Behaviors and Patterns in Low Period Oscillators in Life Abbie Gibson Computer Science Tufts University Appalachian State University [email protected]
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GNU/Linux AI & Alife HOWTO
GNU/Linux AI & Alife HOWTO GNU/Linux AI & Alife HOWTO Table of Contents GNU/Linux AI & Alife HOWTO......................................................................................................................1 by John Eikenberry..................................................................................................................................1 1. Introduction..........................................................................................................................................1 2. Symbolic Systems (GOFAI)................................................................................................................1 3. Connectionism.....................................................................................................................................1 4. Evolutionary Computing......................................................................................................................1 5. Alife & Complex Systems...................................................................................................................1 6. Agents & Robotics...............................................................................................................................1 7. Statistical & Machine Learning...........................................................................................................2 8. Missing & Dead...................................................................................................................................2 1. Introduction.........................................................................................................................................2 -
Think Complexity: Exploring Complexity Science in Python
Think Complexity Version 2.6.2 Think Complexity Version 2.6.2 Allen B. Downey Green Tea Press Needham, Massachusetts Copyright © 2016 Allen B. Downey. Green Tea Press 9 Washburn Ave Needham MA 02492 Permission is granted to copy, distribute, transmit and adapt this work under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License: https://thinkcomplex.com/license. If you are interested in distributing a commercial version of this work, please contact the author. The LATEX source for this book is available from https://github.com/AllenDowney/ThinkComplexity2 iv Contents Preface xi 0.1 Who is this book for?...................... xii 0.2 Changes from the first edition................. xiii 0.3 Using the code.......................... xiii 1 Complexity Science1 1.1 The changing criteria of science................3 1.2 The axes of scientific models..................4 1.3 Different models for different purposes............6 1.4 Complexity engineering.....................7 1.5 Complexity thinking......................8 2 Graphs 11 2.1 What is a graph?........................ 11 2.2 NetworkX............................ 13 2.3 Random graphs......................... 16 2.4 Generating graphs........................ 17 2.5 Connected graphs........................ 18 2.6 Generating ER graphs..................... 20 2.7 Probability of connectivity................... 22 vi CONTENTS 2.8 Analysis of graph algorithms.................. 24 2.9 Exercises............................. 25 3 Small World Graphs 27 3.1 Stanley Milgram......................... 27 3.2 Watts and Strogatz....................... 28 3.3 Ring lattice........................... 30 3.4 WS graphs............................ 32 3.5 Clustering............................ 33 3.6 Shortest path lengths...................... 35 3.7 The WS experiment....................... 36 3.8 What kind of explanation is that?............... 38 3.9 Breadth-First Search..................... -
Conway's Game of Life
Conway’s Game of Life Melissa Gymrek May 2010 Introduction The Game of Life is a cellular-automaton, zero player game, developed by John Conway in 1970. The game is played on an infinite grid of square cells, and its evolution is only determined by its initial state. The rules of the game are simple, and describe the evolution of the grid: ◮ Birth: a cell that is dead at time t will be alive at time t + 1 if exactly 3 of its eight neighbors were alive at time t. ◮ Death: a cell can die by: ◮ Overcrowding: if a cell is alive at time t +1 and 4 or more of its neighbors are also alive at time t, the cell will be dead at time t + 1. ◮ Exposure: If a live cell at time t has only 1 live neighbor or no live neighbors, it will be dead at time t + 1. ◮ Survival: a cell survives from time t to time t +1 if and only if 2 or 3 of its neighbors are alive at time t. Starting from the initial configuration, these rules are applied, and the game board evolves, playing the game by itself! This might seem like a rather boring game at first, but there are many remarkable facts about this game. Today we will see the types of “life-forms” we can create with this game, whether we can tell if a game of Life will go on infinitely, and see how a game of Life can be used to solve any computational problem a computer can solve. -
