Manhattan Project National Historical Park Brochure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Doctor Atomic
What to Expect from doctor atomic Opera has alwayS dealt with larger-than-life Emotions and scenarios. But in recent decades, composers have used the power of THE WORK DOCTOR ATOMIC opera to investigate society and ethical responsibility on a grander scale. Music by John Adams With one of the first American operas of the 21st century, composer John Adams took up just such an investigation. His Doctor Atomic explores a Libretto by Peter Sellars, adapted from original sources momentous episode in modern history: the invention and detonation of First performed on October 1, 2005, the first atomic bomb. The opera centers on Dr. J. Robert Oppenheimer, in San Francisco the brilliant physicist who oversaw the Manhattan Project, the govern- ment project to develop atomic weaponry. Scientists and soldiers were New PRODUCTION secretly stationed in Los Alamos, New Mexico, for the duration of World Alan Gilbert, Conductor War II; Doctor Atomic focuses on the days and hours leading up to the first Penny Woolcock, Production test of the bomb on July 16, 1945. In his memoir Hallelujah Junction, the American composer writes, “The Julian Crouch, Set Designer manipulation of the atom, the unleashing of that formerly inaccessible Catherine Zuber, Costume Designer source of densely concentrated energy, was the great mythological tale Brian MacDevitt, Lighting Designer of our time.” As with all mythological tales, this one has a complex and Andrew Dawson, Choreographer fascinating hero at its center. Not just a scientist, Oppenheimer was a Leo Warner and Mark Grimmer for Fifty supremely cultured man of literature, music, and art. He was conflicted Nine Productions, Video Designers about his creation and exquisitely aware of the potential for devastation Mark Grey, Sound Designer he had a hand in designing. -
Building 9731 – Secret City Festival’S Y-12 Public Tour Or: Building 9731 to Be Featured in Secret City Festival's Public Tour (Title Provided by the Oak Ridger)
Building 9731 – Secret City Festival’s Y-12 public tour Or: Building 9731 to be featured in Secret City Festival's public tour (title provided by The Oak Ridger) In March 1943 the very first structure to be completed at the newly emerging Y-12 Electromagnetic Separation Plant was Building 9731. It was only a little over a month earlier that ground had been broken for the first of nine major buildings designed to hold cautrons (CALifornia University Cyclotron). But the real push had been to complete the construction of a smaller building, one with a high bay and especially designed to house four very special units of newly designed equipment using huge magnets. The Alpha Calutron magnets stand well over 20 feet tall and are still standing there today―the only ones in the world! For the first time ever, the public will have a chance to see these huge magnets and will also be able to tour inside historic Building 9731. This historic event is a part of the Secret City Festival this year. On Saturday, June 19, 2010, from 9:00 AM to 4:00 PM, a major part of the Y-12 public tour will include Building 9731. The public will be allowed to see inside the historic structure and view the magnets of both the two Alpha and two Beta calutrons. These calutron magnets have been designated as Manhattan Project Signature Artifacts by the Depart- ment of Energy’s Federal Preservation Officer in the DOE Office of History and Heritage Resources. The building is being submitted for Historical Landmark status on the National Register of Historic Places. -
The Making of an Atomic Bomb
