Virulence of Septoria Triseti and Fungicide Control of Leaf Mottle and Fusarium Seed Infection of Canary Seed (Phalaris Canariensis)

Total Page:16

File Type:pdf, Size:1020Kb

Virulence of Septoria Triseti and Fungicide Control of Leaf Mottle and Fusarium Seed Infection of Canary Seed (Phalaris Canariensis) VIRULENCE OF SEPTORIA TRISETI AND FUNGICIDE CONTROL OF LEAF MOTTLE AND FUSARIUM SEED INFECTION OF CANARY SEED (PHALARIS CANARIENSIS) A Thesis Submitted to the College of Graduate Studies and Research In Partil Fulfillment of the Requirements For the Degree of Master of Science In the Department of Plant Sciences University of Saskatchewan Saskatoon By Luisa Paulina Cholango Martínez © Copyright Luisa Paulina Cholango Martínez, June 2016 All rights reserved PERMISSION TO USE In presenting this thesis in partial fulfilment of the requirements for a postgraduate degree from the University of Saskatchewan, I agree that the libraries of this University may make it freely available for inspection. I further agree that permission for copying this thesis in any manner, in whole part or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my writing permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. DISCLAIMER Reference in this thesis to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring by the University of Saskatchewan. The views and options of the author expressed herein do not state or reflect those of the University of Saskatchewan, and shall not be used for advertising or product endorsement purposes. Request for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Plant Sciences 51 Campus Drive, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5A8 i ABSTRACT Leaf mottle, caused by Septoria triseti, is the most important disease of canary seed (Phalaris canariensis L.) in western Canada and when severe it may cause reduction of canary seed yield. Understanding the host-pathogen interaction and the variation in virulence of the pathogen population is important for the development of durable resistance in canary seed cultivars. Recently, canary seed was approved as food for human consumption and identification of pathogenic fungal species on canary seed panicles is necessary to monitor seed quality. The objectives of this project were: 1) to evaluate variation for virulence among 27 isolates of S. triseti on Phalaris spp., 2) to identify the fungal species present on canary seed, and 3) to evaluate the effect of fungicides, application timings and canary seed genotypes on leaf mottle and fusarium seed infection of canary seed. Under controlled conditions, 24 Phalaris genotypes were evaluated for leaf mottle severity after inoculation with 27 isolates of S. triseti collected during 2005, 2013 or 2014. Differential interactions were detected in this study, which suggest that this patho-system follows the gene-for-gene model. Accession PI 189547 from Mexico was identified as resistant to 25 of the 27 isolates, which should be a valuable parent in a canary seed breeding program. Survey reports from 2014 and 2015 indicated the presence of Alternaria spp. and Fusarium spp. related to the FHB complex (Fusarium graminearum Schwabe, F. culmorum (W. G. Smith) Sacc., F. avenaceum (Corda ex Fr.) Sacc. and F. poae (Peck) Wollenw). A field study at Saskatoon and Indian Head during 2014 and 2015, using moderately resistant (PI 251274-3) and susceptible (Keet) canary seed genotypes, and three fungicides (propiconazole, prothioconazole + tebuconazole and pyraclostrobin + metconazole) applied at flag leaf and heading stages indicated that fungicide application reduced disease severity in years of high humidity, but application timing had little to no effect. Canary seed genotypes did not differ for leaf mottle severity or ii fusarium seed infection. Although these studies increased our knowledge of the interaction between S. triseti and canary seed, the benefit of fungicide applications were more difficult to measure. Thus, more research is needed to integrate this information into effective strategies to control leaf mottle and FHB in this crop. iii ACKNOWLEDGEMENTS I would like to acknowledge to my supervisor Dr. Randy Kutcher for his support of my graduate studies, for his comments and suggestions, and for giving me the opportunity to explore different areas during my program. A special thanks to Dr. Pierre Hucl for supporting the canary seed project. I want to thank all members of the Cereal and Flax Pathology group for their guidance in field and lab work, especially Jess Taylor and Tim Dament who taught me the first techniques at the beginning of my project. I want to thank all the people that were part of my life during my master’s program, those who I saw every day and shared a smile, a lunch and just a greeting because they gave me the energy to continue, and to my good friends for their support and friendship, Eliza, Anh, Christine, Mandeep and Mercedes. A big thank you to my lovely family, dad and mom, and my sisters Rebeca, Helen and my special Yasodhara, for the daily motivation and support. Thanks Paulette and Dorrin my homestay family here in this lovely city. iv DEDICATION To my beloved father and mother, my daily inspiration to be a better person and professional, who taught me the value of work hard, dreaming big and to be happy. v TABLE OF CONTENTS ABSTRACT ................................................................................................................................... ii ACKNOWLEDGEMENTS ........................................................................................................ iv DEDICATION .............................................................................................................................. v TABLE OF CONTENTS ............................................................................................................ vi LIST OF TABLE ......................................................................................................................... ix LIST OF FIGURES ..................................................................................................................... xi LIST OF ABREVATIONS ....................................................................................................... xiii CHAPTER 1 : ................................................................................................................................ 1 Introduction and research hypotheses ........................................................................................ 1 1.1 Introduction ......................................................................................................................... 1 1.2 Hypotheses and objectives: ................................................................................................. 3 CHAPTER 2: ................................................................................................................................. 5 Literature Review ......................................................................................................................... 5 2.1 Canary seed (Phalaris canariensis L.) ................................................................................ 5 2.1.1 Origin and classification ..................................................................................................... 5 2.1.2 Distribution of canary seed ................................................................................................. 6 2.1.3 Cytological and morphological characteristics ................................................................... 6 2.1.4 Nutrient composition of canary seed and uses .................................................................... 7 2.1.1 Agronomic characteristics ................................................................................................... 9 2.2 Insect pests and diseases of canary seed ........................................................................... 10 2.2.1 Septoria triseti Speg. ......................................................................................................... 11 2.2.2 Host range of Septoria triseti ............................................................................................ 12 2.2.3 Distribution and symptoms of leaf mottle ......................................................................... 12 2.2.4 Host-pathogen interactions................................................................................................ 13 2.2.5 Fusarium graminearum Schwabe ..................................................................................... 15 2.3 Yield losses in canary seed ............................................................................................... 15 2.3.1 Yield loss caused by Septoria spp. .................................................................................... 15 2.4 Fungicide control of Septoria spp. and FHB .................................................................... 16 2.4.1 Fungicide application timing to control Septoria spp. ...................................................... 16 2.4.2 Fungicide control of fusarium head blight .......................................................................
Recommended publications
  • Insects of Macquarie Island. Introduction1
    Pacific Insects 4 (4) : 905-915 December, 15, 1962 INSECTS OF MACQUARIE ISLAND. INTRODUCTION1 By J. Linsley Gressitt BISHOP MUSEUM, HONOLULU Abstract: Collections of land arthropods were made on Macquarie Island by J. L. Gres­ sitt and J. H. Calaby, 4-10 December 1960, and by Keith Watson, December 1960-Decem- ber 1961. This paper is a brief discussion of the geography and environment of Macquarie, introductory to the systematic papers describing the fauna. Watson, of the Australian Na­ tional Antarctic Research Expeditions, will later publish his general ecological studies, when the species are all identified. INTRODUCTION This paper is a brief description of the geography and environment of Macquarie Is­ land, as related to land arthropods. It is presented by way of introduction to the series of reports by various specialists on the land arthropod fauna of the island. The bulk of these reports immediately follow this article. (One Macquarie mite is discussed in the third of the preceding articles by Wallwork on Antarctic mites, and another is mentioned in his second article.) Others will appear in later issues, when they are completed. After publication of the bulk of these taxonomic reports, Keith Watson will publish his general report on the land arthropod fauna of Macquarie, incorporating his ecological studies on the fauna. Through the kindness of Mr. P. G. Law, Director of the Antarctic Division, Australian Department of External Affairs, I was permitted to join the Australian National Antarctic Research Expedition for the annual resupply trip to Macquarie Island in early December 1960. The operation, supported by the chartered Danish ice-breaker Magga Dan, was car­ ried on at Macquarie from 4th to lOth December.
