broadly tuned to 100 kHz, and is intended for the transmission of any kind of narrow-band signal located in the vicinity of 100 kHz. By narrow-band is 1 depending upon the distance to the receiving antenna it may be found necessary to increase this signal level. The BUFFER AMPLIFIER is capable of providing an output significantly in excess of the TIMS STANDARD REFERENCE LEVEL before overload occurs. 12 AM broadcasting meant a signal of bandwidth considerably less than an octave; say any where from 85 kHz to 115 kHz. Rx ANTENNA Read about this accessory in the TIMS User Manual. The receiving antenna is in the form of a square inductive loop, mounted on a 1 metre stand, and fed by a length of coaxial cable terminated in a BNC-type coaxial connector. The antenna is broadly tuned to 100 kHz, with a useful bandwidth of about 85 kHz to 115 kHz. The antenna is intended for the reception of signals transmitted from a TIMS Tx ANTENNA. 100 kHz Rx ANTENNA UTILITIES Read about this module in the TIMS User Manual. For the demonstration of wireless broadcasting the receiving and transmitting antennas may be separated by distances in the range say 2 to 5 metres. Under these conditions the received signal, measured at the end of the coaxial cable, will be well below the TIMS STANDARD REFERENCE LEVEL - perhaps a few hundred microvolt or less. To amplify the relatively small signals from the Rx ANTENNA a special purpose 100 kHz Rx ANTENNA UTILITIES module is available. This module contains a high gain amplifier and a bandpass filter - BPF. The amplifier has an on-board gain control. This is pre-set to suit the range over which the signals are to be transmitted, so as to provide a wanted signal output of approximately the TIMS STANDARD REFERENCE LEVEL Antenna Placement The loop antennas are placed adjacent to their respective TIMS SYSTEM UNITS. The separation of the antennas will typically be in the range say 2 to 5 metres. For best reception the loops should be rotated so that their axes are co-linear. The Transmitter Set up the AM transmitter of the experiment entitled Amplitude Modulation - AM. This is shown in Figure 1 below, with the addition of a BUFFER AMPLIFIER module and a Tx ANTENNA. AM broadcasting 13 A C E F B D Message (program) AM Generator Transmitter (exciter) (power amplifier) Figure 1: AM Transmitter. The Power Amplifier The power amplifier for the transmitter is modelled by a BUFFER AMPLIFIER. If necessary, to provide a larger signal at the receiver, its output may be increased beyond the TIMS STANDARD REFERENCE LEVEL without causing distortion. This may be checked by observation with the oscilloscope. The Receiver The coaxial cable from the receiving antenna should be connected to the coaxial input socket of the 100 kHz Rx ANTENNA UTILITIES module. Typically the Rx ANTENNA will pick up a lot of electromagnetic radiation over the range say 50 kHz to 1 MHz. Some of this will come from remote locations, but some possibly from electronic equipment located nearby (especially some PC monitors). Examination of the signal from the MONITOR OUTPUT of the amplifier in the 100 kHz Rx ANTENNA UTILITIES module will show all this noise, and it is probable that the wanted signal will be lost in it. The wanted signal will become more prominent if the noisy signal is passed through the in-built BPF. Assuming the transmitter has been set up correctly, the amplitude modulated signal should be visible, at about TIMS STANDARD REFERENCE LEVEL, at the output of this module. Ideally it should have the appearance of Figure 2, but, despite the BPF, it will be accompanied by noise. Further, unless positive steps are taken (see later), the oscilloscope will probably not display a stable picture of the AM signal. If the AM signal is unrecognisable because of noise then the amplitude of the received signal will need to be increased. This can be done by increasing the tranmitted signal amplitude, or moving the two antennas closer together. Make sure there is at least a recognisable AM signal at the receiver before proceeding. The clearer is the envelope shape then the better the received signal-to- noise (SNR) ratio. 14 AM broadcasting Figure 2: the ideal AM waveform Message Recovery - Demodulation A simple diode detector is adequate for message recovery from the amplitude modulated signal, provided the received SNR is adequate. The diode detector can be modelled with an IDEAL RECTIFIER and suitable lowpass filter, such as that in the HEADPHONE AMPLIFIER. This arrangement is examined in the experiment entitled Envelope Recovery. The complete receiving facility is shown in block diagram form in Figure 3 below. coax Figure 3: the ‘TRF’ receiver This arrangement is known as a tuned radio frequency (TRF) receiver. Its ability to select the wanted signal and reject all others (considered as noise) is entirely dependent upon the selectivity of the BPF which precedes the envelope detector. All those unwanted signals which pass through the BPF combine with the wanted signal to produce a composite signal. The envelope of this composite signal becomes the output from the envelope detector. The envelope of the composite signal will be a good copy of the envelope of the