From Conway's Soldier to Gosper's Glider Gun in Memory of J. H

Total Page:16

File Type:pdf, Size:1020Kb

From Conway's Soldier to Gosper's Glider Gun in Memory of J. H From Conway’s soldier to Gosper’s glider gun In memory of J. H. Conway (1937-2020) Zhangchi Chen Université Paris-Sud June 17, 2020 Zhangchi Chen Université Paris-Sud From Conway’s soldier to Gosper’s glider gun In memory of J. H. Conway (1937-2020) Math in games Figure: Conway’s Life Game Figure: Peg Solitaire Zhangchi Chen Université Paris-Sud From Conway’s soldier to Gosper’s glider gun In memory of J. H. Conway (1937-2020) Peg Solitaire: The rule Figure: A valide move Zhangchi Chen Université Paris-Sud From Conway’s soldier to Gosper’s glider gun In memory of J. H. Conway (1937-2020) Peg Solitaire: Conway’s soldier Question How many pegs (soldiers) do you need to reach the height of 1, 2, 3, 4 or 5? Zhangchi Chen Université Paris-Sud From Conway’s soldier to Gosper’s glider gun In memory of J. H. Conway (1937-2020) Peg Solitaire: Conway’s soldier Baby case To reach the height of 1-3, one needs 2,4,8 soldiers Zhangchi Chen Université Paris-Sud From Conway’s soldier to Gosper’s glider gun In memory of J. H. Conway (1937-2020) Peg Solitaire: Conway’s soldier A bit harder case To reach the height of 4, one needs 20 (not 16) soldiers. One solution (not unique). Further? (Conway 1961) It is impossible to reach the height of 5. Zhangchi Chen Université Paris-Sud From Conway’s soldier to Gosper’s glider gun In memory of J. H. Conway (1937-2020) Peg Solitaire: Conway’s soldier 1 ' '2 '4 '3 '4 '6 '5 '4 '5 '6 '10 '9 '8 '7 '6 '5 '6 '7 '8 '9 '10 '11 '10 '9 '8 '7 '6 '7 '8 '9 '10 '11 ... '11 '10 '9 '8 '7 '8 '9 '10 '11 ... ... '11 '10 '9 '8 '9 '10 '11 ... Assign a value 'n to each position. A move towards the midline, or upwards, changes the total value by 'n(1 − ' − '2); away from the midline, or downwards, changes the total value by 'n('2 − ' − 1). Zhangchi Chen Université Paris-Sud From Conway’s soldier to Gosper’s glider gun In memory of J. H. Conway (1937-2020) We wish ' > 0 (each position has positive value); n 2 ' (1 − ' − ' ) 6 0 (a valid move does not increase the value); 'n('2 − ' − 1) 0. p6 5−1 If we take ' = σ := 2 = 0:618 ::: then σ > 0; σn(1 − σ − σ2) = 0; σn(σ2 − σ − 1) < 0. In this case each valid move does not increase the total initial value. However, the total value under the line is σ5 + 3σ6 + 5σ7 + ··· = 1 (Try to verify). So finitely many soldiers cannot be enough. Zhangchi Chen Université Paris-Sud From Conway’s soldier to Gosper’s glider gun In memory of J. H. Conway (1937-2020) Conway’s life game Create a 2d world with lives and deaths under the rules: (brith) if a dead has exactly3 neighbours living, then it becomes alive in the next moment; (survive) if a living has2or3 neighbours living, then it survives in the next moment; (death by solitude or crowdedness) if a living has 6 1 or > 4 neighbours living, then it dies in the next moment. Figure: A ‘glider’ moving right-downwards every 4 frames Zhangchi Chen Université Paris-Sud From Conway’s soldier to Gosper’s glider gun In memory of J. H. Conway (1937-2020) Conway’s life game Figure: Still Life, Life Cycles of period 2 and 3 Zhangchi Chen Université Paris-Sud From Conway’s soldier to Gosper’s glider gun In memory of J. H. Conway (1937-2020) Other ships Figure: A ship moving rightwards every 4 frames M.I.T. 50 $ price question in 1970 Can the population of life grow without limit? Zhangchi Chen Université Paris-Sud From Conway’s soldier to Gosper’s glider gun In memory of J. H. Conway (1937-2020) Gosper’s glider gun The winner is Gosper’s team. Their genius ‘glider gun’ generates a glider every 30 frames. Zhangchi Chen Université Paris-Sud From Conway’s soldier to Gosper’s glider gun In memory of J. H. Conway (1937-2020) Making a Life Computer Build a life game in a computer, yes. Build a computer in a life game, also yes! Figure: Glider streams carry signal Figure: Like in Minecraft but earlier Zhangchi Chen Université Paris-Sud From