Toward a Calibrated Geologic Time Scale: Stratigraphy and the Rock Record of Mars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Evolution of a Heterogeneous Martian Mantle: Clues from K, P, Ti, Cr, and Ni Variations in Gusev Basalts and Shergottite Meteorites
Earth and Planetary Science Letters 296 (2010) 67–77 Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl The evolution of a heterogeneous Martian mantle: Clues from K, P, Ti, Cr, and Ni variations in Gusev basalts and shergottite meteorites Mariek E. Schmidt a,⁎, Timothy J. McCoy b a Dept. of Earth Sciences, Brock University, St. Catharines, ON, Canada L2S 3A1 b Dept. of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0119, USA article info abstract Article history: Martian basalts represent samples of the interior of the planet, and their composition reflects their source at Received 10 December 2009 the time of extraction as well as later igneous processes that affected them. To better understand the Received in revised form 16 April 2010 composition and evolution of Mars, we compare whole rock compositions of basaltic shergottitic meteorites Accepted 21 April 2010 and basaltic lavas examined by the Spirit Mars Exploration Rover in Gusev Crater. Concentrations range from Available online 2 June 2010 K-poor (as low as 0.02 wt.% K2O) in the shergottites to K-rich (up to 1.2 wt.% K2O) in basalts from the Editor: R.W. Carlson Columbia Hills (CH) of Gusev Crater; the Adirondack basalts from the Gusev Plains have more intermediate concentrations of K2O (0.16 wt.% to below detection limit). The compositional dataset for the Gusev basalts is Keywords: more limited than for the shergottites, but it includes the minor elements K, P, Ti, Cr, and Ni, whose behavior Mars igneous processes during mantle melting varies from very incompatible (prefers melt) to very compatible (remains in the shergottites residuum). -
Evidence for Volcanism in and Near the Chaotic Terrains East of Valles Marineris, Mars
43rd Lunar and Planetary Science Conference (2012) 1057.pdf EVIDENCE FOR VOLCANISM IN AND NEAR THE CHAOTIC TERRAINS EAST OF VALLES MARINERIS, MARS. Tanya N. Harrison, Malin Space Science Systems ([email protected]; P.O. Box 910148, San Diego, CA 92191). Introduction: Martian chaotic terrain was first de- ple chaotic regions are visible in CTX images (Figs. scribed by [1] from Mariner 6 and 7 data as a “rough, 1,2). These fractures have widened since the formation irregular complex of short ridges, knobs, and irregular- of the flows. The flows overtop and/or bank up upon ly shaped troughs and depressions,” attributing this pre-existing topography such as crater ejecta blankets morphology to subsidence and suggesting volcanism (Fig. 2c). Flows are also observed originating from as a possible cause. McCauley et al. [2], who were the fractures within some craters in the vicinity of the cha- first to note the presence of large outflow channels that os regions. Potential lava flows are observed on a por- appeared to originate from the chaotic terrains in Mar- tion of the floor as Hydaspis Chaos, possibly associat- iner 9 data, proposed localized geothermal melting ed with fissures on the chaos floor. As in Hydraotes, followed by catastrophic release as the formation these flows bank up against blocks on the chaos floor, mechanism of chaotic terrain. Variants of this model implying that if the flows are volcanic in origin, the have subsequently been detailed by a number of au- volcanism occurred after the formation of Hydaspis thors [e.g. 3,4,5]. Meresse et al. -
MARS DURING the PRE-NOACHIAN. J. C. Andrews-Hanna1 and W. B. Bottke2, 1Lunar and Planetary La- Boratory, University of Arizona
Fourth Conference on Early Mars 2017 (LPI Contrib. No. 2014) 3078.pdf MARS DURING THE PRE-NOACHIAN. J. C. Andrews-Hanna1 and W. B. Bottke2, 1Lunar and Planetary La- boratory, University of Arizona, Tucson, AZ 85721, [email protected], 2Southwest Research Institute and NASA’s SSERVI-ISET team, 1050 Walnut St., Suite 300, Boulder, CO 80302. Introduction: The surface geology of Mars appar- ing the pre-Noachian was ~10% of that during the ently dates back to the beginning of the Early Noachi- LHB. Consideration of the sawtooth-shaped exponen- an, at ~4.1 Ga, leaving ~400 Myr of Mars’ earliest tially declining impact fluxes both in the aftermath of evolution effectively unconstrained [1]. However, an planet formation and during the Late Heavy Bom- enduring record of the earlier pre-Noachian conditions bardment [5] suggests that the impact flux during persists in geophysical and mineralogical data. We use much of the pre-Noachian was even lower than indi- geophysical evidence, primarily in the form of the cated above. This bombardment history is consistent preservation of the crustal dichotomy boundary, to- with a late heavy bombardment (LHB) of the inner gether with mineralogical evidence in order to infer the Solar System [6] during which HUIA formed, which prevailing surface conditions during the pre-Noachian. followed the planet formation era impacts during The emerging picture is a pre-Noachian Mars that was which the dichotomy formed. less dynamic than Noachian Mars in terms of impacts, Pre-Noachian Tectonism and Volcanism: The geodynamics, and hydrology. crust within each of the southern highlands and north- Pre-Noachian Impacts: We define the pre- ern lowlands is remarkably uniform in thickness, aside Noachian as the time period bounded by two impacts – from regions in which it has been thickened by volcan- the dichotomy-forming impact and the Hellas-forming ism (e.g., Tharsis, Elysium) or thinned by impacts impact. -