    [Show full text]
  • Germination Studies Showed a Warm Day/Cold Night Regime to Be the Most Effective
    SOME STUDIES ON THE GENUS ACAENA A thesis presented to the Faculty of Science and Engineering in the University of Birmingham by DAVID WINSTON HARRIS WALTON in supplication for the degree of Doctor of Philosophy. September, 1974. University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. 09CC/.6 "The inner parts of the Country South Georgia was not less savage and horrible: the Wild rocks raised their lofty summits till they were lost in the Clouds and the Vallies laid buried in everlasting Snow. Not a tree or shrub was to be seen, no not even big enough to make a toothpick. I landed in three different places, displayed our Colours and took possession of the Country in his Majestys name under a descharge of small arms. Our Botanists found here only three plants, the one is a coarse strong bladed grass which grows in tufts, Wild Burnet and a Plant like Moss which grows on the rocks". The Journals of Captain Cook : vol. 2 - The Voyage of the Resolution and Adventure in 1772-1775. Cambridge University Press (1961).
    [Show full text]
  • THE ALPINE FLORA of TIERRA DEL FUEGO by D. M. MOORE
    Anal. Inst. Bot. Cavanilles 32 (2): 419-440 (1975) THE ALPINE FLORA OF TIERRA DEL FUEGO by D. M. MOORE This paper is dedicated to Prof. S, Rivas Goday on his 70th birthday. Introduction Since the first known collection of Fuegian plants, made along^ the NW coast of Tierra del Fuego by George Handisyd in 1690 (More- ton-Middleton, 1909; Gunckel, 1971), more than 200 collectors have contributed to our knowledge of the flora of this region (Moore and Goodall, unpub.). Because of the importance of shipborne expeditions, most of the earlier studies were confined to coastal areas and fuller information on the interior did not become available until the expe­ ditions of Nordenskjold (Dusen, 1900), Skottsberg (1916) and Roivai- nen (1954) during the late 19th and early 20th centuries. Since then there has, of course, been a continued accumulation of data on the flora and vegetation of Tierra del Fuego so that now, although many problems remain, the general characteristics are fairly clear. The mountainous regions of Tierra del Fuego are generally difficult of access and have uncertain and inclement weather so that even today many parts have not been visited by botanists. However, the travels of Alboff (1896, 1897), Dusen (1900), Gusinde (Skottsberg, 1926) and Skottsberg (1916) served to outline the general features of the alpine flora and these have been confirmed and amplified by more recent studies (Godley, 1960; Moore, 1969, 1970, 1971, etc; Moore and Goodall, 1973, 1974, etc.). In consequence, despite the inevitable lacunae in our knowledge, it seems appropriate to summarize current information on the alpine flora of Tierra del Fuego and this paper represents the first such attempt since that of Skottsberg (1916).
    [Show full text]
  • 'Weeds by Nature': the Plants of Macquarie Island
    Twelfth Australian Weeds Conference ‘WEEDS BY NATURE’: THE PLANTS OF MACQUARIE ISLAND Mark Fountain, Alan Macfadyen, Natalie Papworth and Jim Cane Royal Tasmanian Botanical Gardens, Queens Domain, Hobart, Tas. 7000 Abstract Subantarctic Macquarie Island is a small, which the annual temperature varies little from the very isolated island in the Southern Ocean 1500 km mean of 4.8°C, rain falls nearly every day but there is south-southeast of Tasmania. It is a relatively young little persistent snow. Westerly winds predominate, landmass, emerging from the sea between 200,000 and frequently reach gale force for prolonged periods, and 90,000 years ago, and like other subantarctic islands cloud covers the island for most of the year. only has a small number (41 species) of flowering SOIL DYNAMICS plants. All species on the island have travelled there by long distance dispersal, often showing biogeo- The key characteristic of Macquarie Island soil is that graphical links to the other subantarctic islands and of instability, and the two factors of seismic activity land masses to the west and north. Many could be and gravity interplay here. Earthquakes 6.2 on the characterised as obligate colonisers or ‘weeds by na- Richter scale or stronger occur at least annually (Jones ture’ since they come from ‘weedy’ genera with cos- and McCue 1988), and are responsible for mass move- mopolitan distributions such as Galium, Epilobium, ment in the form of landslips typified in the ridgetop Cardamine and Stellaria. peatbeds (Selkirk et al. 1988). The steep slopes ex- posed to the constant rain and wind are susceptible to The island’s soils are essentially skeletal at high alti- gradual downward movement, aided on a more local tude or highly organic loam or peat at low altitude.