Conway’s soldier to Gosper’s glider gun In memory of J. H. Conway (1937-2020) Making a Life Computer The key point is designing logical gates: NOT, AND, OR. Figure: Two gliders vanish after 4 frames. Zhangchi Chen Université Paris-Sud From Conway’s soldier to Gosper’s glider gun In memory of J. H. Conway (1937-2020) Making a Life Computer Figure: NOT gate by a glider gun Zhangchi Chen Université Paris-Sud From Conway’sAND, soldier OR gateto Gosper’s requires glider gun other In memory meeting of J. H. Conway type of(1937-2020) gliders. References Figure: Full of games Figure: John Horton Conway Wiki ‘Conway’s Soldier’ Golly, play life game on PC/Android/iPad. http://golly.sourceforge.net/ Zhangchi Chen Université Paris-Sud From Conway’s soldier to Gosper’s glider gun In memory of J. H. Conway (1937-2020).
Recommended publications
  • GNU/Linux AI & Alife HOWTO
    GNU/Linux AI & Alife HOWTO GNU/Linux AI & Alife HOWTO Table of Contents GNU/Linux AI & Alife HOWTO......................................................................................................................1 by John Eikenberry..................................................................................................................................1 1. Introduction..........................................................................................................................................1 2. Symbolic Systems (GOFAI)................................................................................................................1 3. Connectionism.....................................................................................................................................1 4. Evolutionary Computing......................................................................................................................1 5. Alife & Complex Systems...................................................................................................................1 6. Agents & Robotics...............................................................................................................................1 7. Statistical & Machine Learning...........................................................................................................2 8. Missing & Dead...................................................................................................................................2 1. Introduction.........................................................................................................................................2
    [Show full text]
  • Automatic Detection of Interesting Cellular Automata
    Automatic Detection of Interesting Cellular Automata Qitian Liao Electrical Engineering and Computer Sciences University of California, Berkeley Technical Report No. UCB/EECS-2021-150 http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-150.html May 21, 2021 Copyright © 2021, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Acknowledgement First I would like to thank my faculty advisor, professor Dan Garcia, the best mentor I could ask for, who graciously accepted me to his research team and constantly motivated me to be the best scholar I could. I am also grateful to my technical advisor and mentor in the field of machine learning, professor Gerald Friedland, for the opportunities he has given me. I also want to thank my friend, Randy Fan, who gave me the inspiration to write about the topic. This report would not have been possible without his contributions. I am further grateful to my girlfriend, Yanran Chen, who cared for me deeply. Lastly, I am forever grateful to my parents, Faqiang Liao and Lei Qu: their love, support, and encouragement are the foundation upon which all my past and future achievements are built. Automatic Detection of Interesting Cellular Automata by Qitian Liao Research Project Submitted to the Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, in partial satisfaction of the requirements for the degree of Master of Science, Plan II.
