SULFATES in JUVENTAE CHASMA AS SEEN by CRISM. J. L. Bishop1, S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evidence for Volcanism in and Near the Chaotic Terrains East of Valles Marineris, Mars
43rd Lunar and Planetary Science Conference (2012) 1057.pdf EVIDENCE FOR VOLCANISM IN AND NEAR THE CHAOTIC TERRAINS EAST OF VALLES MARINERIS, MARS. Tanya N. Harrison, Malin Space Science Systems ([email protected]; P.O. Box 910148, San Diego, CA 92191). Introduction: Martian chaotic terrain was first de- ple chaotic regions are visible in CTX images (Figs. scribed by [1] from Mariner 6 and 7 data as a “rough, 1,2). These fractures have widened since the formation irregular complex of short ridges, knobs, and irregular- of the flows. The flows overtop and/or bank up upon ly shaped troughs and depressions,” attributing this pre-existing topography such as crater ejecta blankets morphology to subsidence and suggesting volcanism (Fig. 2c). Flows are also observed originating from as a possible cause. McCauley et al. [2], who were the fractures within some craters in the vicinity of the cha- first to note the presence of large outflow channels that os regions. Potential lava flows are observed on a por- appeared to originate from the chaotic terrains in Mar- tion of the floor as Hydaspis Chaos, possibly associat- iner 9 data, proposed localized geothermal melting ed with fissures on the chaos floor. As in Hydraotes, followed by catastrophic release as the formation these flows bank up against blocks on the chaos floor, mechanism of chaotic terrain. Variants of this model implying that if the flows are volcanic in origin, the have subsequently been detailed by a number of au- volcanism occurred after the formation of Hydaspis thors [e.g. 3,4,5]. Meresse et al. -
Aqueous Minerals from Arsia Chasmata of Arsia Mons, Tharsis Region: Implications for Aqueous Alteration Processes on Mars
45th Lunar and Planetary Science Conference (2014) 1826.pdf AQUEOUS MINERALS FROM ARSIA CHASMATA OF ARSIA MONS, THARSIS REGION: IMPLICATIONS FOR AQUEOUS ALTERATION PROCESSES ON MARS. N. Jain*, S. Bhattacharya, P. Chauhan, Space Applications Centre (ISRO), Ahmedabad, Gujarat, India ([email protected]/ Fax: +91-079- 26915825). Introduction: The Arsia Chasmata is a complex help of high resolution data such as MGS-MOC (Mars collapsed region located at the northeastern flank of Global Surveyor-Mars Orbiter Camera), Viking orbiter Arsia Mons (figure 1 A and B) within Tharsis region [3], fresh appearing lava flows [4], graben and glaciers of planet Mars and is the most important region for the on flanks of Arsia Mons [5], young lava flows [6] study of minerals like phyllosilicate and pyroxene. The small shields at floor of caldera [7]. reflectance data of MRO-CRISM (figure 1 C D) has Present study mainly focuses on the mineralogy of confirmed above mentioned minerals in the study area. Arsia Chasmata which interestingly contains The presence of these minerals at the Arsia Chasmata absorption features of aqueous altered minerals such as on Mars provides the evidence of its past watery serpentine (phyllosilicate). This mineral is also located environment and their processes of formation. In the in Nili Fossae region which is long, narrow depression present study the absorption features of serpentine present on Mars [8]. But in the present study (phyllosilicate) are obtained at 2.32 µm, 1.94 µm and occurrence of this mineral at high altitude region raise 2.51 µm. Previous studies on Mars show that the curiosity to know about their formation processes. -
Volcanism on Mars
Author's personal copy Chapter 41 Volcanism on Mars James R. Zimbelman Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, USA William Brent Garry and Jacob Elvin Bleacher Sciences and Exploration Directorate, Code 600, NASA Goddard Space Flight Center, Greenbelt, MD, USA David A. Crown Planetary Science Institute, Tucson, AZ, USA Chapter Outline 1. Introduction 717 7. Volcanic Plains 724 2. Background 718 8. Medusae Fossae Formation 725 3. Large Central Volcanoes 720 9. Compositional Constraints 726 4. Paterae and Tholi 721 10. Volcanic History of Mars 727 5. Hellas Highland Volcanoes 722 11. Future Studies 728 6. Small Constructs 723 Further Reading 728 GLOSSARY shield volcano A broad volcanic construct consisting of a