(Image: Courtesy of United States Government, public domain.) INTRODUCTORY ESSAY "DESTROYER OF WORLDS": THE MAKING OF AN ATOMIC BOMB At 5:29 a.m. (MST), the world’s first atomic bomb detonated in the New Mexican desert, releasing a level of destructive power unknown in the existence of humanity. Emitting as much energy as 21,000 tons of TNT and creating a fireball that measured roughly 2,000 feet in diameter, the first successful test of an atomic bomb, known as the Trinity Test, forever changed the history of the world. The road to Trinity may have begun before the start of World War II, but the war brought the creation of atomic weaponry to fruition. The harnessing of atomic energy may have come as a result of World War II, but it also helped bring the conflict to an end. How did humanity come to construct and wield such a devastating weapon? 1 | THE MANHATTAN PROJECT Models of Fat Man and Little Boy on display at the Bradbury Science Museum. (Image: Courtesy of Los Alamos National Laboratory.) WE WAITED UNTIL THE BLAST HAD PASSED, WALKED OUT OF THE SHELTER AND THEN IT WAS ENTIRELY SOLEMN. WE KNEW THE WORLD WOULD NOT BE THE SAME. A FEW PEOPLE LAUGHED, A FEW PEOPLE CRIED. MOST PEOPLE WERE SILENT. J. ROBERT OPPENHEIMER EARLY NUCLEAR RESEARCH GERMAN DISCOVERY OF FISSION Achieving the monumental goal of splitting the nucleus The 1930s saw further development in the field. Hungarian- of an atom, known as nuclear fission, came through the German physicist Leo Szilard conceived the possibility of self- development of scientific discoveries that stretched over several sustaining nuclear fission reactions, or a nuclear chain reaction, centuries. -
Richard G. Hewlett and Jack M. Holl. Atoms
ATOMS PEACE WAR Eisenhower and the Atomic Energy Commission Richard G. Hewlett and lack M. Roll With a Foreword by Richard S. Kirkendall and an Essay on Sources by Roger M. Anders University of California Press Berkeley Los Angeles London Published 1989 by the University of California Press Berkeley and Los Angeles, California University of California Press, Ltd. London, England Prepared by the Atomic Energy Commission; work made for hire. Library of Congress Cataloging-in-Publication Data Hewlett, Richard G. Atoms for peace and war, 1953-1961. (California studies in the history of science) Bibliography: p. Includes index. 1. Nuclear energy—United States—History. 2. U.S. Atomic Energy Commission—History. 3. Eisenhower, Dwight D. (Dwight David), 1890-1969. 4. United States—Politics and government-1953-1961. I. Holl, Jack M. II. Title. III. Series. QC792. 7. H48 1989 333.79'24'0973 88-29578 ISBN 0-520-06018-0 (alk. paper) Printed in the United States of America 1 2 3 4 5 6 7 8 9 CONTENTS List of Illustrations vii List of Figures and Tables ix Foreword by Richard S. Kirkendall xi Preface xix Acknowledgements xxvii 1. A Secret Mission 1 2. The Eisenhower Imprint 17 3. The President and the Bomb 34 4. The Oppenheimer Case 73 5. The Political Arena 113 6. Nuclear Weapons: A New Reality 144 7. Nuclear Power for the Marketplace 183 8. Atoms for Peace: Building American Policy 209 9. Pursuit of the Peaceful Atom 238 10. The Seeds of Anxiety 271 11. Safeguards, EURATOM, and the International Agency 305 12. -
Wahlen, R. K. History of 100-B Area
WHC-EP-0273 History of 100-B Area R. K. Wahlen Date Published October 1989 Prepared for the U.S. Department of Energy Assistant Secretary for Management and Administration w Westinghouse P.O. Box 1970 0- Hanford mpany Richland, Washington &I352 Hanford Operations and Engineering Contractor for the U.S. Department of Energy under Contract DE-ACO6-87RLlOg30 WHC-EP-0273 EXECUTIVE SUMMARY In August 1939, Albert Einstein wrote a letter to President Roosevelt that informed him of the work that had been done by Enrico Fermi and L. Szilard on converting energy from the element uranium. He also informed President Roosevelt that there was strong evidence that the Germans were also working on this same development. This letter initiated a program by the United States to develop an atomic bomb. The U.S. Army Corps of Engineers, under the Department of Defense, was assigned the task. The program, which involved several locations in the United States, was given the code name, Manhattan Project. E. I. du Pont de Nemours & Company (Du Pont) was contracted to build and operate the reactors and chemical separations plants for the production of plutonium. On December 14, 1942, officials of Du Pont met in Wilmington, Delaware, to develop a set of criteria for the selection of a site for the reactors and separations plants. The basic criteria specified four requirements: (1) a large supply of clean water, (2) a large supply of electricity, (3) a large area with low population density, and (4) an area that would cover at least 12 by 16 mi. -