    [Show full text]
  • Conway's Game of Life
    Conway’s Game of Life Melissa Gymrek May 2010 Introduction The Game of Life is a cellular-automaton, zero player game, developed by John Conway in 1970. The game is played on an infinite grid of square cells, and its evolution is only determined by its initial state. The rules of the game are simple, and describe the evolution of the grid: ◮ Birth: a cell that is dead at time t will be alive at time t + 1 if exactly 3 of its eight neighbors were alive at time t. ◮ Death: a cell can die by: ◮ Overcrowding: if a cell is alive at time t +1 and 4 or more of its neighbors are also alive at time t, the cell will be dead at time t + 1. ◮ Exposure: If a live cell at time t has only 1 live neighbor or no live neighbors, it will be dead at time t + 1. ◮ Survival: a cell survives from time t to time t +1 if and only if 2 or 3 of its neighbors are alive at time t. Starting from the initial configuration, these rules are applied, and the game board evolves, playing the game by itself! This might seem like a rather boring game at first, but there are many remarkable facts about this game. Today we will see the types of “life-forms” we can create with this game, whether we can tell if a game of Life will go on infinitely, and see how a game of Life can be used to solve any computational problem a computer can solve.
    [Show full text]
  • Interview with John Horton Conway
    Interview with John Horton Conway Dierk Schleicher his is an edited version of an interview with John Horton Conway conducted in July 2011 at the first International Math- ematical Summer School for Students at Jacobs University, Bremen, Germany, Tand slightly extended afterwards. The interviewer, Dierk Schleicher, professor of mathematics at Jacobs University, served on the organizing com- mittee and the scientific committee for the summer school. The second summer school took place in August 2012 at the École Normale Supérieure de Lyon, France, and the next one is planned for July 2013, again at Jacobs University. Further information about the summer school is available at http://www.math.jacobs-university.de/ summerschool. John Horton Conway in August 2012 lecturing John H. Conway is one of the preeminent the- on FRACTRAN at Jacobs University Bremen. orists in the study of finite groups and one of the world’s foremost knot theorists. He has written or co-written more than ten books and more than one- received the Pólya Prize of the London Mathemati- hundred thirty journal articles on a wide variety cal Society and the Frederic Esser Nemmers Prize of mathematical subjects. He has done important in Mathematics of Northwestern University. work in number theory, game theory, coding the- Schleicher: John Conway, welcome to the Interna- ory, tiling, and the creation of new number systems, tional Mathematical Summer School for Students including the “surreal numbers”. He is also widely here at Jacobs University in Bremen. Why did you known as the inventor of the “Game of Life”, a com- accept the invitation to participate? puter simulation of simple cellular “life” governed Conway: I like teaching, and I like talking to young by simple rules that give rise to complex behavior.
    [Show full text]
  • Evolution of Autopoiesis and Multicellularity in the Game of Life
    Evolution of Autopoiesis and Peter D. Turney* Ronin Institute Multicellularity in the Game of Life [email protected] Keywords Evolution, autopoiesis, multicellularity, Abstract Recently we introduced a model of symbiosis, Model-S, cellular automata, diversity, symbiosis based on the evolution of seed patterns in Conwayʼs Game of Life. In the model, the fitness of a seed pattern is measured by one-on-one competitions in the Immigration Game, a two-player variation of the Downloaded from http://direct.mit.edu/artl/article-pdf/27/1/26/1925167/artl_a_00334.pdf by guest on 25 September 2021 Game of Life. Our previous article showed that Model-S can serve as a highly abstract, simplified model of biological life: (1) The initial seed pattern is analogous to a genome. (2) The changes as the game runs are analogous to the development of the phenome. (3) Tournament selection in Model-S is analogous to natural selection in biology. (4) The Immigration Game in Model-S is analogous to competition in biology. (5) The first three layers in Model-S are analogous to biological reproduction. (6) The fusion of seed patterns in Model-S is analogous to symbiosis. The current article takes this analogy two steps further: (7) Autopoietic structures in the Game of Life (still lifes, oscillators, and spaceships—collectively known as ashes) are analogous to cells in biology. (8) The seed patterns in the Game of Life give rise to multiple, diverse, cooperating autopoietic structures, analogous to multicellular biological life. We use the apgsearch software (Ash Pattern Generator Search), developed by Adam Goucher for the study of ashes, to analyze autopoiesis and multicellularity in Model-S.