Evolution of Autopoiesis and Multicellularity in the Game of Life
Evolution of Autopoiesis and Peter D. Turney* Ronin Institute Multicellularity in the Game of Life [email protected] Keywords Evolution, autopoiesis, multicellularity, Abstract Recently we introduced a model of symbiosis, Model-S, cellular automata, diversity, symbiosis based on the evolution of seed patterns in Conwayʼs Game of Life. In the model, the fitness of a seed pattern is measured by one-on-one competitions in the Immigration Game, a two-player variation of the Downloaded from http://direct.mit.edu/artl/article-pdf/27/1/26/1925167/artl_a_00334.pdf by guest on 25 September 2021 Game of Life. Our previous article showed that Model-S can serve as a highly abstract, simplified model of biological life: (1) The initial seed pattern is analogous to a genome. (2) The changes as the game runs are analogous to the development of the phenome. (3) Tournament selection in Model-S is analogous to natural selection in biology. (4) The Immigration Game in Model-S is analogous to competition in biology. (5) The first three layers in Model-S are analogous to biological reproduction. (6) The fusion of seed patterns in Model-S is analogous to symbiosis. The current article takes this analogy two steps further: (7) Autopoietic structures in the Game of Life (still lifes, oscillators, and spaceships—collectively known as ashes) are analogous to cells in biology. (8) The seed patterns in the Game of Life give rise to multiple, diverse, cooperating autopoietic structures, analogous to multicellular biological life. We use the apgsearch software (Ash Pattern Generator Search), developed by Adam Goucher for the study of ashes, to analyze autopoiesis and multicellularity in Model-S. -
Cellular Automata
Cellular Automata Dr. Michael Lones Room EM.G31 [email protected] ⟐ Genetic programming ▹ Is about evolving computer programs ▹ Mostly conventional GP: tree, graph, linear ▹ Mostly conventional issues: memory, syntax ⟐ Developmental GP encodings ▹ Programs that build other things ▹ e.g. programs, structures ▹ Biologically-motivated process ▹ The developed programs are still “conventional” forwhile + 9 WRITE ✗ 2 3 1 i G0 G1 G2 G3 G4 ✔ ⟐ Conventional ⟐ Biological ▹ Centralised ▹ Distributed ▹ Top-down ▹ Bottom-up (emergent) ▹ Halting ▹ Ongoing ▹ Static ▹ Dynamical ▹ Exact ▹ Inexact ▹ Fragile ▹ Robust ▹ Synchronous ▹ Asynchronous ⟐ See Mitchell, “Biological Computation,” 2010 http://www.santafe.edu/media/workingpapers/10-09-021.pdf ⟐ What is a cellular automaton? ▹ A model of distributed computation • Of the sort seen in biology ▹ A demonstration of “emergence” • complex behaviour emerges from Stanislaw Ulam interactions between simple rules ▹ Developed by Ulam and von Neumann in the 1940s/50s ▹ Popularised by John Conway’s work on the ‘Game of Life’ in the 1970s ▹ Significant later work by Stephen Wolfram from the 1980s onwards John von Neumann ▹ Stephen Wolfram, A New Kind of Science, 2002 ▹ https://www.wolframscience.com/nksonline/toc.html ⟐ Computation takes place on a grid, which may have 1, 2 or more dimensions, e.g. a 2D CA: ⟐ At each grid location is a cell ▹ Which has a state ▹ In many cases this is binary: State = Off State = On ⟐ Each cell contains an automaton ▹ Which observes a neighbourhood around the cell ⟐ Each cell contains -
Complexity Properties of the Cellular Automaton Game of Life
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 11-14-1995 Complexity Properties of the Cellular Automaton Game of Life Andreas Rechtsteiner Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Physics Commons Let us know how access to this document benefits ou.y Recommended Citation Rechtsteiner, Andreas, "Complexity Properties of the Cellular Automaton Game of Life" (1995). Dissertations and Theses. Paper 4928. https://doi.org/10.15760/etd.6804 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. THESIS APPROVAL The abstract and thesis of Andreas Rechtsteiner for the Master of Science in Physics were presented November 14th, 1995, and accepted by the thesis committee and the department. COMMITTEE APPROVALS: 1i' I ) Erik Boaegom ec Representativi' of the Office of Graduate Studies DEPARTMENT APPROVAL: **************************************************************** ACCEPTED FOR PORTLAND STATE UNNERSITY BY THE LIBRARY by on /..-?~Lf!c-t:t-?~~ /99.s- Abstract An abstract of the thesis of Andreas Rechtsteiner for the Master of Science in Physics presented November 14, 1995. Title: Complexity Properties of the Cellular Automaton Game of Life The Game of life is probably the most famous cellular automaton. Life shows all the characteristics of Wolfram's complex Class N cellular automata: long-lived transients, static and propagating local structures, and the ability to support universal computation. We examine in this thesis questions about the geometry and criticality of Life. -