multitude of individual lava flows. Flank slopes are typically w5, or less AMAZONIAN The youngest geologic time period on Mars identi- than half as steep as the flanks on a typical composite volcano. fied through geologic mapping of superposition relations and the SNC meteorites A group of igneous meteorites that originated on areal density of impact craters. Mars, as indicated by a relatively young age for most of these caldera An irregular collapse feature formed over the evacuated meteorites, but most importantly because gases trapped within magma chamber within a volcano, which includes the potential glassy parts of the meteorite are identical to the atmosphere of for a significant role for explosive volcanism. Mars. The abbreviation is derived from the names of the three central volcano Edifice created by the emplacement of volcanic meteorites that define major subdivisions identified within the materials from a centralized source vent rather than from along a group: S, Shergotty; N, Nakhla; C, Chassigny. -
An Overview of Morphological and Compositional Investigation of Melas Chasma of Valles Marineris
Ninth International Conference on Mars 2019 (LPI Contrib. No. 2089) 6145.pdf An Overview of Morphological and Compositional investigation of Melas Chasma of Valles Marineris. T. Sivasankari1 and S. Arivazhagan2, 1 2 Centre For Applied Geology, Gandhigram Rural Institute - Deemed to be University, Gandhigram, Dindigul-624302, India ([email protected] and [email protected]). Introduction Many studies had been carried out by the primarily by aeolian processes in the recent period of time. researchers for various region of Valles Marineris and has Fig. 2. Shows the geology map of the study area. The geolo- revealed evidence for the presence of sulphate deposits gy map of Melas chasma was derived based on the map giv- namely the Interior Layered Deposits (ILD). The present en by Witbeck et al, 1991. The geological features includes study aims at the identification of mafic minerals High Cal- slope materials on the valley walls, dunes, layered materials, cium Pyroxene [HCP] and Phyllosilicate minerals of Melas fractured sediments, ridged plains, floor materials and crater chasma region of Valles Marineris by using CRISM datasets. fill materials. The topography of Chasma was interpreted by The spectra and the mineral distribution maps are derived the contuor map and DEM derived using the MOLA data. using the spectral summary parameters which helps to under- The contour values shows the highest relief of the study area stand the past geologic events ultimately bringing out the is 4000m and the lowest relief is -3800m. From the DEM origin and evolution of Valles Marineris. The Morphological data it is evident that the chasma has almost smooth valley features of Valles Marineris are compared with the CRISM floor with small isolated patches and a rugged topography as well as the HiRiSE Data. -
KILOMETER-SIZED CONES on MARS: IGNEOUS OR MUD VOLCANOES?. P. Brož1, P. Fawdon2, and O. Čadek3, 1Institute of Geophysics Of
Lunar and Planetary Science XLVIII (2017) 1425.pdf KILOMETER-SIZED CONES ON MARS: IGNEOUS OR MUD VOLCANOES?. P. Brož1, P. Fawdon2, and O. Čadek3, 1Institute of Geophysics of the Czech Academy of Science ([email protected]), 2Birkbeck, University of London, Malet St, London WC1E 7HX, 3Faculty of Mathematics and Physics, Department of Geophysics, Charles University in Prague, Czech Republic. Introduction: There is an ongoing debate within scientific community about the formation process of kilometer-sized cones reported from several regions on Mars (e.g., [1-8]). Two of the main mechanisms con- sidered as possible explanations, are (1) small scale igneous volcanism (e.g., [1,4-7]) and (2) mud volcan- ism (e.g., [2,8,10]). It is important to differentiate be- tween these two processes because of the very different implications these processes have for the Martian crust and near surface environment. Small scale igneous activity implies Mars producing magma away from the large Amazonian volcanic centers, whereas mud vol- canism implies pressurized and mobile ground water in the past. Both processes involve key factors of envi- ronmental habitability meaning that understanding the origin of these features is important in our understand- ing of recent habitability of Mars. On Earth small volcanoes and mud volcanism form of morphologically similar landforms (Fig. 1). Both processes form cones with relatively steep flanks and central craters on their tops; often additionally associ- ated with flow-like units spreading around those cones. Consequently, because of this convergence of form, is not readily apparent how to distinguish between these two processes using satellite images. -