    [Show full text]
  • Cellular Automata
    Cellular Automata Dr. Michael Lones Room EM.G31 [email protected] ⟐ Genetic programming ▹ Is about evolving computer programs ▹ Mostly conventional GP: tree, graph, linear ▹ Mostly conventional issues: memory, syntax ⟐ Developmental GP encodings ▹ Programs that build other things ▹ e.g. programs, structures ▹ Biologically-motivated process ▹ The developed programs are still “conventional” forwhile + 9 WRITE ✗ 2 3 1 i G0 G1 G2 G3 G4 ✔ ⟐ Conventional ⟐ Biological ▹ Centralised ▹ Distributed ▹ Top-down ▹ Bottom-up (emergent) ▹ Halting ▹ Ongoing ▹ Static ▹ Dynamical ▹ Exact ▹ Inexact ▹ Fragile ▹ Robust ▹ Synchronous ▹ Asynchronous ⟐ See Mitchell, “Biological Computation,” 2010 http://www.santafe.edu/media/workingpapers/10-09-021.pdf ⟐ What is a cellular automaton? ▹ A model of distributed computation • Of the sort seen in biology ▹ A demonstration of “emergence” • complex behaviour emerges from Stanislaw Ulam interactions between simple rules ▹ Developed by Ulam and von Neumann in the 1940s/50s ▹ Popularised by John Conway’s work on the ‘Game of Life’ in the 1970s ▹ Significant later work by Stephen Wolfram from the 1980s onwards John von Neumann ▹ Stephen Wolfram, A New Kind of Science, 2002 ▹ https://www.wolframscience.com/nksonline/toc.html ⟐ Computation takes place on a grid, which may have 1, 2 or more dimensions, e.g. a 2D CA: ⟐ At each grid location is a cell ▹ Which has a state ▹ In many cases this is binary: State = Off State = On ⟐ Each cell contains an automaton ▹ Which observes a neighbourhood around the cell ⟐ Each cell contains
    [Show full text]
  • Complexity Properties of the Cellular Automaton Game of Life
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 11-14-1995 Complexity Properties of the Cellular Automaton Game of Life Andreas Rechtsteiner Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Physics Commons Let us know how access to this document benefits ou.y Recommended Citation Rechtsteiner, Andreas, "Complexity Properties of the Cellular Automaton Game of Life" (1995). Dissertations and Theses. Paper 4928. https://doi.org/10.15760/etd.6804 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. THESIS APPROVAL The abstract and thesis of Andreas Rechtsteiner for the Master of Science in Physics were presented November 14th, 1995, and accepted by the thesis committee and the department. COMMITTEE APPROVALS: 1i' I ) Erik Boaegom ec Representativi' of the Office of Graduate Studies DEPARTMENT APPROVAL: **************************************************************** ACCEPTED FOR PORTLAND STATE UNNERSITY BY THE LIBRARY by on /..-?~Lf!c-t:t-?~~ /99.s- Abstract An abstract of the thesis of Andreas Rechtsteiner for the Master of Science in Physics presented November 14, 1995. Title: Complexity Properties of the Cellular Automaton Game of Life The Game of life is probably the most famous cellular automaton. Life shows all the characteristics of Wolfram's complex Class N cellular automata: long-lived transients, static and propagating local structures, and the ability to support universal computation. We examine in this thesis questions about the geometry and criticality of Life.
