bioRxiv preprint doi: https://doi.org/10.1101/2021.06.28.450210; this version posted July 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The consequences of differential origin licensing dynamics in distinct chromatin environments Liu Mei1, Katarzyna M. Kedziora2, Eun-Ah Song2, Jeremy E. Purvis2, and Jeanette Gowen Cook1,* 1 Department of Biochemistry & Biophysics 2 Department of Genetics 3 Bioinformatics and Analytics Research Collaborative (BARC) University of North Carolina at Chapel Hill, NC 27599 * To whom correspondence should be addressed. Tel: 1-919-843-3867 Email:
[email protected] ABSTRACT MCM complexes are loaded onto chromosomes to license DNA replication origins in G1 phase of the cell cycle, but it is not yet known how mammalian MCM complexes are adequately distributed to both euchromatin and heterochromatin. To address this question, we combined time-lapse live-cell imaging with fixed cell immunofluorescence imaging of single human cells to quantify the relative rates of MCM loading in heterochromatin and euchromatin at different times within G1. We report here that MCM loading in euchromatin is faster than in heterochromatin in very early G1, but surprisingly, heterochromatin loading accelerates relative to euchromatin loading in middle and late G1. These different loading dynamics require ORCA-dependent differences in ORC distribution during G1. A consequence of heterochromatin origin licensing dynamics is that cells experiencing a truncated G1 phase from premature cyclin E expression enter S phase with under-licensed heterochromatin, and DNA damage accumulates preferentially in heterochromatin in the subsequent S/G2 phase.