The Hanford Laboratories and the Growth of Environmental Research in the Pacific Northwest
AN ABSTRACT OF THE THESIS OF D. Erik Ellis for the degree of Master of Science in History of Science, presented on December 17,2002. Title: The Hanford Laboratories and the Growth of Environmental Research in the Pacific Northwest. 1943 to 1965. Redacted for privacy Abstract approved: William G. Robbins The scientific endeavors that took place at Hanford Engineer Works, beginning in World War II and continuing thereafter, are often overlooked in the literature on the Manhattan Project, the Atomic Energy Commission, and in regional histories. To historians of science, Hanford is described as an industrial facility that illustrates the perceived differences between academic scientists on the one hand and industrial scientists and engineers on the other. To historians of the West such as Gerald Nash, Richard White, and Patricia Limerick, Hanford has functioned as an example of the West's transformation during in World War II, the role of science in this transformation, and the recurring impacts of industrialization on the western landscape. This thesis describes the establishment and gradual expansion of a multi-disciplinary research program at Hanford whose purpose was to assess and manage the biological and environmental effects of plutonium production. By drawing attention to biological research, an area in which Hanford scientists gained distinction by the mid 1950s, this study explains the relative obscurity of Hanford's scientific research in relation to the prominent, physics- dominated national laboratories of the Atomic Energy Commission. By the mid 1960s, with growing public concern over radiation exposure and changes in the government's funding patterns for science, Hanford's ecologically relevant research provided a recognizable and valuable identity for the newly independent, regionally-based research laboratory. -
Mflfihflttflfi PROJECT
MflfiHflTTflfi PROJECT U.S. DEPARTMENT OF ENERGY The Hanford Site began as part and the reactor stack are the ofthe United States Manhattan only facilities that remain. Project to research, test and build atomic weapons during World War II. Today, the U.S. Department The original 670-square mile ofEnergy (DOE) Richland Hanford Site, then known as Operations Office offers escorted the Hanford Engineer Works, public access to B Reactor along a was the last ofthree top-secret designated tour route. The National sites constructed in order to Park Service (NPS) is studying produce enriched uranium and preservation and interpretation plutonium for the world's first options for sites associated with nuclear weapons. the Manahattan Project. A draft is expected in summer 2009. A final report will recommend whether B Reactor, located about 45 the B Reactor, along with other miles northwest ofRichland, Manhattan Project facilities, should Washington, is the world's first be preserved, and ifso, what roles full-scale nuclear reactor. the DOE, the NPS and community Not only was B Reactor a first partners will play in preservation of-a-kind engineering structure, and public education. it was built and fully functional in just 11 months. Eventually, the shoreline of the Columbia River in south eastern Washington State held nine nuclear reactors at the height ofHanford's nuclear defense production during the Cold War era. The B Reactor was shut down in 1968. During the 1980's, the U.S. Department ofEnergy began removing B Reactor's support facilities. The reactor B Reactor operating in 1945 building, the river pumphouse 2 ! N 200 West 200 East Area Area _1-+....&+04.01 B Reactor today, looking west with Umtanum Ridge in the background MRNHI\TTI\N ~~~.,". -
A New Effort to Achieve World