Possible Evaporite Karst in an Interior Layered Deposit in Juventae
International Journal of Speleology 46 (2) 181-189 Tampa, FL (USA) May 2017 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Possible evaporite karst in an interior layered deposit in Juventae Chasma, Mars Davide Baioni* and Mario Tramontana Planetary Geology Research Group, Dipartimento di Scienze Pure e Applicate (DiSPeA), Università degli Studi di Urbino "Carlo Bo", Campus Scientifico Enrico Mattei, 61029 Urbino (PU), Italy Abstract: This paper describes karst landforms observed in an interior layered deposit (ILD) located within Juventae Chasma a trough of the Valles Marineris, a rift system that belongs to the Tharsis region of Mars. The ILD investigated is characterized by spectral signatures of kieserite, an evaporitic mineral present on Earth. A morphologic and morphometric survey of the ILD surface performed on data of the Orbiter High Resolution Imaging Science Experiment (HiRISE) highlighted the presence of depressions of various shapes and sizes. These landforms interpreted as dolines resemble similar karst landforms on Earth and in other regions of Mars. The observed karst landforms suggest the presence of liquid water, probably due to ice melting, in the Amazonian age. Keywords: Mars, interior layered deposits, karst, climate change Received 21 Octomber 2016; Revised 18 April 2017; Accepted 19 April 2017 Citation: Baioni D. and Tramontana M., 2017. Possible evaporite karst in an interior layered deposit in Juventae Chasma, Mars. International Journal of Speleology, 46 (2), 181-189. Tampa, FL (USA) ISSN 0392-6672 https://doi.org/10.5038/1827-806X.46.2.2085 INTRODUCTION north of Valles Marineris (Catling et al., 2006). -
Martian Sub-Surface Ionising Radiation: Abstract Introduction ∗ Biosignatures and Geology Conclusions References Tables Figures L
Biogeosciences Discuss., 4, 455–492, 2007 Biogeosciences www.biogeosciences-discuss.net/4/455/2007/ Discussions BGD © Author(s) 2007. This work is licensed 4, 455–492, 2007 under a Creative Commons License. Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences Martian radiation L. R. Dartnell et al Title Page Martian sub-surface ionising radiation: Abstract Introduction ∗ biosignatures and geology Conclusions References Tables Figures L. R. Dartnell1, L. Desorgher2, J. M. Ward3, and A. J. Coates4 1CoMPLEX (Centre for Mathematics & Physics in the Life Sciences and Experimental J I Biology), University College London, UK J I 2Physikalisches Institut, University of Bern, Switzerland 3Department of Biochemistry and Molecular Biology, University College London, UK Back Close 4Mullard Space Science Laboratory, University College London, UK Full Screen / Esc Received: 8 January 2007 – Accepted: 7 February 2007 – Published: 9 February 2007 Correspondence to: L. R. Dartnell ([email protected]) Printer-friendly Version Interactive Discussion EGU ∗Invited contribution by L. R. Dartnell, one of the Union Young Scientist Award winners 2006. 455 Abstract BGD The surface of Mars, unshielded by thick atmosphere or global magnetic field, is ex- posed to high levels of cosmic radiation. This ionizing radiation field is deleterious to 4, 455–492, 2007 the survival of dormant cells or spores and the persistence of molecular biomarkers in 5 the subsurface, and so its characterisation is of prime astrobiological interest. Previous Martian radiation research has attempted to address the question of biomarker persistence by inappro- priately using dose profiles weighted specifically for cellular survival. Here, we present L. R. Dartnell et al modelling results of the unmodified physically absorbed radiation dose as a function of depth through the Martian subsurface. -
The Formation History of Olympus Mons from Paleo-Topography