Hirise Camera Views the Mars Rover 'Spirit' at 'Home Plate' 26 November 2007
HiRISE Camera Views the Mars Rover 'Spirit' at 'Home Plate' 26 November 2007 Herkenhoff said. At the time, the camera was flying about 270 kilometers, or about 168 miles, over the surface. At that distance, the camera could resolve objects about 81 centimeters, or about 32 inches, across. The sun was about 56 degrees above the horizon in the winter afternoon sky. The HiRISE image of Home Plate and others are on the HiRISE Website, hirise.lpl.arizona.edu . HiRISE operations are based at The University of Arizona in Tucson. Professor Alfred S. McEwen of the Lunar and Planetary Laboratory is principal investigator for the experiment. The Mars rover "Spirit" is indicated by a circle on "Home Plate" in this new image of Gusev Crater on Mars. This The HiRISE camera is the most powerful camera detail is part of a much larger image the HiRISE camera ever to orbit another planet. It has taken thousands took on Sept. 27, 2007. The rover has since driven of black-and-white images, and hundreds of color north. (Photo: NASA/JPL/University of Arizona) images, since it began science operations in 2006. A single HiRISE image will often be a multigigabyte image that measures 20,000 pixels by 50,000 The High Resolution Imaging Science Experiment, pixels, which includes a 4,000-by-50,000 pixel or HiRISE, camera onboard NASA's Mars region in three colors. It can take a computer up to Reconnaissance Orbiter has taken a new color three hours to process such an image. image of the feature dubbed "Home Plate" in Gusev Crater on Mars. -
Aqueous Minerals from Arsia Chasmata of Arsia Mons, Tharsis Region: Implications for Aqueous Alteration Processes on Mars
45th Lunar and Planetary Science Conference (2014) 1826.pdf AQUEOUS MINERALS FROM ARSIA CHASMATA OF ARSIA MONS, THARSIS REGION: IMPLICATIONS FOR AQUEOUS ALTERATION PROCESSES ON MARS. N. Jain*, S. Bhattacharya, P. Chauhan, Space Applications Centre (ISRO), Ahmedabad, Gujarat, India ([email protected]/ Fax: +91-079- 26915825). Introduction: The Arsia Chasmata is a complex help of high resolution data such as MGS-MOC (Mars collapsed region located at the northeastern flank of Global Surveyor-Mars Orbiter Camera), Viking orbiter Arsia Mons (figure 1 A and B) within Tharsis region [3], fresh appearing lava flows [4], graben and glaciers of planet Mars and is the most important region for the on flanks of Arsia Mons [5], young lava flows [6] study of minerals like phyllosilicate and pyroxene. The small shields at floor of caldera [7]. reflectance data of MRO-CRISM (figure 1 C D) has Present study mainly focuses on the mineralogy of confirmed above mentioned minerals in the study area. Arsia Chasmata which interestingly contains The presence of these minerals at the Arsia Chasmata absorption features of aqueous altered minerals such as on Mars provides the evidence of its past watery serpentine (phyllosilicate). This mineral is also located environment and their processes of formation. In the in Nili Fossae region which is long, narrow depression present study the absorption features of serpentine present on Mars [8]. But in the present study (phyllosilicate) are obtained at 2.32 µm, 1.94 µm and occurrence of this mineral at high altitude region raise 2.51 µm. Previous studies on Mars show that the curiosity to know about their formation processes. -
Workers' Guide to Health and Safety
Workers’ Guide to Health and Safety by Todd Jailer Miriam Lara-Meloy and Maggie Robbins health guides Berkeley, California, USA Copyright © 2015 by Hesperian Health Guides. All rights reserved. ISBN: 978-0-942364-71-2 Hesperian encourages you to copy, reproduce, or adapt any or all parts of this book, including the illustrations, provided that you do this for non-commercial purposes, credit Hesperian, and follow the other requirements of Hesperian’s Open Copyright License (see www.hesperian.org/about/open-copyright). For certain kinds of adaptation and distribution, we ask that you first obtain permission from Hesperian. Contact [email protected] to use any part of this book: for commercial purposes; in quantities more than 100 print copies; in any digital format; or with an organizational budget more than US $1 million. We also ask that you contact Hesperian for permission before beginning any translation, to avoid duplication of efforts, and for suggestions about adapting the information in this book. Please send Hesperian a copy of any materials in which text or illustrations from this book have been used. THIS EDITION CAN BE IMPROVED WITH YOUR HELP. If you are a worker health promoter, occupational safety and health professional, community organizer, or anyone with ideas or suggestions for ways this book could be changed to better meet the needs of your community, please write to Hesperian. Thank you for your help. This book has been printed in Canada by Friesens, an employee-owned corporation, on 100% post-consumer, chlorine-free, recycled paper. health guides Hesperian Health Guides 1919 Addison St. -