wanted signal provided all unwanted components are small relative to the amplitude of the wanted carrier. Otherwise the composite envelope will be a non-linearly distorted version of the wanted envelope, and so the recovered message will be a similarly distorted version of the wanted message. Oscilloscope Synchronization A stable oscilloscope display, of the waveform of Figure 2, is sometimes achieved by trial and error, when synchronizing to the displayed signal itself. But this is often a AM broadcasting 15 question of good luck rather than good management. Do not blame the oscilloscope if synchronization is not possible. The oscilloscope requires envelope information, and the synchronizing circuitry of the oscilloscope is generally not designed to extract this from the AM (or any other) signal. For a stable display of the AM signal it is necessary for the oscilloscope to be synchronized to the message frequency. This signal is only available after successful demodulation. It should be connected to the external trigger input of the oscilloscope. Some Qualitative Measurements signal-to-noise ratio - SNR Examine, with the oscilloscope, the signal from the RX AMP MONITOR and the 100 KHZ BPF OUT sockets, of the 100 kHz Rx ANTENNA UTILITIES module. The received SNR can be changed by rotating the receiving antenna, or reducing the amplitude of the transmitted signal. While doing this listen to the received signal (if speech or music), or observe it on the oscilloscope (if a single tone). Notice what happens as the received SNR falls. the Rx BPF As time permits you should measure the amplitude/frequency
Recommended publications
  • BETS-5 Issue 1 November 1, 1996
    BETS-5 Issue 1 November 1, 1996 Spectrum Management Broadcasting Equipment Technical Standard Technical Standards and Requirements for AM Broadcasting Transmitters Aussi disponible en français - NTMR-5 Purpose This document contains the technical standards and requirements for the issuance of a Technical Acceptance Certificate (TAC) for AM broadcasting transmitters. A certificate issued for equipment classified as type approved or as technically acceptable before the coming into force of these technical standards and requirements is considered to be a valid and subsisting TAC. A Technical Acceptance Certificate is not required for equipment manufactured or imported solely for re-export, prototyping, demonstration, exhibition or testing purposes. i Table of Contents Page 1. General ...............................................................1 2. Testing and Labelling ..................................................1 3. Standard Test Conditions ..............................................2 4. Transmitting Equipment Standards .....................................3 5. Equipment Requirements ..............................................4 6. RF Carrier Performance Standards .................................... 5 6.1 Power Output Rating .................................................5 6.2 Modulation Capability ................................................5 6.3 Carrier Frequency Stability ............................................6 6.4 Carrier Level Shift ...................................................7 6.5 Spurious Emissions
    [Show full text]
  • Chapter 4, Current Status, Knowledge Gaps, and Research Needs Pertaining to Firefighter Radio Communication Systems
    NIOSH Firefighter Radio Communications CHAPTER IV: STRUCTURE COMMUNICATIONS ISSUES Buildings and other structures pose difficult problems for wireless (radio) communications. Whether communication is via hand-held radio or personal cellular phone, communications to, from, and within structures can degrade depending on a variety of factors. These factors include multipath effects, reflection from coated exterior glass, non-line-of-sight path loss, and signal absorption in the building construction materials, among others. The communications problems may be compounded by lack of a repeater to amplify and retransmit the signal or by poor placement of the repeater. RF propagation in structures can be so poor that there may be areas where the signal is virtually nonexistent, rendering radio communication impossible. Those who design and select firefighter communications systems cannot dictate what building materials or methods are used in structures, but they can conduct research and select the radio system designs and deployments that provide significantly improved radio communications in this extremely difficult environment.4 Communication Problems Inherent in Structures MULTIPATH Multipath fading and noise is a major cause of poor radio performance. Multipath is a phenomenon that results from the fact that a transmitted signal does not arrive at the receiver solely from a single straight line-of-sight path. Because there are obstacles in the path of a transmitted radio signal, the signal may be reflected multiple times and in multiple paths, and arrive at the receiver from various directions along various paths, with various signal strengths per path. In fact, a radio signal received by a firefighter within a building is rarely a signal that traveled directly by line of sight from the transmitter.