    [Show full text]
  • Studies on Colombian Grasses (Poaceae): Twenty Chorological Novelties
    www.unal.edu.co/icn/publicaciones/caldasia.htm Caldasia 27(1):131-145.García 2005et al. ESTUDIOS EN GRAMÍNEAS (POACEAE) DE COLOMBIA: VEINTE NOVEDADES COROLÓGICAS 1 Studies on Colombian grasses (Poaceae): Twenty chorological novelties JOHN ALEJANDRO GARCÍA-ULLOA Departamento de Biología, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá D. C., Colombia. [email protected], [email protected] CAMILO LASTRA CÉSAR SALAS Herbario de la Facultad de Agronomía “HFAB”, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá D. C., [email protected], ecocambiol@yahoo. es; [email protected], [email protected] MÓNICA MEDINA MERCHÁN Departamento de Biología-Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Apartado 7495, Bogotá D. C., Colombia. [email protected] RESUMEN Se dan a conocer veinte novedades para la flora de Colombia: Agrostis mertensii, Agrostis perennans, Agrostis stolonifera, Agrostis subrepens, Agrostis tolucensis, Aristida schiedeana, Arundo donax, Bouteloua aristidoides, Bouteloua simplex, Cenchrus ciliaris, Cortaderia selloana, Cynodon dactylon, Cynodon nlemfuensis, Heteropogon contortus, Microchloa kunthii, Paspalidium geminatum, Pharus parvifolius, Tragus berteronianus, Urochloa distachya y Zoysia matrella. Se presentan la distribución geográfica, las preferencias ecológicas, los nombres comunes, los usos y las afinidades morfológicas para cada una de las especies. Asimismo, se excluyen de la flora de Colombia las siguientes especies: Agrostis araucana (= Agrostis magellanica),
    [Show full text]
  • The Vegetation Communities Macquarie Island Vegetation
    Edition 2 From Forest to Fjaeldmark The Vegetation Communities Macquarie Island vegetation Pleurophyllum hookeri Edition 2 From Forest to Fjaeldmark 1 Macquarie Island vegetation Community (Code) Page Coastal slope complex (QCS) 4 Coastal terrace mosaic (QCT) 6 Kelp beds (QKB) 8 Macquarie alpine mosaic (QAM) 10 Mire (QMI) 12 Short tussock grassland/rushland with herbs (QST) 14 Tall tussock grassland with megaherbs (QTT) 16 General description the surface and is part of its identified value as a World Heritage Area. The vegetation mapping of Macquarie Island was prepared by P.M. Selkirk and D.A. Adamson in 1998 All of the vegetation of Macquarie Island is and is based on vegetation structure rather than herbaceous, with no woody species present. community composition. Vegetation categories Megaherbs are a distinctive and unique feature of indicate foliage density and foliage height, similar to the sub-Antarctic, occurring nowhere else in the scheme of Specht (Specht et al. 1995). Using Tasmania. There are two megaherbs on Macquarie Specht’s classes, ‘closed vegetation’ equates to Island – Stilbocarpa polaris (Macquarie Island foliage projective cover >70%; and ‘open vegetation’ cabbage) and Pleurophyllum hookeri. In tall tussock equates to foliage projective cover <70%. ‘Tall grasslands dominated by Poa foliosa, there are often vegetation’ describes vegetation where the foliage swathes of Stilbocarpa polaris. stands higher than 0.4 to 0.5m above the ground, The vegetation communities that make up the while ‘short vegetation’ has foliage <0.4m high. Coastal terrace mosaic are much more widespread Seven structural vegetation types have been than currently mapped. Components of this mosaic identified in the mapping of Macquarie Island (mire, herbland, tall grassland, bryophytes, lakes, vegetation.
    [Show full text]
  • South, Tasmania
    Biodiversity Summary for NRM Regions Guide to Users Background What is the summary for and where does it come from? This summary has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. It highlights important elements of the biodiversity of the region in two ways: • Listing species which may be significant for management because they are found only in the region, mainly in the region, or they have a conservation status such as endangered or vulnerable. • Comparing the region to other parts of Australia in terms of the composition and distribution of its species, to suggest components of its biodiversity which may be nationally significant. The summary was produced using the Australian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. The list of families covered in ANHAT is shown in Appendix 1. Groups notnot yet yet covered covered in inANHAT ANHAT are are not not included included in the in the summary. • The data used for this summary come from authoritative sources, but they are not perfect.