    [Show full text]
  • Cellular Automata Analysis of Life As a Complex Physical System
    Cellular automata analysis of life as a complex physical system Simon Tropp Thesis submitted for the degree of Bachelor of Science Project duration: 3 Months Supervised by Andrea Idini and Alex Arash Sand Kalaee Department of Physics Division of Mathematical Physics May 2020 Abstract This thesis regards the study of cellular automata, with an outlook on biological systems. Cellular automata are non-linear discrete mathematical models that are based on simple rules defining the evolution of a cell, de- pending on its neighborhood. Cellular automata show surprisingly complex behavior, hence these models are used to simulate complex systems where spatial extension and non-linear relations are important, such as in a system of living organisms. In this thesis, the scale invariance of cellular automata is studied in relation to the physical concept of self-organized criticality. The obtained power laws are then used to calculate the entropy of such systems and thereby demonstrate their tendency to increase the entropy, with the intention to increase the number of possible future available states. This finding is in agreement with a new definition of entropic relations called causal entropy. 1 List of Abbreviations CA cellular automata. GoL Game of Life. SOC self-organized criticality. 2 Contents 1 Introduction 4 1.1 Cellular Automata and The Game of Life . .4 1.1.1 Fractals in Nature and CA . .7 1.2 Self-organized Criticality . 10 1.3 The Role of Entropy . 11 1.3.1 Causal Entropic Forces . 13 1.3.2 Entropy Maximization and Intelligence . 13 2 Method 15 2.1 Self-organized Criticality in CA .
    [Show full text]
  • Cfengine V2 Reference Edition 2.2.10 for Version 2.2.10
    cfengine v2 reference Edition 2.2.10 for version 2.2.10 Mark Burgess Faculty of Engineering, Oslo University College, Norway Copyright c 2008 Mark Burgess This manual corresponds to CFENGINE Edition 2.2.10 for version 2.2.10 as last updated 21 January 2009. Chapter 1: Introduction to reference manual 1 1 Introduction to reference manual The purpose of the cfengine reference manual is to collect together and document the raw facts about the different components of cfengine. Once you have become proficient in the use of cfengine, you will no longer have need of the tutorial. The reference manual, on the other hand, changes with each version of cfengine. You will be able to use it online, or in printed form to find out the details you require to implement configurations in practice. 1.1 Installation In order to install cfengine, you should first ensure that the following packages are installed. OpenSSL Open source Secure Sockets Layer for encryption. URL: http://www.openssl.org BerkeleyDB (version 3.2 or later) Light-weight flat-file database system. URL: http://www.oracle.com/technology/products/berkeley-db/index.html The preferred method of installation is then tar zxf cfengine-x.x.x.tar.gz cd cfengine-x.x.x ./configure make make install This results in binaries being installed in `/usr/local/sbin'. Since this is not necessarily a local file system on all hosts, users are encouraged to keep local copies of the binaries on each host, inside the cfengine trusted work directory. 1.2 Work directory In order to achieve the desired simplifications, it was decided to reserve a private work area for the cfengine tool-set.
    [Show full text]
  • The Fantastic Combinations of John Conway's New Solitaire Game "Life" - M
    Mathematical Games - The fantastic combinations of John Conway's new solitaire game "life" - M. Gardner - 1970 Suche Home Einstellungen Anmelden Hilfe MATHEMATICAL GAMES The fantastic combinations of John Conway's new solitaire game "life" by Martin Gardner Scientific American 223 (October 1970): 120-123. Most of the work of John Horton Conway, a mathematician at Gonville and Caius College of the University of Cambridge, has been in pure mathematics. For instance, in 1967 he discovered a new group-- some call it "Conway's constellation"--that includes all but two of the then known sporadic groups. (They are called "sporadic" because they fail to fit any classification scheme.) Is is a breakthrough that has had exciting repercussions in both group theory and number theory. It ties in closely with an earlier discovery by John Conway of an extremely dense packing of unit spheres in a space of 24 dimensions where each sphere touches 196,560 others. As Conway has remarked, "There is a lot of room up there." In addition to such serious work Conway also enjoys recreational mathematics. Although he is highly productive in this field, he seldom publishes his discoveries. One exception was his paper on "Mrs. Perkin's Quilt," a dissection problem discussed in "Mathematical Games" for September, 1966. My topic for July, 1967, was sprouts, a topological pencil-and-paper game invented by Conway and M. S. Paterson. Conway has been mentioned here several other times. This month we consider Conway's latest brainchild, a fantastic solitaire pastime he calls "life". Because of its analogies with the rise, fall and alternations of a society of living organisms, it belongs to a growing class of what are called "simulation games"--games that resemble real-life processes.