    [Show full text]
  • Additive Synthesis, Amplitude Modulation and Frequency Modulation
    Additive Synthesis, Amplitude Modulation and Frequency Modulation Prof Eduardo R Miranda Varèse-Gastprofessor [email protected] Electronic Music Studio TU Berlin Institute of Communications Research http://www.kgw.tu-berlin.de/ Topics: Additive Synthesis Amplitude Modulation (and Ring Modulation) Frequency Modulation Additive Synthesis • The technique assumes that any periodic waveform can be modelled as a sum sinusoids at various amplitude envelopes and time-varying frequencies. • Works by summing up individually generated sinusoids in order to form a specific sound. Additive Synthesis eg21 Additive Synthesis eg24 • A very powerful and flexible technique. • But it is difficult to control manually and is computationally expensive. • Musical timbres: composed of dozens of time-varying partials. • It requires dozens of oscillators, noise generators and envelopes to obtain convincing simulations of acoustic sounds. • The specification and control of the parameter values for these components are difficult and time consuming. • Alternative approach: tools to obtain the synthesis parameters automatically from the analysis of the spectrum of sampled sounds. Amplitude Modulation • Modulation occurs when some aspect of an audio signal (carrier) varies according to the behaviour of another signal (modulator). • AM = when a modulator drives the amplitude of a carrier. • Simple AM: uses only 2 sinewave oscillators. eg23 • Complex AM: may involve more than 2 signals; or signals other than sinewaves may be employed as carriers and/or modulators. • Two types of AM: a) Classic AM b) Ring Modulation Classic AM • The output from the modulator is added to an offset amplitude value. • If there is no modulation, then the amplitude of the carrier will be equal to the offset.
    [Show full text]
  • Fcc and Am Stereo: a Deregulatory Breach of Duty
    THE FCC AND AM STEREO: A DEREGULATORY BREACH OF DUTY JASON B. MEYERt The trend toward governmental deregulation of private enterprise, which began in earnest in the 1970's1 and has gathered momentum under the Reagan administration, has had a significant effect on the telecommunications industry. The Federal Communications Commis- sion (FCC) has reduced regulation of operation and maintenance log- ging2 and eliminated minimum aural transmission power require- ments.' Similarly, a major effort has been made in Congress to enact a bill deregulating broadcast programming.4 In 1984 the FCC justified eliminating or relaxing many licensing requirements on the grounds that such "actions further the Commission's goals of creating, to the maximum extent possible, an unregulated, competitive environment for t A.B. 1980, Princeton University; J.D. Candidate, 1985, University of Pennsylva- nia. The author wrote this Comment while a student at the University of Pennsylvania Law School. I See, e.g., Depository Institutions Deregulation and Monetary Control Act of 1980, Pub. L. No. 96-221, 94 Stat. 132 (codified at scattered sections of Titles 12, 15, 22 & 42 of the U.S.C.) (reducing regulatory control of banks); Airline Deregulation Act of 1978, Pub. L. No. 95-504, 92 Stat. 1705 (codified at 49 U.S.C. §§ 1300-02, 1305-08, 1324, 1341, 1371-79, 1382, 1384, 1386, 1389, 1461, 1482, 1486, 1490, 1504, 1551-52) (reducing regulatory control of airlines). I See Operating and Maintenance Logs for Broadcast and Broadcast Auxiliary Stations, 48 Fed. Reg. 38,473 (1983). ' The Commission abolished minimum aural power requirements that had previ- ously created a situation in which a station's aural range well exceeded its visual range.