42nd Lunar and Planetary Science Conference (2011) 2202.pdf THE FORMATION HISTORY OF OLYMPUS MONS FROM PALEO-TOPOGRAPHY. L. M. Jozwiak1,2 R. J. Isherwood2, and J. C. Andrews-Hanna2, 1Dept. of Earth, Atmospheric, and Planetary Sciences, MIT, Cambridge, MA, [email protected], 2Dept. of Geophysics, Colorado School of Mines, Golden, CO, [email protected]. Introduction: The Olympus Mons shield volcano on the northwestern edge of Mars’ Tharsis rise is the largest volcano in the solar system. Its volcanic his- tory is intimately tied with the volcanic and geody- namic history of Tharsis and of Mars as a whole. Pre- vious studies used crater counting to estimate the age of the flanks of Olympus, with typical values of ~200 Myr [1]. However, establishing the formation history for Olympus Mons is complicated by the fact that each volcanic eruption resurfaces the flanks, erasing the previous crater record. Here we place constraints on the bulk formation history of Olympus Mons by recon- structing the paleo-flexural history of the surrounding region. Crater retention ages from lava flows on the flexural trough surrounding the edifice that pre-date the trough are used to constrain the onset of volcanic loading. Crater retention ages from the aureole depos- its are used to constrain the age at which a significant fraction of the edifice was in place. These two ages bracket the main constructional period of Olympus. Paleo-topography of the Olympus Mons flexural trough. The concept of paleo-topography is used in terrestrial geodynamics to reconstruct the vertical mo- tions of the lithosphere [2], but has seen less use in planetary applications [3]. -
GEOLOGIC MAPS of the OLYMPUS MONS REGION of MARS by Elliot C. Morris and Kenneth L. Tanaka
U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY GEOLOGIC MAPS OF THE OLYMPUS MONS REGION OF MARS By Elliot C. Morris and Kenneth L. Tanaka Prepared for the NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ..... t\:) a 0 a0 0 0 )> z 0 ..... ..... MISCELLANEOUS INVESTIGATIONS SERIES a 0 Published by the U.S. Geological Survey, 1994 a0 0 0 3: ~ U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP I-2327 U.S. GEOLOGICAL SURVEY GEOLOGIC MAPS OF THE OLYMPUS MONS REGION OF MARS By Elliot C. Morris and Kenneth L. Tanaka INTRODUCTION measurements of relief valuable in determining such factors as Olympus Mons is one of the broadest volcanoes and volcano volume, structural offsets, and lava-flow rheology. certainly the tallest in the Solar System. It has been extensively Except for the difference in extent of the areas mapped, the described and analyzed in scientific publications and frequently topographic information, the cartographic control (latitudes noted in the popular and nontechnical literature of Mars. and longitudes of features may differ by as much as a few tenths However, the first name given to the feature-Nix Olympica of a degree), and the greater detail permitted by the larger scale (Schiaparelli, 1879)-was based on its albedo, not its size, base, the two maps are virtually the same. A comparison of our because early telescopic observations of Mars revealed only map units with those of other Viking-based maps is given in albedo features and not topography (lnge and others, 1971). table 1. After Mariner 9 images acquired in 1971 showed that this Unravellng the geology of the Olympus Mons region is not albedo feature coincides with a giant shield volcano (McCauley limited to a simple exercise in stratigraphy. -
PSRD: Timeline of Martian Volcanism
PSRD: Timeline of Martian Volcanism http://www.psrd.hawaii.edu/May11/Mars_volc_timeline.html May 27, 2011 --- High-resolution images allow a larger range of crater sizes to date calderas and the last major periods of volcanic activity on Mars. Written by Linda M. V. Martel Hawai'i Institute of Geophysics and Planetology A recent study of Martian volcanism presents a timeline of the last major eruptions from 20 large volcanoes, based on the relative ages of caldera surfaces determined by crater counting. Stuart Robbins, Gaetano Di Achille, and Brian Hynek (University of Colorado) counted craters on high-resolution images from the the Context Camera (CTX) on Mars Reconnaissance Orbiter to date individual calderas, or terraces within calderas, on the 20 major Martian volcanoes. Based on their timeline and mapping, rates and durations of eruptions and transitions