    [Show full text]
  • Symbiosis Promotes Fitness Improvements in the Game of Life
    Symbiosis Promotes Fitness Peter D. Turney* Ronin Institute Improvements in the [email protected] Game of Life Keywords Symbiosis, cooperation, open-ended evolution, Game of Life, Immigration Game, levels of selection Abstract We present a computational simulation of evolving entities that includes symbiosis with shifting levels of selection. Evolution by natural selection shifts from the level of the original entities to the level of the new symbiotic entity. In the simulation, the fitness of an entity is measured by a series of one-on-one competitions in the Immigration Game, a two-player variation of Conwayʼs Game of Life. Mutation, reproduction, and symbiosis are implemented as operations that are external to the Immigration Game. Because these operations are external to the game, we can freely manipulate the operations and observe the effects of the manipulations. The simulation is composed of four layers, each layer building on the previous layer. The first layer implements a simple form of asexual reproduction, the second layer introduces a more sophisticated form of asexual reproduction, the third layer adds sexual reproduction, and the fourth layer adds symbiosis. The experiments show that a small amount of symbiosis, added to the other layers, significantly increases the fitness of the population. We suggest that the model may provide new insights into symbiosis in biological and cultural evolution. 1 Introduction There are two main definitions of symbiosis in biology, (1) symbiosis as any association and (2) symbiosis as persistent mutualism [7]. The first definition allows any kind of persistent contact between different species of organisms to count as symbiosis, even if the contact is pathogenic or parasitic.
    [Show full text]
  • Perl Programmers Reference Guide PERL(1)
    PERL(1) Perl Programmers Reference Guide PERL(1) NAME perl − The Perl 5 language interpreter SYNOPSIS perl [ −sTtuUWX ][−hv ][−V[:configvar]] [ −cw ][−d[t][:debugger]][−D[number/list]] [ −pna ][−Fpattern ][−l[octal]][−0[octal/hexadecimal]] [ −Idir ][−m[−]module ][−M[−]’module...’ ][−f ][−C [number/list] ][−S ] [ −x[dir]] [−i[extension]] [[−e|−E] ’command’ ][−− ][programfile ][argument ]... GETTING HELP The perldoc program givesyou access to all the documentation that comes with Perl. Youcan get more documentation, tutorials and community support online at <http://www.perl.org/>. If you’re newtoPerl, you should start by running perldoc perlintro,which is a general intro for beginners and provides some background to help you navigate the rest of Perl’sextensive documentation. Run perldoc perldoc to learn more things you can do with perldoc. Forease of access, the Perl manual has been split up into several sections. Overview perl Perl overview (this section) perlintro Perl introduction for beginners perltoc Perl documentation table of contents Tutorials perlreftut Perl references short introduction perldsc Perl data structures intro perllol Perl data structures: arrays of arrays perlrequick Perl regular expressions quick start perlretut Perl regular expressions tutorial perlboot Perl OO tutorial for beginners perltoot Perl OO tutorial, part 1 perltooc Perl OO tutorial, part 2 perlbot Perl OO tricks and examples perlperf Perl Performance and Optimization Techniques perlstyle Perl style guide perlcheat Perl cheat sheet perltrap Perl traps for
    [Show full text]