Volcanism on Mars
Author's personal copy Chapter 41 Volcanism on Mars James R. Zimbelman Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, USA William Brent Garry and Jacob Elvin Bleacher Sciences and Exploration Directorate, Code 600, NASA Goddard Space Flight Center, Greenbelt, MD, USA David A. Crown Planetary Science Institute, Tucson, AZ, USA Chapter Outline 1. Introduction 717 7. Volcanic Plains 724 2. Background 718 8. Medusae Fossae Formation 725 3. Large Central Volcanoes 720 9. Compositional Constraints 726 4. Paterae and Tholi 721 10. Volcanic History of Mars 727 5. Hellas Highland Volcanoes 722 11. Future Studies 728 6. Small Constructs 723 Further Reading 728 GLOSSARY shield volcano A broad volcanic construct consisting of a multitude of individual lava flows. Flank slopes are typically w5, or less AMAZONIAN The youngest geologic time period on Mars identi- than half as steep as the flanks on a typical composite volcano. fied through geologic mapping of superposition relations and the SNC meteorites A group of igneous meteorites that originated on areal density of impact craters. Mars, as indicated by a relatively young age for most of these caldera An irregular collapse feature formed over the evacuated meteorites, but most importantly because gases trapped within magma chamber within a volcano, which includes the potential glassy parts of the meteorite are identical to the atmosphere of for a significant role for explosive volcanism. Mars. The abbreviation is derived from the names of the three central volcano Edifice created by the emplacement of volcanic meteorites that define major subdivisions identified within the materials from a centralized source vent rather than from along a group: S, Shergotty; N, Nakhla; C, Chassigny. -
March 21–25, 2016
FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk, -
Mars Exploration Rovers: 4 Years on Mars
https://ntrs.nasa.gov/search.jsp?R=20080047431 2019-10-28T16:17:34+00:00Z Mars Exploration Rovers: 4 Years on Mars Geoffrey A. Landis This January, the Mars Exploration Rovers "Spirit" and "Opportunity" are starting their fifth year of exploring the surface of Mars, well over ten times their nominal 90-day design lifetime. This lecture discusses the Mars Exploration Rovers, presents the current mission status for the extended mission, some of the most results from the mission and how it is affecting our current view of Mars, and briefly presents the plans for the coming NASA missions to the surface of Mars and concepts for exploration with robots and humans into the next decade, and beyond. Four Years on Mars: the Mars Exploration Rovers Geoffrey A. Landis NASA John Glenn Research Center http://www.sff.net/people/geoffrey.landis Presentation at MIT Department of Aeronautics and Astronautics, January 18, 2008 Exploration - Landis Mars viewed from the Hubble Space Telescope Exploration - Landis Views of Mars in the early 20th century Lowell 1908 Sciaparelli 1888 Burroughs 1912 (cover painting by Frazetta) Tales of Outer Space ed. Donald A. Wollheim, Ace D-73, 1954 (From Winchell Chung's web page projectrho.com) Exploration - Landis Past Missions to Mars: first close up images of Mars from Mariner 4 Mariner 4 discovered Mars was a barren, moon-like desert Exploration - Landis Viking 1976 Signs of past water on Mars? orbiter Photo from orbit by the 1976 Viking orbiter Exploration - Landis Pathfinder and Sojourner Rover: a solar-powered mission -
Abstract STUBBLEFIELD, RASHONDA KIAM. Extensional Tectonics at Alba Mons, Mars