Marshall and the Atomic Bomb Marshall and the Atomic Bomb By Frank Settle General George C. Marshall and the Atomic Bomb (Praeger, 2016) provides the first full narrative describing General Marshall’s crucial role in the first decade of nuclear weapons that included the Manhattan Project, the use of the atomic bomb on Japan, and their management during the early years of the Cold War. Marshall is best known today as the architect of the plan for Europe’s recovery in the aftermath of World War II—the Marshall Plan. He also earned acclaim as the master strategist of the Allied victory in World War II. Marshall mobilized and equipped the Army and Air Force under a single command, serving as the primary conduit for information between the Army and the Air Force, as well as the president and secretary of war. As Army Chief of Staff during World War II, he developed a close working relationship with Admiral Earnest King, Chief of Naval Operations; worked with Congress and leaders of industry on funding and producing resources for the war; and developed and implemented the successful strategy the Allies pursued in fighting the war. Last but not least of his responsibilities was the production of the atomic bomb. The Beginnings An early morning phone call to General Marshall and a letter to President Franklin Roosevelt led to Marshall’s little known, nonetheless critical, role in the development and use of the atomic bomb. The call, received at 3:00 a.m. on September 1, 1939, informed Marshall that German dive bombers had attacked Warsaw. -
Leslie Richard Groves, Jr. Years
Name: Leslie Richard Groves, Jr. Years: August 17, 1896 – July 13, 1970 Residence: Albany, New York; Brief Biography: Leslie Richard Groves, Jr. was born to Leslie Richard Groves, Sr. and Gwen Griffith. Groves attended both the University of Washington and the Massachusetts Institute of Technology before he attended the U.S. Military Academy in 1916-1918. After his graduation from U.S. Military Academy, Groves spent an additional year at the Engineer School at the Camp A.A. Humphreys when he was made a second lieutenant of engineers. This was followed by a brief tour with the American Expeditionary Force in France soon after the end of World War I. In 1921 he graduated from the Engineer School. In 1922, Groves married Grace Wilson with whom he had two children with. From 1921-1931 Groves traveled extensively to Hawaii, San Francisco, Texas, Delaware, and ending up in Nicaragua in 1931. The work he conducted in Nicaragua led him to receive, from the Nicaraguan government, the medal of merit. Ambition led Groves to attend and graduate from the Command and General Staff College, in 1936, and the Army War College, in 1939. He then received the ranks of lieutenant colonel, which lead him to the War Department where he became the head of the Operations Branch, Corps of Engineers. During this time Groves became responsible for the design of the new Pentagon Building. During World War II he was picked to lead the Manhattan Engineer District, what would later be referred to as the Manhattan Project. Groves involvement in this project resulted in the a promotion to the rank of brigadier general. -
Hanford B Reactor and Beyond
How DOE and the Tri Cities Community are Working to Redefine Hanford’s Post‐Cleanup Future Colleen French DOE Richland Operations Office Government Programs Manager Hanford • Hanford was created in 1943 as part of the top secret Manhattan Project • 586 square miles • Production of plutonium increased during Cold War (peaking between 1959‐1965) • Hanford produced 2/3 of the nation’s plutonium between 1945‐1985 • Home to the first full‐scale nuclear producon reactor ― B Reactor Complex during operations (1940s‐1960s) the B Reactor, now a National Historic Landmark 2 The Hanford Site • Fuel fabrication and irradiation in nuclear reactors along the Columbia River • Chemical separations in canyon facilities to dissolve fuel and extract plutonium in the Central Plateau • Liquid and solid wastes disposed of in Central Plateau • Eventually, 9 reactors were built and Hanford operated for defense production through 1988 3 Hanford Cleanup Overview Two Department of Energy Offices Office of River Protection • Tank Waste Richland Operations Office • River Corridor • Central Plateau Cleanup Work • Treat contaminated groundwater • Demolish facilities • Move buried waste, contaminated soil away from Columbia River • Isolate contamination from environment on Central Plateau • Treat underground tank waste Workforce • 8,500 total Department of Energy and contractor employees 4 www.em.doe.gov HANFORD SITE CLEANUP 859 waste sites BY THE NUMBERS have been remediated SIX of Hanford’s nine reactors have been “cocooned” 12K cubic meters of underground waste have been removed more reactors will be TWO cocooned in the coming years 49K visitors have toured the B Reactor percent of the site’s spent National Historic fuel has been moved to dry Landmark 100 storage 10 billion gallons of buildings have been demolished contaminated 743 groundwater have been treated 5 What are Hanford’s “Assets”? 