H4K16 Acetylation Marks Active Genes and Enhancers of Embryonic Stem Cells, but Does Not Alter Chromatin Compaction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
In Silico Prediction of High-Resolution Hi-C Interaction Matrices
ARTICLE https://doi.org/10.1038/s41467-019-13423-8 OPEN In silico prediction of high-resolution Hi-C interaction matrices Shilu Zhang1, Deborah Chasman 1, Sara Knaack1 & Sushmita Roy1,2* The three-dimensional (3D) organization of the genome plays an important role in gene regulation bringing distal sequence elements in 3D proximity to genes hundreds of kilobases away. Hi-C is a powerful genome-wide technique to study 3D genome organization. Owing to 1234567890():,; experimental costs, high resolution Hi-C datasets are limited to a few cell lines. Computa- tional prediction of Hi-C counts can offer a scalable and inexpensive approach to examine 3D genome organization across multiple cellular contexts. Here we present HiC-Reg, an approach to predict contact counts from one-dimensional regulatory signals. HiC-Reg pre- dictions identify topologically associating domains and significant interactions that are enri- ched for CCCTC-binding factor (CTCF) bidirectional motifs and interactions identified from complementary sources. CTCF and chromatin marks, especially repressive and elongation marks, are most important for HiC-Reg’s predictive performance. Taken together, HiC-Reg provides a powerful framework to generate high-resolution profiles of contact counts that can be used to study individual locus level interactions and higher-order organizational units of the genome. 1 Wisconsin Institute for Discovery, 330 North Orchard Street, Madison, WI 53715, USA. 2 Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53715, USA. *email: [email protected] NATURE COMMUNICATIONS | (2019) 10:5449 | https://doi.org/10.1038/s41467-019-13423-8 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13423-8 he three-dimensional (3D) organization of the genome has Results Temerged as an important component of the gene regulation HiC-Reg for predicting contact count using Random Forests. -
Interoperability in Toxicology: Connecting Chemical, Biological, and Complex Disease Data
INTEROPERABILITY IN TOXICOLOGY: CONNECTING CHEMICAL, BIOLOGICAL, AND COMPLEX DISEASE DATA Sean Mackey Watford A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Gillings School of Global Public Health (Environmental Sciences and Engineering). Chapel Hill 2019 Approved by: Rebecca Fry Matt Martin Avram Gold David Reif Ivan Rusyn © 2019 Sean Mackey Watford ALL RIGHTS RESERVED ii ABSTRACT Sean Mackey Watford: Interoperability in Toxicology: Connecting Chemical, Biological, and Complex Disease Data (Under the direction of Rebecca Fry) The current regulatory framework in toXicology is expanding beyond traditional animal toXicity testing to include new approach methodologies (NAMs) like computational models built using rapidly generated dose-response information like US Environmental Protection Agency’s ToXicity Forecaster (ToXCast) and the interagency collaborative ToX21 initiative. These programs have provided new opportunities for research but also introduced challenges in application of this information to current regulatory needs. One such challenge is linking in vitro chemical bioactivity to adverse outcomes like cancer or other complex diseases. To utilize NAMs in prediction of compleX disease, information from traditional and new sources must be interoperable for easy integration. The work presented here describes the development of a bioinformatic tool, a database of traditional toXicity information with improved interoperability, and efforts to use these new tools together to inform prediction of cancer and complex disease. First, a bioinformatic tool was developed to provide a ranked list of Medical Subject Heading (MeSH) to gene associations based on literature support, enabling connection of compleX diseases to genes potentially involved. -
UTF1 Antibody A