    [Show full text]
  • The Spatial Distribution of Alien and Invasive Vascular Plant Species on Sub-Antarctic Marion Island
    The spatial distribution of alien and invasive vascular plant species on sub-Antarctic Marion Island by Tshililo Ramaswiela Thesis presented in partial fulfillment of the requirements for the degree of Master of Science (Botany) at Stellenbosch University Department of Botany and Zoology Faculty of Science Supervisor: Prof. Steven L. Chown Co-supervisor: Dr. Justine D. Shaw December 2010 DECLARATION By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the owner of the copyright thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: September 2010 Copyright © 2010 Stellenbosch University All rights reserved i ABSTRACT The patterns of spread of non-indigenous species and the factors influencing their distribution have been studied infrequently on Southern Ocean Islands, where the prevention and control of biological invasions is a priority for conservation management. Owing to its remoteness and relatively small size, sub-Antarctic Marion Island provides an ideal opportunity to investigate the patterns of spread of invasive species and the factors likely influencing the distribution of alien species. Therefore, this study provides a spatially explicit documentation of the alien and invasive vascular plant species on Marion Island, the change in their distribution patterns through time, an assessment of the correlates of the current distributions, documentation of species rich areas, and provides recommendations for control based on these data and life history data available for each species. To ensure comprehensive coverage for the current estimate of distributions, a combination of a systematic (spatially explicit) survey and an ad hoc data collection method was used to examine the abundance and occupancy of each alien plant species across the island.
    [Show full text]
  • THE VEGETATION of SUBANTARCTIC CAMPBELL ISLAND ______Summary: the Vegetation of Campbell Island and Its Offshore Islets Was Sampled Quantitatively at 140 Sites
    COLIN D. MEURK, M.N. FOGGO1 and J. BASTOW WILSON2 123 Landcare Research - Manaaki Whenua, PO Box 69, Lincoln, New Zealand. 1. Department of Science, Central Institute of Technology, Private Bag 39807, Wellington, New Zealand. 2. Botany Department, University of Otago, PO Box 56, Dunedin, New Zealand. THE VEGETATION OF SUBANTARCTIC CAMPBELL ISLAND __________________________________________________________________________________________________________________________________ Summary: The vegetation of Campbell Island and its offshore islets was sampled quantitatively at 140 sites. Data from the 134 sites with more than one vascular plant species were subjected to multivariate analysis. Out of a total of 140 indigenous and widespread adventive species known from the island group, 124 vascular species were recorded; 85 non-vascular cryptogams or species aggregates play a major role in the vegetation. Up to 19 factors of the physical environment were recorded or derived for each site. Agglomerative cluster analysis of the vegetation data was used to identify 21 plant communities. These (together with cryptogam associations) include: maritime crusts, turfs, megaherbfields, tussock grasslands, and shrublands; mid-elevation swamps, flushes, bogs, tussock grasslands, shrublands, dwarf forests, and induced meadows; and upland tundra-like tussock grasslands, tall and short turf-herbfields, bogs, flushes, rock-ledge herbfields, and fellfields. Axis 1 of the DCA ordination is largely a soil gradient related to the eutrophying impact of marine spray, sea mammals and birds, and nutrient flushing. Axis 2 is an altitudinal (or thermal) gradient. Axis 3 is related to soil reaction and to different kinds of animal influence on vegetation stature and species richness, and Axis 4 also appears to have fertility and animal associations.
    [Show full text]
  • Flora of North America North of Mexico
    Flora of North America North of Mexico Edited by FLORA OF NORTH AMERICA EDITORIAL COMMITTEE VOLUME 24 MagnoUophyta: Commelinidae (in part): Foaceae, part 1 Edited by Mary E. Barkworth, Kathleen M. Capéis, Sandy Long, Laurel K. Anderton, and Michael B. Piep Illustrated by Cindy Talbot Roché, Linda Ann Vorobik, Sandy Long, Annaliese Miller, Bee F Gunn, and Christine Roberts NEW YORK OXFORD • OXFORD UNIVERSITY PRESS » 2007 Oxford Univei;sLty Press, Inc., publishes works that further Oxford University's objective of excellence in research, scholarship, and education. Oxford New York /Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto Copyright ©2007 by Utah State University Tlie account of Avena is reproduced by permission of Bernard R. Baum for the Department of Agriculture and Agri-Food, Government of Canada, ©Minister of Public Works and Government Services, Canada, 2007. The accounts of Arctophila, Dtipontui, Scbizacbne, Vahlodea, xArctodiipontia, and xDiipoa are reproduced by permission of Jacques Cayouette and Stephen J. Darbyshire for the Department of Agriculture and Agri-Food, Government of Canada, ©Minister of Public Works and Government Services, Canada, 2007. The accounts of Eremopoa, Leitcopoa, Schedoiioms, and xPucciphippsia are reproduced by permission of Stephen J. Darbyshire for the Department of Agriculture and Agri-Food, Government of Canada, ©Minister of Public Works and Government Services, Canada, 2007. Published by Oxford University Press, Inc. 198 Madison Avenue, New York, New York 10016 www.oup.com Oxford is a registered trademark of Oxford University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Utah State University.