6 Hanford Site Post 2015 Cleanup Controlled Access Vision for Access and Use to Some of the Cleaned-up River Shoreline Natural Resource Preservation 1. -
Hanford Site Cleanup Hanford Site Employment*
The U.S. Department of Energy is responsible for one of the largest nuclear Hanford Site Cleanup cleanup efforts in the world, managing the Examples of Before Cleanup Began (1989) legacy of five decades of nuclear weapons Cleanup Work Completed production. At its peak, this national 586-square-mile footprint of • 82-square-mile footprint of active weapons complex consisted of 16 major active cleanup cleanup remaining facilities, including vast reservations of land in the States of Idaho, Nevada, South 2,300 tons of spent nuclear fuel • COMPLETED: Moved all spent fuel Carolina, Tennessee, and Washington. stored near the Columbia River to dry storage Nowhere in the DOE Complex is cleanup more challenging than at the Hanford Site 20 tons of leftover plutonium in • COMPLETED: Stabilized and in southeastern Washington. Hanford the Plutonium Finishing Plant shipped plutonium off-site made more than 20 million pieces of uranium metal fuel for nine nuclear •977 waste sites remediated, reactors along the Columbia River. Five 1,012 waste sites, 522 facilities, 428 facilities demolished, 18 million tons soil/debris removed huge plants in the center of the Hanford 9 plutonium production reactors Site processed 110,000 tons of fuel from near the Columbia River • 6 reactors cocooned (associated the reactors, discharging an estimated 450 facilities demolished) billion gallons of liquids to soil disposal 1 preserved sites and 56 million gallons of radioactive waste to 177 large underground tanks. More than 100 square miles of • 15.6 billion gallons treated, 306 Plutonium production ended in the late groundwater contaminated tons contamination removed 1980s. Hanford cleanup began in 1989, when a • Pumpable liquids and 2 million landmark agreement was reached between 56 million gallons of waste in 177 gallons of solids transferred to DOE, the U.S. -
Trinity Scientific Firsts
TRINITY SCIENTIFIC FIRSTS THE TRINITY TEST was perhaps the greatest scientifi c experiment ever. Seventy-fi ve years ago, Los Alamos scientists and engineers from the U.S., Britain, and Canada changed the world. July 16, 1945 marks the entry into the Atomic Age. PLUTONIUM: THE BETHE-FEYNMAN FORMULA: Scientists confi rmed the newly discovered 239Pu has attractive nuclear Nobel Laureates Hans Bethe and Richard Feynman developed the physics fi ssion properties for an atomic weapon. They were able to discern which equation used to estimate the yield of a fi ssion weapon, building on earlier production path would be most effective based on nuclear chemistry, and work by Otto Frisch and Rudolf Peierls. The equation elegantly encapsulates separated plutonium from Hanford reactor fuel. essential physics involved in the nuclear explosion process. PRECISION HIGH-EXPLOSIVE IMPLOSION FOUNDATIONAL RADIOCHEMICAL TO CREATE A SUPER-CRITICAL ASSEMBLY: YIELD ANALYSIS: Project Y scientists developed simultaneously-exploding bridgewire detonators Wartime radiochemistry techniques developed and used at Trinity with a pioneering high-explosive lens system to create a symmetrically provide the foundation for subsequent analyses of nuclear detonations, convergent detonation wave to compress the core. both foreign and domestic. ADVANCED IMAGING TECHNIQUES: NEW FRONTIERS IN COMPUTING: Complementary diagnostics were developed to optimize the implosion Human computers and IBM punched-card machines together calculated design, including fl ash x-radiography, the RaLa method,