    [Show full text]
  • Prof. K Radhakrishna Rao Lecture 2 Role of Analog Signal Processing
    Analog Circuits and Systems Prof. K Radhakrishna Rao Lecture 2 Role of Analog Signal Processing in Electronic Products – Part 1 1 Structure of an electronic product 2 Electronic Products o Process analog signals and digital data o This involve transmission and reception of signals and data o It is generally necessary to code signal and data to transmit over channels o Transmission can be over wires or wireless o Processing and storage are efficient in digital form o Several human interface technologies are available 3 Products considered o Radio Receiver o Modem o Cell Phone o ECG 4 Radio Receiver o AM Receiver o FM Receiver 5 Radio waves are classified as o Low frequency (LF): 30 kHz – 300 kHz, o Medium frequency (MF): 300 kHz – 3 MHz, o High frequency (HF): 3 MHz – 30 MHz, o Very high frequency (VHF): 30 MHz – 300 MHz, o Ultra high frequency (UHF): 300 MHz – 3 GHz, o Super high frequency (SHF): 3 GHz – 30 GHz, o Extremely high frequency (EHF): 30 GHz to 300 GHz. 6 Radio broadcasting o one-way wireless transmission over radio waves to reach a wide audience o takes place in MF (300 kHz – 3 MHz), HF (3 MHz – 30 MHz) and VHF (30 MHz – 300 MHz) regions 7 Major modes of radio broadcasting o Sine wave (single tone) represented by Vtp sin(ωφ+ ) PM (Analog) where φ = phase in radians PSK (Digital) QPSK( Digital) FM (Analog) ω = frequency in rad/sec FSK (Digital) AM, DSB (Analog) V = peak magnitude in volts p ASK (Digital) 8 AM broadcasting o Amplitude of the carrier signal is varied in response to the amplitude of the signal to be transmitted o Amplitude modulation is done by a unit called mixer (nothing but a multiplier) which produces an output output=+( Vpc V pm sinωω m t )sin c t Vpm where ωm is the modulating frequency = m is known as the Vpc ω is the carrier frequency c modulation index.
    [Show full text]
  • Amplitude Modulation(AM)
    Introduction to Modulation: Amplitude Modulation(AM) Sharlene Katz James Flynn Overview Modulation Overview Basics of Amplitude Modulation (AM) AM Demonstration GRC Exercise 2 Flynn/Katz 7/8/10 Why do we need Modulation/Demodulation? Example: Radio transmission Voice Microphone Transmitter Electric signal, Antenna: 20 Hz – 20 Size requirement KHz > 1/10 wavelength c 3×108 Antenna too large! 5 Use modulation to At 3 KHz: λ = = 3 =10 =100km f 3×10 transfer ⇒ .1λ =10km information to a higher frequency 3 Flynn/Katz 7/8/10 Why do we need Modulation/Demodulation? (cont’d) Frequency Assignment Reduction of noise/interference Multiplexing Bandwidth limitations of equipment Frequency characteristics of antennas Atmospheric/cable properties 4 Flynn/Katz 7/8/10 Basic Concept of Modulation The information source Typically a low frequency signal Referred to as the “baseband signal” X(f) x(t) t f Carrier A higher frequency sinusoid baseband Modulated Modulator Example: cos(2π10000t) carrier signal Modulated Signal Some parameter of the carrier (amplitude, frequency, phase) is varied in accordance with the baseband signal 5 Flynn/Katz 7/8/10 Types of Modulation Analog Modulation Amplitude Modulation, AM Frequency Modulation, FM Double and Single Sideband, DSB and SSB Digital Modulation Phase Shift Keying: BPSK, QPSK, MSK Frequency Shift Keying, FSK Quadrature Amplitude Modulation, QAM 6 Flynn/Katz 7/8/10 Amplitude Modulation (AM) Block Diagram x(t) m x + xAM(t)=Ac [1+mx(t)]cos wct Ac cos wct Time Domain Signal information
    [Show full text]
  • RADIO's DIGITAL DILEMMA: BROADCASTING in the 21St