Cfengine V2 Reference Edition 2.2.10 for Version 2.2.10
cfengine v2 reference Edition 2.2.10 for version 2.2.10 Mark Burgess Faculty of Engineering, Oslo University College, Norway Copyright c 2008 Mark Burgess This manual corresponds to CFENGINE Edition 2.2.10 for version 2.2.10 as last updated 21 January 2009. Chapter 1: Introduction to reference manual 1 1 Introduction to reference manual The purpose of the cfengine reference manual is to collect together and document the raw facts about the different components of cfengine. Once you have become proficient in the use of cfengine, you will no longer have need of the tutorial. The reference manual, on the other hand, changes with each version of cfengine. You will be able to use it online, or in printed form to find out the details you require to implement configurations in practice. 1.1 Installation In order to install cfengine, you should first ensure that the following packages are installed. OpenSSL Open source Secure Sockets Layer for encryption. URL: http://www.openssl.org BerkeleyDB (version 3.2 or later) Light-weight flat-file database system. URL: http://www.oracle.com/technology/products/berkeley-db/index.html The preferred method of installation is then tar zxf cfengine-x.x.x.tar.gz cd cfengine-x.x.x ./configure make make install This results in binaries being installed in `/usr/local/sbin'. Since this is not necessarily a local file system on all hosts, users are encouraged to keep local copies of the binaries on each host, inside the cfengine trusted work directory. 1.2 Work directory In order to achieve the desired simplifications, it was decided to reserve a private work area for the cfengine tool-set. -
From Conway's Soldier to Gosper's Glider Gun in Memory of J. H
From Conway’s soldier to Gosper’s glider gun In memory of J. H. Conway (1937-2020) Zhangchi Chen Université Paris-Sud June 17, 2020 Zhangchi Chen Université Paris-Sud From Conway’s soldier to Gosper’s glider gun In memory of J. H. Conway (1937-2020) Math in games Figure: Conway’s Life Game Figure: Peg Solitaire Zhangchi Chen Université Paris-Sud From Conway’s soldier to Gosper’s glider gun In memory of J. H. Conway (1937-2020) Peg Solitaire: The rule Figure: A valide move Zhangchi Chen Université Paris-Sud From Conway’s soldier to Gosper’s glider gun In memory of J. H. Conway (1937-2020) Peg Solitaire: Conway’s soldier Question How many pegs (soldiers) do you need to reach the height of 1, 2, 3, 4 or 5? Zhangchi Chen Université Paris-Sud From Conway’s soldier to Gosper’s glider gun In memory of J. H. Conway (1937-2020) Peg Solitaire: Conway’s soldier Baby case To reach the height of 1-3, one needs 2,4,8 soldiers Zhangchi Chen Université Paris-Sud From Conway’s soldier to Gosper’s glider gun In memory of J. H. Conway (1937-2020) Peg Solitaire: Conway’s soldier A bit harder case To reach the height of 4, one needs 20 (not 16) soldiers. One solution (not unique). Further? (Conway 1961) It is impossible to reach the height of 5. Zhangchi Chen Université Paris-Sud From Conway’s soldier to Gosper’s glider gun In memory of J. H. Conway (1937-2020) Peg Solitaire: Conway’s soldier 1 ' '2 '4 '3 '4 '6 '5 '4 '5 '6 '10 '9 '8 '7 '6 '5 '6 '7 '8 '9 '10 '11 '10 '9 '8 '7 '6 '7 '8 '9 '10 '11 .. -
Symbiosis Promotes Fitness Improvements in the Game of Life
Symbiosis Promotes Fitness Peter D. Turney* Ronin Institute Improvements in the [email protected] Game of Life Keywords Symbiosis, cooperation, open-ended evolution, Game of Life, Immigration Game, levels of selection Abstract We present a computational simulation of evolving entities that includes symbiosis with shifting levels of selection. Evolution by natural selection shifts from the level of the original entities to the level of the new symbiotic entity. In the simulation, the fitness of an entity is measured by a series of one-on-one competitions in the Immigration Game, a two-player variation of Conwayʼs Game of Life. Mutation, reproduction, and symbiosis are implemented as operations that are external to the Immigration Game. Because these operations are external to the game, we can freely manipulate the operations and observe the effects of the manipulations. The simulation is composed of four layers, each layer building on the previous layer. The first layer implements a simple form of asexual reproduction, the second layer introduces a more sophisticated form of asexual reproduction, the third layer adds sexual reproduction, and the fourth layer adds symbiosis. The experiments show that a small amount of symbiosis, added to the other layers, significantly increases the fitness of the population. We suggest that the model may provide new insights into symbiosis in biological and cultural evolution. 1 Introduction There are two main definitions of symbiosis in biology, (1) symbiosis as any association and (2) symbiosis as persistent mutualism [7]. The first definition allows any kind of persistent contact between different species of organisms to count as symbiosis, even if the contact is pathogenic or parasitic. -