Revision 1 C 0 2 - t UTF1 Antibody a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 9 0 Web: [email protected] 9 www.cellsignal.com 3 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source: UniProt ID: Entrez-Gene Id: WB M R Endogenous 40 Rabbit Q5T230 8433 Product Usage Information Application Dilution Western Blotting 1:1000 Storage Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity UTF1 Antibody detects endogenous levels of total UTF1 protein. Species Reactivity: Mouse, Rat Species predicted to react based on 100% sequence homology: Human Source / Purification Polyclonal antibodies are produced by immunizing animals with a synthetic peptide correponding to amino acid sequence near the C-terminus of human UTF1. Antibodies are purified by Protein A and peptide affinity chromatography. Background Undifferentiated embryonic cell transcription factor 1 (UTF1) is expressed in cells of the inner cell mass and the epiblast (1). Expression is down-regulated with development, although it is maintained in the embryonic germ cells and in the adult gonads (1). Reduced expression in embryonic stem cells (ESCs) is associated with failure to differentiate properly, although self-renewal is unaffected (2). UTF1 is tightly associated with chromatin in mouse and human ESCs and may be involved in maintaining an epigenetic environment necessary for the pluripotent state (2,3). -
Multivariate Meta-Analysis of Differential Principal Components Underlying Human Primed and Naive-Like Pluripotent States
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.20.347666; this version posted October 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. October 20, 2020 To: bioRxiv Multivariate Meta-Analysis of Differential Principal Components underlying Human Primed and Naive-like Pluripotent States Kory R. Johnson1*, Barbara S. Mallon2, Yang C. Fann1, and Kevin G. Chen2*, 1Intramural IT and Bioinformatics Program, 2NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA Keywords: human pluripotent stem cells; naive pluripotency, meta-analysis, principal component analysis, t-SNE, consensus clustering *Correspondence to: Dr. Kory R. Johnson ([email protected]) Dr. Kevin G. Chen ([email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.20.347666; this version posted October 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. ABSTRACT The ground or naive pluripotent state of human pluripotent stem cells (hPSCs), which was initially established in mouse embryonic stem cells (mESCs), is an emerging and tentative concept. To verify this important concept in hPSCs, we performed a multivariate meta-analysis of major hPSC datasets via the combined analytic powers of percentile normalization, principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), and SC3 consensus clustering. -
Renal Cell Neoplasms Contain Shared Tumor Type–Specific Copy Number Variations
The American Journal of Pathology, Vol. 180, No. 6, June 2012 Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.ajpath.2012.01.044 Tumorigenesis and Neoplastic Progression Renal Cell Neoplasms Contain Shared Tumor Type–Specific Copy Number Variations John M. Krill-Burger,* Maureen A. Lyons,*† The annual incidence of renal cell carcinoma (RCC) has Lori A. Kelly,*† Christin M. Sciulli,*† increased steadily in the United States for the past three Patricia Petrosko,*† Uma R. Chandran,†‡ decades, with approximately 58,000 new cases diag- 1,2 Michael D. Kubal,§ Sheldon I. Bastacky,*† nosed in 2010, representing 3% of all malignancies. Anil V. Parwani,*†‡ Rajiv Dhir,*†‡ and Treatment of RCC is complicated by the fact that it is not a single disease but composes multiple tumor types with William A. LaFramboise*†‡ different morphological characteristics, clinical courses, From the Departments of Pathology* and Biomedical and outcomes (ie, clear-cell carcinoma, 82% of RCC ‡ Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania; cases; type 1 or 2 papillary tumors, 11% of RCC cases; † the University of Pittsburgh Cancer Institute, Pittsburgh, chromophobe tumors, 5% of RCC cases; and collecting § Pennsylvania; and Life Technologies, Carlsbad, California duct carcinoma, approximately 1% of RCC cases).2,3 Benign renal neoplasms are subdivided into papillary adenoma, renal oncocytoma, and metanephric ade- Copy number variant (CNV) analysis was performed on noma.2,3 Treatment of RCC often involves surgical resec- renal cell carcinoma (RCC) specimens (chromophobe, tion of a large renal tissue component or removal of the clear cell, oncocytoma, papillary type 1, and papillary entire affected kidney because of the relatively large size of type 2) using high-resolution arrays (1.85 million renal tumors on discovery and the availability of a life-sus- probes). -
Proteomics Provides Insights Into the Inhibition of Chinese Hamster V79