    RADIO’S DIGITAL DILEMMA: BROADCASTING IN THE 21st CENTURY BY JOHN NATHAN ANDERSON DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Communications in the Graduate College of the University of Illinois at Urbana-Champaign, 2011 Urbana, Illinois Doctoral Committee: Professor John C. Nerone, Chair and Director of Research Associate Professor Michelle Renee Nelson Associate Professor Christian Edward Sandvig Professor Daniel Toby Schiller ii ABSTRACT The interaction of policy and technological development in the era of “convergence” is messy and fraught with contradictions. The best expression of this condition is found in the story behind the development and proliferation of digital audio broadcasting (DAB). Radio is the last of the traditional mass media to navigate the convergence phenomenon; convergence itself has an inherently disruptive effect on traditional media forms. However, in the case of radio, this disruption is mostly self-induced through the cultivation of communications policies which thwart innovation. A dramaturgical analysis of digital radio’s technological and policy development reveals that the industry’s preferred mode of navigating the convergence phenomenon is not designed to provide the medium with a realistically useful path into a 21st century convergent media environment. Instead, the diffusion of “HD Radio” is a blocking mechanism proffered to impede new competition in the terrestrial radio space. HD Radio has several critical shortfalls: it causes interference and degradation to existing analog radio signals; does not have the capability to actually advance the utility of radio beyond extant quality/performance metrics; and is a wholly proprietary technology from transmission to reception.
    [Show full text]
  • Federal Communications Commission § 73.1590
    Federal Communications Commission § 73.1590 the licensee must notify the FCC of the (2) FM stations. The total modulation date that normal operation was re- must not exceed 100 percent on peaks stored. If causes beyond the control of of frequent reoccurrence referenced to the licensee prevent restoration of the 75 kHz deviation. However, stations authorized power within 30 days, a re- providing subsidiary communications quest for Special Temporary Authority services using subcarriers under provi- (see § 73.1635) must be made to the FCC sions of § 73.319 concurrently with the in Washington, DC for additional time broadcasting of stereophonic or as may be necessary. monophonic programs may increase the peak modulation deviation as fol- [44 FR 58734, Oct. 11, 1979, as amended at 49 lows: FR 22093, May 25, 1984; 49 FR 29069, July 18, 1984; 49 FR 47610, Dec. 6, 1984; 50 FR 26568, (i) The total peak modulation may be June 27, 1985; 50 FR 40015, Oct. 1, 1985; 63 FR increased 0.5 percent for each 1.0 per- 33877, June 22, 1998; 65 FR 30004, May 10, 2000; cent subcarrier injection modulation. 67 FR 13232, Mar. 21, 2002] (ii) In no event may the modulation of the carrier exceed 110 percent (82.5 § 73.1570 Modulation levels: AM, FM, kHz peak deviation). TV and Class A TV aural. (3) TV and Class A TV stations. In no (a) The percentage of modulation is case shall the total modulation of the to be maintained at as high a level as aural carrier exceed 100% on peaks of is consistent with good quality of frequent recurrence, unless some other transmission and good broadcast serv- peak modulation level is specified in an ice, with maximum levels not to exceed instrument of authorization.