Abstract STUBBLEFIELD, RASHONDA KIAM. Extensional Tectonics at Alba Mons, Mars: A Case Study for Local versus Regional Stress Fields. (Under the direction of Dr. Paul K. Byrne). Alba Mons is a large shield volcano on Mars, the development of which appears to be responsible for tectonic landforms oriented radially and circumferentially to the shield. These landforms include those interpreted as extensional structures, such as normal faults and systems of graben. These structures, however, may also be associated with broader, regional stress field emanating from the volcano-tectonic Tharsis Rise, to the south of Alba Mons and centered on the equator. In this study, I report on structural and statistical analyses for normal faults proximal to Alba Mons (in a region spanning 95–120° W and 14–50° N) and test for systematic changes in fault properties with distance from the volcano and from Tharsis. A total of 11,767 faults were mapped for this study, and these faults were all measured for strike, length, and distance from Alba Mons and Tharsis. Additional properties were qualitatively and quantitatively analyzed within a subset of 62 faults, and model ages were obtained for two areas with crater statistics. Distinguishing traits for each structure population include fault properties such as strike, vertical displacement (i.e., throw) distribution profiles, displacement–length (Dmax/L) scaling, and spatial (i.e., cross-cutting) relationships with adjacent faults with different strikes. The only statistically significant correlation in these analyses was between study fault strike with distance from Tharsis. The lack of trends in the data suggest that one or more geological processes is obscuring the expected similarities in properties for these fault systems, such as volcanic resurfacing, mechanical restriction, or fault linkage. -
Explosive Lava‐Water Interactions in Elysium Planitia, Mars: Geologic and Thermodynamic Constraints on the Formation of the Tartarus Colles Cone Groups Christopher W
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, E09006, doi:10.1029/2009JE003546, 2010 Explosive lava‐water interactions in Elysium Planitia, Mars: Geologic and thermodynamic constraints on the formation of the Tartarus Colles cone groups Christopher W. Hamilton,1 Sarah A. Fagents,1 and Lionel Wilson2 Received 16 November 2009; revised 11 May 2010; accepted 3 June 2010; published 16 September 2010. [1] Volcanic rootless constructs (VRCs) are the products of explosive lava‐water interactions. VRCs are significant because they imply the presence of active lava and an underlying aqueous phase (e.g., groundwater or ice) at the time of their formation. Combined mapping of VRC locations, age‐dating of their host lava surfaces, and thermodynamic modeling of lava‐substrate interactions can therefore constrain where and when water has been present in volcanic regions. This information is valuable for identifying fossil hydrothermal systems and determining relationships between climate, near‐surface water abundance, and the potential development of habitable niches on Mars. We examined the western Tartarus Colles region (25–27°N, 170–171°E) in northeastern Elysium Planitia, Mars, and identified 167 VRC groups with a total area of ∼2000 km2. These VRCs preferentially occur where lava is ∼60 m thick. Crater size‐frequency relationships suggest the VRCs formed during the late to middle Amazonian. Modeling results suggest that at the time of VRC formation, near‐surface substrate was partially desiccated, but that the depth to the midlatitude ice table was ]42 m. This ground ice stability zone is consistent with climate models that predict intermediate obliquity (∼35°) between 75 and 250 Ma, with obliquity excursions descending to ∼25–32°. -
An Overview of Morphological and Compositional Investigation of Melas Chasma of Valles Marineris
Ninth International Conference on Mars 2019 (LPI Contrib. No. 2089) 6145.pdf An Overview of Morphological and Compositional investigation of Melas Chasma of Valles Marineris. T. Sivasankari1 and S. Arivazhagan2, 1 2 Centre For Applied Geology, Gandhigram Rural Institute - Deemed to be University, Gandhigram, Dindigul-624302, India ([email protected] and [email protected]). Introduction Many studies had been carried out by the primarily by aeolian processes in the recent period of time. researchers for various region of Valles Marineris and has Fig. 2. Shows the geology map of the study area. The geolo- revealed evidence for the presence of sulphate deposits gy map of Melas chasma was derived based on the map giv- namely the Interior Layered Deposits (ILD). The present en by Witbeck et al, 1991. The geological features includes study aims at the identification of mafic minerals High Cal- slope materials on the valley walls, dunes, layered materials, cium Pyroxene [HCP] and Phyllosilicate minerals of Melas fractured sediments, ridged plains, floor materials and crater chasma region of Valles Marineris by using CRISM datasets. fill materials. The topography of Chasma was interpreted by The spectra and the mineral distribution maps are derived the contuor map and DEM derived using the MOLA data. using the spectral summary parameters which helps to under- The contour values shows the highest relief of the study area stand the past geologic events ultimately bringing out the is 4000m and the lowest relief is -3800m. From the DEM origin and evolution of Valles Marineris. The Morphological data it is evident that the chasma has almost smooth valley features of Valles Marineris are compared with the CRISM floor with small isolated patches and a rugged topography as well as the HiRiSE Data.