www.nature.com/scientificreports OPEN Proteomics provides insights into the inhibition of Chinese hamster V79 cell proliferation in the deep underground environment Jifeng Liu1,2, Tengfei Ma1,2, Mingzhong Gao3, Yilin Liu4, Jun Liu1, Shichao Wang2, Yike Xie2, Ling Wang2, Juan Cheng2, Shixi Liu1*, Jian Zou1,2*, Jiang Wu2, Weimin Li2 & Heping Xie2,3,5 As resources in the shallow depths of the earth exhausted, people will spend extended periods of time in the deep underground space. However, little is known about the deep underground environment afecting the health of organisms. Hence, we established both deep underground laboratory (DUGL) and above ground laboratory (AGL) to investigate the efect of environmental factors on organisms. Six environmental parameters were monitored in the DUGL and AGL. Growth curves were recorded and tandem mass tag (TMT) proteomics analysis were performed to explore the proliferative ability and diferentially abundant proteins (DAPs) in V79 cells (a cell line widely used in biological study in DUGLs) cultured in the DUGL and AGL. Parallel Reaction Monitoring was conducted to verify the TMT results. γ ray dose rate showed the most detectable diference between the two laboratories, whereby γ ray dose rate was signifcantly lower in the DUGL compared to the AGL. V79 cell proliferation was slower in the DUGL. Quantitative proteomics detected 980 DAPs (absolute fold change ≥ 1.2, p < 0.05) between V79 cells cultured in the DUGL and AGL. Of these, 576 proteins were up-regulated and 404 proteins were down-regulated in V79 cells cultured in the DUGL. KEGG pathway analysis revealed that seven pathways (e.g. -
Histone Acetyltransferase Activity of MOF Is Required for MLL-AF9 Leukemogenesis Daria G
Published OnlineFirst February 15, 2017; DOI: 10.1158/0008-5472.CAN-16-2374 Cancer Tumor and Stem Cell Biology Research Histone Acetyltransferase Activity of MOF Is Required for MLL-AF9 Leukemogenesis Daria G. Valerio1,2, Haiming Xu1,2,3, Chun-Wei Chen1,2,3, Takayuki Hoshii1,2,3, Meghan E. Eisold1,2, Christopher Delaney1,2,3, Monica Cusan1,2, Aniruddha J. Deshpande1,4, Chun-Hao Huang2, Amaia Lujambio5, YuJun George Zheng6, Johannes Zuber7, Tej K. Pandita8, Scott W. Lowe2, and Scott A. Armstrong1,2,3 Abstract Chromatin-based mechanisms offer therapeutic targets in tumor cell genome. Rescue experiments with catalytically inac- acute myeloid leukemia (AML) that are of great current interest. tive mutants of MOF showed that its enzymatic activity was In this study, we conducted an RNAi-based screen to identify required to maintain cancer pathogenicity. In support of the druggable chromatin regulator–based targets in leukemias role of MOF in sustaining H4K16 acetylation, a small-molecule marked by oncogenic rearrangements of the MLL gene. In this inhibitor of the HAT component MYST blocked the growth of manner, we discovered the H4K16 histone acetyltransferase both murine and human MLL-AF9 leukemia cell lines. Further- (HAT) MOF to be important for leukemia cell growth. Condi- more, Mof inactivation suppressed leukemia development in tional deletion of Mof in a mouse model of MLL-AF9–driven an NUP98-HOXA9–driven AML model. Taken together, our leukemogenesis reduced tumor burden and prolonged host results establish that the HAT activity of MOF is required survival. RNA sequencing showed an expected downregulation to sustain MLL-AF9 leukemia and may be important for multiple of genes within DNA damage repair pathways that are con- AML subtypes. -
Psychosis: a Convergent Functional Genomics Approach Identifying a Series of Candidate Genes for Mania
Identifying a series of candidate genes for mania and psychosis: a convergent functional genomics approach ALEXANDER B. NICULESCU, III, DAVID S. SEGAL, RONALD KUCZENSKI, THOMAS BARRETT, RICHARD L. HAUGER and JOHN R. KELSOE Physiol. Genomics 4:83-91, 2000. You might find this additional information useful... This article cites 52 articles, 15 of which you can access free at: http://physiolgenomics.physiology.org/cgi/content/full/4/1/83#BIBL This article has been cited by 4 other HighWire hosted articles: Evaluation of common gene expression patterns in the rat nervous system S. Kaiser and L. K. Nisenbaum Physiol Genomics, December 16, 2003; 16 (1): 1-7. [Abstract] [Full Text] [PDF] Microarray Technology: A Review of New Strategies to Discover Candidate Vulnerability Downloaded from Genes in Psychiatric Disorders W. E. Bunney, B. G. Bunney, M. P. Vawter, H. Tomita, J. Li, S. J. Evans, P. V. Choudary, R. M. Myers, E. G. Jones, S. J. Watson