    [Show full text]
  • Falkland Islands Species List
    Falkland Islands Species List Day Common Name Scientific Name x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 BIRDS* 2 DUCKS, GEESE, & WATERFOWL Anseriformes - Anatidae 3 Black-necked Swan Cygnus melancoryphus 4 Coscoroba Swan Coscoroba coscoroba 5 Upland Goose Chloephaga picta 6 Kelp Goose Chloephaga hybrida 7 Ruddy-headed Goose Chloephaga rubidiceps 8 Flying Steamer-Duck Tachyeres patachonicus 9 Falkland Steamer-Duck Tachyeres brachypterus 10 Crested Duck Lophonetta specularioides 11 Chiloe Wigeon Anas sibilatrix 12 Mallard Anas platyrhynchos 13 Cinnamon Teal Anas cyanoptera 14 Yellow-billed Pintail Anas georgica 15 Silver Teal Anas versicolor 16 Yellow-billed Teal Anas flavirostris 17 GREBES Podicipediformes - Podicipedidae 18 White-tufted Grebe Rollandia rolland 19 Silvery Grebe Podiceps occipitalis 20 PENGUINS Sphenisciformes - Spheniscidae 21 King Penguin Aptenodytes patagonicus 22 Gentoo Penguin Pygoscelis papua Cheesemans' Ecology Safaris Species List Updated: April 2017 Page 1 of 11 Day Common Name Scientific Name x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 23 Magellanic Penguin Spheniscus magellanicus 24 Macaroni Penguin Eudyptes chrysolophus 25 Southern Rockhopper Penguin Eudyptes chrysocome chrysocome 26 ALBATROSSES Procellariiformes - Diomedeidae 27 Gray-headed Albatross Thalassarche chrysostoma 28 Black-browed Albatross Thalassarche melanophris 29 Royal Albatross (Southern) Diomedea epomophora epomophora 30 Royal Albatross (Northern) Diomedea epomophora sanfordi 31 Wandering Albatross (Snowy) Diomedea exulans exulans 32 Wandering
    [Show full text]
  • Phalaris, Poaceae)
    Evolutionary history of the canary grasses (Phalaris, Poaceae) Stephanie M. Voshell Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Biological Sciences Khidir W. Hilu, Committee Chair Robert H. Jones Brent D. Opell John G. Jelesko May 1, 2014 Blacksburg, VA Keywords: Phalaris, polyploidy, phylogenetics, phylogeography, chromosome evolution Evolutionary history of the canary grasses (Phalaris, Poaceae) Stephanie M. Voshell ABSTRACT Canary grasses (Phalaris, Poaceae) include 21 species widely distributed throughout temperate and subtropical regions of the world with centers of diversity in the Mediterranean Basin and western North America. The genus contains annual/perennial, endemic/cosmopolitan, wild, and invasive species with basic numbers of x=6 (diploid) and x=7 (diploid/tetraploid/hexaploid). The latter display vastly greater speciation and geographic distribution. These attributes make Phalaris an ideal platform to study species diversification, dispersal, historic hybridization, polyploidy events, and chromosome evolution in the grasses. This body of research presents the first molecular phylogenetic and phylogeographic reconstruction of the genus based on the nuclear ITS and plastid trnT-F DNA regions allowing species relationships and the importance of polyploidy in speciation to be assessed. Divergence dates for the genus were determined using Bayesian methods (BEAST, version 1.6.2) and historic patterns of dispersal were analyzed with RASP (version 2.1b). Self-incompatibility and the feasibility of hybridization between major groups within the genus were studied with a series of greenhouse experiments. Acetocarmine and fluorescent staining techniques were used to study the morphology of the chromosomes in a phylogenetic context and the nuclear DNA content (C values) was quantified using flow cytometry.
    [Show full text]