from explosive to effusive activity varied from volcano to volcano. The work confirms previous findings by others that volcanism was continuous throughout Click for full image data Martian geologic history until about one to two hundred million years ago, the final volcanic . events were not synchronous across the planet, and the latest large-scale caldera activity ended about 150 million years ago in the Tharsis province. This timing correlates well with the crystallization ages (~165-170 million years) determined for the youngest basaltic Martian meteorites. Reference: Robbins, S. J., Di Achille, G., and Hynek, B. M. (2011) The Volcanic History of Mars: High-Resolution Crater-Based Studies of the Calderas of 20 Volcanoes, Icarus, v. 211, p. 1179-1203, doi: 10.1016/j.icarus.2010.11.012. -
Mineralogical Characterization of Juventae Chasma, Mars: Evidences from Mro-Crism
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-8, 2014 ISPRS Technical Commission VIII Symposium, 09 – 12 December 2014, Hyderabad, India MINERALOGICAL CHARACTERIZATION OF JUVENTAE CHASMA, MARS: EVIDENCES FROM MRO-CRISM Mahima Singh*, V.J. Rajesh Indian Institute of Space Science and Technology, Department of Earth and Space Science, Trivandrum, India- [email protected] KEY WORDS: Juventae Chasma, Hydrous Sulphates, Mafic minerals, Carbonates, Light Toned Layered Deposits, CRISM ABSTRACT: Juventae Chasma is a long depression associated with Valles Marineris and this study discusses the spectral observation made after analysing the Mars Reconnaissance Orbiter (MRO) Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) Full Resolution targeted (FRT) Images in the wavelength region of 1000-2600 nm. Observations reveal the presence of hydrous sulphates, pyroxenes (mafic minerals) and silica rich minerals, more likely opaline silica or glass. Hydrous mineral identified shows the absorption bands, which are more consistent with gypsum. Absorption bands at 2300-2350 nm, and 2500-2550 nm, which are characteristics of carbonates, have been also identified in the region. Presence of this mineral assemblage, confirmed by the observed spectral signatures ranging from volcanic to sedimentary origin, implies a relatively geologically active area, and a significant region in terms of aqueous activity. 1. INTRODUCTION 2. METHODOLOGY Juventae Chasma is a box canyon and located north of Valles CRISM acquires images in high-resolution targeted mode using Marineris. Generally, it is considered as a part of Valles two detectors: a VNIR detector in the spectral range 360–1050 Marineris system, but is separated from the main channel by nm and an IR detector covering 1000-3900 nm (Murchie et al., 500 km. -
Exobiology in the Solar System & the Search for Life on Mars
SP-1231 SP-1231 October 1999 Exobiology in the Solar System & The Search for Life on Mars for The Search Exobiology in the Solar System & Exobiology in the Solar System & The Search for Life on Mars Report from the ESA Exobiology Team Study 1997-1998 Contact: ESA Publications Division c/o ESTEC, PO Box 299, 2200 AG Noordwijk, The Netherlands Tel. (31) 71 565 3400 - Fax (31) 71 565 5433 SP-1231 October 1999 EXOBIOLOGY IN THE SOLAR SYSTEM AND THE SEARCH FOR LIFE ON MARS Report from the ESA Exobiology Team Study 1997-1998 Cover Fossil coccoid bacteria, 1 µm in diameter, found in sediment 3.3-3.5 Gyr old from the Early Archean of South Africa. See pages 160-161. Background: a portion of the meandering canyons of the Nanedi Valles system viewed by Mars Global Surveyor. The valley is about 2.5 km wide; the scene covers 9.8 km by 27.9 km centred on 5.1°N/48.26°W. The valley floor at top right exhibits a 200 m-wide channel covered by dunes and debris. This channel suggests that the valley might have been carved by water flowing through the system over a long period, in a manner similar to rivers on Earth. (Malin Space Science Systems/NASA) SP-1231 ‘Exobiology in the Solar System and The Search for Life on Mars’, ISBN 92-9092-520-5 Scientific Coordinators: André Brack, Brian Fitton and François Raulin Edited by: Andrew Wilson ESA Publications Division Published by: ESA Publications Division ESTEC, Noordwijk, The Netherlands Price: 70 Dutch Guilders/ EUR32 Copyright: © 1999 European Space Agency Contents Foreword 7 I An Exobiological View of the