Logical Universality from a Minimal Two-Dimensional Glider Gun 3
Logical Universality from a Minimal Two- Dimensional Glider Gun José Manuel Gómez Soto Department of Mathematics Autonomous University of Zacatecas Zacatecas, Zac. Mexico [email protected] http://matematicas.reduaz.mx/~jmgomez Andrew Wuensche Discrete Dynamics Lab [email protected] http://www.ddlab.org To understand the underlying principles of self-organization and com- putation in cellular automata, it would be helpful to find the simplest form of the essential ingredients, glider guns and eaters, because then the dynamics would be easier to interpret. Such minimal components emerge spontaneously in the newly discovered Sayab rule, a binary two- dimensional cellular automaton with a Moore neighborhood and isotropic dynamics. The Sayab rule’s glider gun, which has just four live cells at its minimal phases, can implement complex dynamical interac- tions and the gates required for logical universality. Keywords: universality; cellular automata; glider gun; logical gates 1. Introduction The study of two-dimensional (2D) cellular automata (CAs) with com- plex properties has progressed over time in a kind of regression from the complicated to the simple. Just to mention a few key moments in cellular automaton (CA) history, the original CA was von Neumann’s with 29 states designed to model self-reproduction, and by exten- sion—universality [1]. Codd simplified von Neumann’s CA to eight states [2], and Banks simplified it further to three and four states [3,�4]. In modeling self-reproduction it is also worth mentioning Lang- ton’s “Loops” [5] with eight states, which was simplified by Byl to six states [6]. These 2D CAs all featured the five-cell von Neumann neigh- borhood. -
Perl Programmers Reference Guide PERL(1)
PERL(1) Perl Programmers Reference Guide PERL(1) NAME perl − The Perl 5 language interpreter SYNOPSIS perl [ −sTtuUWX ][−hv ][−V[:configvar]] [ −cw ][−d[t][:debugger]][−D[number/list]] [ −pna ][−Fpattern ][−l[octal]][−0[octal/hexadecimal]] [ −Idir ][−m[−]module ][−M[−]’module...’ ][−f ][−C [number/list] ][−S ] [ −x[dir]] [−i[extension]] [[−e|−E] ’command’ ][−− ][programfile ][argument ]... GETTING HELP The perldoc program givesyou access to all the documentation that comes with Perl. Youcan get more documentation, tutorials and community support online at <http://www.perl.org/>. If you’re newtoPerl, you should start by running perldoc perlintro,which is a general intro for beginners and provides some background to help you navigate the rest of Perl’sextensive documentation. Run perldoc perldoc to learn more things you can do with perldoc. Forease of access, the Perl manual has been split up into several sections. Overview perl Perl overview (this section) perlintro Perl introduction for beginners perltoc Perl documentation table of contents Tutorials perlreftut Perl references short introduction perldsc Perl data structures intro perllol Perl data structures: arrays of arrays perlrequick Perl regular expressions quick start perlretut Perl regular expressions tutorial perlboot Perl OO tutorial for beginners perltoot Perl OO tutorial, part 1 perltooc Perl OO tutorial, part 2 perlbot Perl OO tricks and examples perlperf Perl Performance and Optimization Techniques perlstyle Perl style guide perlcheat Perl cheat sheet perltrap Perl traps for -
Sysadmin and Networking
;login APRIL 2014 VOL. 39, NO. 2 : Sysadmin and Networking & SDN, Beyond the Hyperbole Rob Sherwood & The Case of the Clumsy Kernel Brendan Gregg & System Administration Is Dead Todd Underwood & I Am Not a Sysadmin Elizabeth Zwicky & Splunk Performance Tuning David Lang Columns Practical Perl Tools: Using MongoDB David N. Blank-Edelman Python: When to Use Python 3 David Beazley iVoyeur: ChatOps Dave Josephsen For Good Measure: Mitigation as a Metric Dan Geer and Richard Bejtlich /dev/random: I Miss Being a Sysadmin Robert G. Ferrell UPCOMING EVENTS 2014 USENIX Federated Conferences Week CSET ’14: 7th Workshop on Cyber Security June 17–20, 2014, Philadelphia, PA, USA Experimentation and Test August 18, 2014 HotCloud ’14: 6th USENIX Workshop on www.usenix.org/cset14 Hot Topics in Cloud Computing Submissions due: April 25, 2014 June 17–18, 2014 www.usenix.org/hotcloud14 3GSE ’14: 2014 USENIX Summit on Gaming, Games, and Gamification in Security Education HotStorage ’14: 6th USENIX Workshop August 18, 2014 on Hot Topics in Storage and File Systems www.usenix.org/3gse14 June 17–18, 2014 Invited submissions due: May 6, 2014 www.usenix.org/hotstorage14 FOCI ’14: 4th USENIX Workshop on Free and Open 9th International Workshop on Feedback Computing Communications on the Internet June 17, 2014 August 18, 2014 www.usenix.org/feedbackcomputing14 www.usenix.org/foci14 WiAC ’14: 2014 USENIX Women in Advanced Submissions due: May 13, 2014 Computing Summit HotSec ’14: 2014 USENIX Summit on Hot Topics June 18, 2014 in Security www.usenix.org/wiac14 August