    [Show full text]
  • Saleh Faruque Radio Frequency Modulation Made Easy
    SPRINGER BRIEFS IN ELECTRICAL AND COMPUTER ENGINEERING Saleh Faruque Radio Frequency Modulation Made Easy 123 SpringerBriefs in Electrical and Computer Engineering More information about this series at http://www.springer.com/series/10059 Saleh Faruque Radio Frequency Modulation Made Easy 123 Saleh Faruque Department of Electrical Engineering University of North Dakota Grand Forks, ND USA ISSN 2191-8112 ISSN 2191-8120 (electronic) SpringerBriefs in Electrical and Computer Engineering ISBN 978-3-319-41200-9 ISBN 978-3-319-41202-3 (eBook) DOI 10.1007/978-3-319-41202-3 Library of Congress Control Number: 2016945147 © The Author(s) 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • ETS 300 750 TELECOMMUNICATION May 1996 STANDARD
    DRAFT EUROPEAN pr ETS 300 750 TELECOMMUNICATION May 1996 STANDARD Source: EBU/CENELEC/ETSI JTC Reference: DE/JTC-00VHFTXHU ICS: 33.060.20 Key words: broadcasting, radio, transmitter, FM, VHF, audio European Broadcasting Union Union Européenne de Radio-Télévision EBU UER Radio broadcasting systems; Very High Frequency (VHF), frequency modulated, sound broadcasting transmitters in the 66 to 73 MHz band ETSI European Telecommunications Standards Institute ETSI Secretariat Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: [email protected] Tel.: +33 92 94 42 00 - Fax: +33 93 65 47 16 Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the * foregoing restriction extend to reproduction in all media. © European Telecommunications Standards Institute 1996. © European Broadcasting Union 1996. All rights reserved. Page 2 Draft prETS 300 750: May 1996 Whilst every care has been taken in the preparation and publication of this document, errors in content, typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to "ETSI Editing and Committee Support Dept." at the address shown on the title page. Page 3 Draft prETS 300 750: May 1996 Contents Foreword .......................................................................................................................................................5 1 Scope
    [Show full text]
  • Digital Terrestrial Radio for Australia
    Parliament of Australia Department of Parliamentary Services Parliamentary Library Information, analysis and advice for the Parliament RESEARCH PAPER www.aph.gov.au/library 19 December, no. 18, 2008–09, ISSN 1834-9854 Going digital—digital terrestrial radio for Australia Dr Rhonda Jolly Social Policy Section Executive summary th • Since the early 20 century radio has been an important source of information and entertainment for people of various ages and backgrounds. • Almost every Australian home and car has at least one radio and most Australians listen to radio regularly. • The introduction of new radio technology—digital terrestrial radio—which can deliver a better listening experience for audiences, therefore has the potential to influence people’s lives significantly. • Digital radio in a variety of technological formats has been established in a number of countries for some years, but it is expected only to become a reality in Australia sometime in 2009. • Unlike the idea of digital television however, digital radio has not fully captured the imagination of audiences and in some markets there are suggestions that it is no longer relevant. • This paper provides a simple explanation of the major digital radio standards and a brief history of their development. It particularly examines the standard chosen for Australia, the Eureka 147 standard (known also as Digital Audio Broadcasting or DAB). • The paper also traces the development of digital radio policy in Australia and considers issues which may affect the future of the technology. Contents Introduction ................................................................................................................................. 1 Radio basics: AM and FM radio ................................................................................................. 3 How do AM and FM work? ................................................................................................... 3 How AM radio works .......................................................................................................
    [Show full text]
  • Communication Systems Amplitude Modulation (AM)
    16.002 Lecture (8) Communication Systems Amplitude Modulation (AM) April 9, 2008 Today’s Topics 1. Amplitude modulation of signals 2. Application issues Take Away Fourier Transform methods facilitate the understanding of modulation in communication systems Required Reading O&W-8.0, 8.1, 8.2, 8.3, 8.7 Communication systems typically transmit information that has content at relatively low frequencies by encoding it, in one fashion or another, onto carrier signals at much higher frequencies. For example, amplitude modulated (AM) commercial radio broadcasting systems typically transmit voice and music signals using electromagnetic waves that pass readily through the atmosphere. The voice and music signals have frequency content typically in the range of about 20 Hz (cycles per second) up to about 20 kHz (thousands of cycles per second). The physical characteristics of the atmosphere make it very difficult for signals at these frequencies to be transmitted at distances beyond a few meters. Rather, these signals are encoded onto high frequency sinusoidal carrier signals that are in the range of 520 kHz up to 1.75 MHz (millions of cycles per second), by modulating the amplitude of the carrier wave. Typically the frequency of the carrier is one or more orders of magnitude greater than the frequency of the signal it is “carrying”. Fourier transform methods are an ideal means for understanding the workings of these kinds of communication systems. Amplitude Modulation We will start our study of communications systems by first analyzing the AM method of communicating signals. The two most common forms of amplitude modulation use either a complex carrier or a single sinusoidal carrier.
    [Show full text]