and H. Akil Am. J. Psychiatry, April 1, 2003; 160 (4): 657-666. [Abstract] [Full Text] [PDF] Biomarker Identification by Feature Wrappers physiolgenomics.physiology.org M. Xiong, X. Fang and J. Zhao Genome Res., November 1, 2001; 11 (11): 1878-1887. [Abstract] [Full Text] [PDF] GRK3 mediates desensitization of CRF1 receptors: a potential mechanism regulating stress adaptation F. M. Dautzenberg, S. Braun and R. L. Hauger Am J Physiol Regulatory Integrative Comp Physiol, April 1, 2001; 280 (4): R935-946. [Abstract] [Full Text] Medline items on this article's topics can be found at http://highwire.stanford.edu/lists/artbytopic.dtl on the following topics: on August 11, 2005 Immunology . -
Supplementary Table 1: Adhesion Genes Data Set
Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like, -
Agonists and Knockdown of Estrogen Receptor Β Differentially Affect
Schüler-Toprak et al. BMC Cancer (2016) 16:951 DOI 10.1186/s12885-016-2973-y RESEARCH ARTICLE Open Access Agonists and knockdown of estrogen receptor β differentially affect invasion of triple-negative breast cancer cells in vitro Susanne Schüler-Toprak1*, Julia Häring1, Elisabeth C. Inwald1, Christoph Moehle2, Olaf Ortmann1 and Oliver Treeck1 Abstract Background: Estrogen receptor β (ERβ) is expressed in the majority of invasive breast cancer cases, irrespective of their subtype, including triple-negative breast cancer (TNBC). Thus, ERβ might be a potential target for therapy of this challenging cancer type. In this in vitro study, we examined the role of ERβ in invasion of two triple-negative breast cancer cell lines. Methods: MDA-MB-231 and HS578T breast cancer cells were treated with the specific ERβ agonists ERB-041, WAY200070, Liquiritigenin and 3β-Adiol. Knockdown of ERβ expression was performed by means of siRNA transfection. Effects on cellular invasion were assessed in vitro by means of a modified Boyden chamber assay. Transcriptome analyses were performed using Affymetrix Human Gene 1.0 ST microarrays. Pathway and gene network analyses were performed by means of Genomatix and Ingenuity Pathway Analysis software. Results: Invasiveness of MBA-MB-231 and HS578T breast cancer cells decreased after treatment with ERβ agonists ERB-041 and WAY200070. Agonists Liquiritigenin and 3β-Adiol only reduced invasion of MDA-MB-231 cells. Knockdown of ERβ expression increased invasiveness of MDA-MB-231 cells about 3-fold. Transcriptome and pathway analyses revealed that ERβ knockdown led to activation of TGFβ signalling and induced expression of a network of genes with functions in extracellular matrix, tumor cell invasion and vitamin D3 metabolism. -
Key Genes Regulating Skeletal Muscle Development and Growth in Farm Animals
animals Review Key Genes Regulating Skeletal Muscle Development and Growth in Farm Animals Mohammadreza Mohammadabadi 1 , Farhad Bordbar 1,* , Just Jensen 2 , Min Du 3 and Wei Guo 4 1 Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman 77951, Iran; [email protected] 2 Center for Quantitative Genetics and Genomics, Aarhus University, 8210 Aarhus, Denmark; [email protected] 3 Washington Center for Muscle Biology, Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA; [email protected] 4 Muscle Biology and Animal Biologics, Animal and Dairy Science, University of Wisconsin-Madison, Madison, WI 53558, USA; [email protected] * Correspondence: [email protected] Simple Summary: Skeletal muscle mass is an important economic trait, and muscle development and growth is a crucial factor to supply enough meat for human consumption. Thus, understanding (candidate) genes regulating skeletal muscle development is crucial for understanding molecular genetic regulation of muscle growth and can be benefit the meat industry toward the goal of in- creasing meat yields. During the past years, significant progress has been made for understanding these mechanisms, and thus, we decided to write a comprehensive review covering regulators and (candidate) genes crucial for muscle development and growth in farm animals. Detection of these genes and factors increases our understanding of muscle growth and development and is a great help for breeders to satisfy demands for meat production on a global scale. Citation: Mohammadabadi, M.; Abstract: Farm-animal species play crucial roles in satisfying demands for meat on a global scale, Bordbar, F.; Jensen, J.; Du, M.; Guo, W. -
Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing