An Investigation on Nonenzymatic Autoxidation of Phenolic Compounds in Natural Waters

Total Page:16

File Type:pdf, Size:1020Kb

An Investigation on Nonenzymatic Autoxidation of Phenolic Compounds in Natural Waters Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 6-1996 An Investigation on Nonenzymatic Autoxidation of Phenolic Compounds in Natural Waters Lei Jiang Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Chemistry Commons Recommended Citation Jiang, Lei, "An Investigation on Nonenzymatic Autoxidation of Phenolic Compounds in Natural Waters" (1996). Master's Theses. 4357. https://scholarworks.wmich.edu/masters_theses/4357 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. AN INVESTIGATION ON NONENZYMATIC AlITOXIDATIONOF PHENOLIC COMPOUNDS IN NATURAL WATERS by Lei Jiang A Thesis Submitted to the Facultyof The GraduateCollege in partial fulfillment of the requirements forthe Degree of Master of Arts Department of Chemistry WesternMichigan University Kalamazoo,Michigan June 1996 / ACKNOWLEDGMENfS First, I am very grateful to the members of my committee, Dr. Schreiber, Dr. Howell and Dr. Berndt. Without their constant guidance and support, it would have beenimpossible for me to finish the thesis. Second, I would like to express my sincere gratitude to the Department of Chemistry for continuous support throughout my study. I appreciate all the encouragement from our faculty members, staff and graduate students. I enjoyed my study and research in such a family-like environment. To my husband, my father and my sister, I extend my wholehearted appreciation. They are my source of inspiration and my continuous drive to finish in excellence. Finally, I dedicated this thesis to my beloved mother. Lei Jiang 11 AN INVESTIGATION ON NONENZYMATICAUTOXIDATION OF PHENOLIC COMPOUNDS IN NATURAL WATERS Lei Jiang, M.A. WesternMichigan University, 1996 The nonenzymatic autoxidation of the phenolic compoundschlorogenic acid in aqueous solution was studied. The study demonstrated that the oxidation rate of chlorogenic acid was strongly dependent on pH. The higher the pH, the faster the rate of oxidation. The involvement of phenolate ions and radicals in oxidation reactions are two possible reasons for the pH dependency. The presence of a trace amounts of reducible transition metal ions, such as copper(II), dramatically increases the oxidation rate of chlorogenic acid. Light also increases the oxidation rate of chlorogenic acid. However, the photochemical reaction was a much slower process. The TLC and HPLC results show that the oxidation of chlorogenic acid produces a mixture. The percentage of the various components in the mixture was affected by oxidation time. The NMR results indicate that under strong alkaline conditions, some chlorogenic acids were initially hydrolyzed into caffeic acid and quinic acid. The study also showed that the oxidation of caffeic acid was pH dependent. The oxidation rate of caff eic acid was much faster than that of chlorogenic acid under acidic and neutral conditions. Both NMR and UV /VIS results demonstratedthat the conjugated double bond on the side chain of chlorogenic acid was involved in the oxidation reaction. TABLE OF CONTENTS ACKNOWLEDGMENTS................................................................. 11 LIST OFT ABLES......................................................................... V LIST OF FIG URES .................................. , ................................ .'... vi CHAPTER I. INTRODUCTION................. :.............................................. 1 Motivation. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 1 Phenolic Compounds........................................................ 1 Humic Substances ......-.................... ................................. 2 TransitionMetals in Natural Waters....................................... 6 Pul1)0se of Study .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 8 II. LITERATURE REVIEW......................................................... 10 Chlorogenic Acid ............................................................ 10 Enzymatic Oxidation of Phenolic Compounds........................... 12 Nonenzymatic Oxidation of Phenolic Compounds. .. .. .. .. .. .. 13 III. EXPERIMENTALMErHODS................................................. 18 Materials. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 18 Propertiesof Materials ...................................................... 18 Purity Checking.............................................................. 19 Sample Preparation.......................................................... 20 Aqueous Sample . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 20 Recovery of Oxidation Products. .. .. .. .. .. .. .. .. .. 22 Instrumental Technique ..................................................... 22 Differential Scanning Calorimetry (DSC)........................... 22 lll Table of Contents-continued CHAPTER FreezeDry .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. 23 Ultraviolet -Visible Spectrophotometry(UV NIS)................. 23 Thin-layer Chromatography(TLC) .................................. 23 High-performance Liquid Chromatography (HPLC).............. 24 Nuclear Magnetic Resonance .. .. .. .. .. .. .. .. .. .. .. 25 IV. RESULTS AND DISCUSSIONS .............................................. 26 Factors Related to Nonenzymatic Oxidation.............................. 26 Effect of pH............................................................. 26 Effect of Transition Metal Copper(II)................................ 36 Effect of Light.......................................................... 40 Separation of Reaction Mixtures... .. .. .. .. .. .. .. .. .. 42 TLC...................................................................... 42 HPLC.................................................................... 45 Identification of Reaction Mixtures . .. .. .. .. .. .. .. .. 47 V. CONCLUSIONS.................................................................. 51 APPENDICES A. Proton NMR Spectraof Caffeic Acid, Quinic Acid, Chlorogenic Acid and Its Oxidation Products....................................................... 53 BIBLIOGRAPHY.......................................................................... 61 IV UST OFTABLES 1. Solubility of Chlorogenic Acid in Different Solvents........................... 19 2. TLC Results fora Reaction Mixture of Chlorogenic Acid...................... 42 3. TLC Results forDifferent Reaction Mixtures.................................... 43 4 The Effect of Elution Solvents on Separationof a Reaction Mixture.......... 44 5. HPLCResults of the Separationof a ReactionMixture of Chlorogenic Acid ................................................................................... 46 6. Chemical Shifts ( o, ppm) of 1H NMR for Standards and Reaction Mixtures .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 48 7. Relative Peak Area at DifferentChemical Shifts in lH NMR Spectra........ 49 V LIST OF FIGURES 1. Scheme for the Fractionationof Humic Substances............................. 3 2. Structure of Humic Acid According to Fuchs.................................... 4 3. The Polyphenol Model.............................................................. 5 4. Proposed Mechamism forthe Reaction of CopperComplexes With Catechol............................................................................... 7 5. The Structure of 3-Caffeoylquinic Acid (IUPAC: 5-Caffeoylquinic Acid)... 10 6. Enzymatic Reaction Catalyzed by Chlorogenate CaffeoylTransfe rase........ 14 7. Structure of Dimer Isomers From the Oxidation of CaffeicAcid .............. 15 8. Proposed Mechanism of Dimer Formation . .. .. .. .. 16 9. Structures of Caffeic Acid and Quinic Acid . .. 18 10. Differential Scanning Calorimetry Thermogramof Chlorogenic Acid .. 21 11. UV/VIS Spectrumof ChlorogenicAcid (0.1 mM) at pH= 3.................. 27 12. UV/VIS Spectra of Chlorogenic Acid (0.1 mM) at pH= 10.5................. 27 13. UV/VIS Spectraof Chlorogenic Acid (0.1 mM) at pH= 12................... 30 14. UV/VIS Spectraof Chlorogenic Acid (0.05 mM) at pH= 7 .......... .. .. 30 15. Effect of pH on Oxidation of Chlorogenic Acid (0.05 mM).................... 31 16. Effect of pH on Oxidation of Caffeic Acid (0.05 mM).......................... 33 17. Effect of pH on Oxidation of CaffeicAcid (0.05 mM) in the Presence of Quinic Acid.... .. .. .. .. .. .. .. .. .. .. .. 34 18. Comparison of the Effect of pH on Different Systems.......................... 35 19. Catalytic Effect of Copper(II) on Oxidationof Chlorogenic Acid (0.05 mM)............................................................................ 38 20. UV/VIS Spectra of Chlorogenic Acid (0.1 mM) at pH= 7 in the Presence of Copper(Il).............................................................. 38 VI List of Figures-continued 21. Oxidation of Chlorogenic Acid (0.05 mM) at DifferentCopper(II) Concentrations .. .. .. .. .. .. .. .. 39 22. ChlorogenicAcid Oxidation With a Trace of Cu(II) (0.3 ppm)................ 40 23. Effectof Light on Oxidation of Chlorogenic Acid (0.05 mM) Without Copper(II).......... .. .. .. .. .. .. .. .. ..... .. .. .. .. .. .. .. 41 24. Effect of Light on Oxidation of Chlorogenic Acid (0.05 mM) With Copper(II).. .. .. .. .. .. .. .. .... .. .. .. 41 25. Peak Assignments for Chlorogenic Acid According to SADTLER............ 47 vu CHAPTER.I INTRODUCTION Motivation There are a variety of organic
Recommended publications
  • Isolation and Functional Characterization of a Cdna Coding A
    Isolation and functional characterization of a cDNA coding a hydroxycinnamoyltransferase involved in phenylpropanoid biosynthesis in Cynara cardunculus L Cinzia Comino, Sergio Lanteri, Ezio Portis, Alberto Acquadro, Annalisa Romani, Alain Hehn, Romain Larbat, Frédéric Bourgaud To cite this version: Cinzia Comino, Sergio Lanteri, Ezio Portis, Alberto Acquadro, Annalisa Romani, et al.. Isolation and functional characterization of a cDNA coding a hydroxycinnamoyltransferase involved in phenyl- propanoid biosynthesis in Cynara cardunculus L. BMC Plant Biology, BioMed Central, 2007, 7 (1), pp.14. 10.1186/1471-2229-7-14. hal-01738035 HAL Id: hal-01738035 https://hal.archives-ouvertes.fr/hal-01738035 Submitted on 20 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License BMC Plant Biology BioMed Central Research article Open Access Isolation and functional characterization of a cDNA coding a hydroxycinnamoyltransferase involved in phenylpropanoid biosynthesis in Cynara cardunculus
    [Show full text]
  • Wine-Making with Protection of Must Against Oxidation in a Warm, Semi-Arid Terroir O
    Wine-making with Protection of Must against Oxidation in a Warm, Semi-arid Terroir o. Corona Dipartimento di Ingegneria e Tecnologie Agro-Forestali, Universita degli Studi di Palermo, 90128 Palermo, Italy Submitted for publication: November 2009 Accepted for publication: March 201 0 Key words: Enzymatic oxidation, protection against oxidation To protect varietal aromas from oxidation before alcoholic fermentation, two grape must samples were prepared from white grapes potentially low in copper, pre-cooled and supplemented with ascorbic acid and solid CO (trial 2 ) B )' AC02 or S02 (trial S02 The wines prepared from musts protected from oxidation had aroma descriptors that included "passion fruit" and "grapefruit skin". The lower concentrations offtavanols in the AC02 trial demonstrated that the use of solid CO2 as an oxidation preventative instead of S02 reduced the extraction of these polyphenols from the grape solids. The higher concentration of hydroxycinnamoyl tartaric acids of the wine from the AC02 trial with respect to BS02 was ascribed to the lower grape polyphenoloxidase activity induced by the lower oxygen level AC02 B " in the trial, or to the combination of caftaric acid quinone with the S02 in S02 Although the grapes were very ripe (alcohol in wines ~ 14.5% vol), the wines made with musts prepared by the two techniques were characterised by aroma descriptors like "passion fruit" and "grapefruit skin", and these aromas were not detected in the wines prepared from unprotected musts. F or the production of white wine, the grapes are usually pressed Darriet el aI., 1995; Bouchilloux el ai., 1998; Tominaga el ai., after destemming and crushing, and the must that is obtained after 1998; Peyrot des Gachons el ai., 2000; Murat el ai., 2001), can settling is fermented by yeasts at a temperature that generally be oxidised, with a loss of the varietal characters of the wine.
    [Show full text]
  • 5-Caffeoylquinic Acid and Caffeic Acid Orally Administered Suppress P-Selectin Expression on Mouse Platelets ⁎ Jae B
    Available online at www.sciencedirect.com Journal of Nutritional Biochemistry 20 (2009) 800–805 5-Caffeoylquinic acid and caffeic acid orally administered suppress P-selectin expression on mouse platelets ⁎ Jae B. Park Diet, Genomics, and Immunology Laboratory, BHNRC, ARS, USDA, Beltsville, MD 20705, USA Received 15 February 2008; received in revised form 18 July 2008; accepted 25 July 2008 Abstract Caffeic acid and 5-caffeoylquinic acid are naturally occurring phenolic acid and its quinic acid ester found in plants. In this article, potential effects of 5-caffeoylquinic acid and caffeic acid on P-selectin expression were investigated due to its significant involvement in platelet activation. First, the effects of 5-caffeoylquinic acid and caffeic acid on cyclooxygenase (COX) enzymes were determined due to their profound involvement in regulating P-selectin expression on platelets. At the concentration of 0.05 μM, 5-caffeoylquinic acid and caffeic acid were both able to inhibit COX-I enzyme activity by 60% (Pb.013) and 57% (Pb.017), respectively. At the same concentration, 5-caffeoylquinic acid and caffeic acid were also able to inhibit COX-II enzyme activity by 59% (Pb.012) and 56% (Pb.015), respectively. As expected, 5-caffeoylquinic acid and caffeic acid were correspondingly able to inhibit P-selectin expression on the platelets by 33% (Pb.011) and 35% (Pb.018), at the concentration of 0.05 μM. In animal studies, 5-caffeoylquinic acid and caffeic acid orally administered to mice were detected as intact forms in the plasma. Also, P-selectin expression was respectively reduced by 21% (Pb.016) and 44% (Pb.019) in the plasma samples from mice orally administered 5-caffeoylquinic acid (400 μg per 30 g body weight) and caffeic acid (50 μg per 30 g body weight).
    [Show full text]
  • Production of Verbascoside, Isoverbascoside and Phenolic
    molecules Article Production of Verbascoside, Isoverbascoside and Phenolic Acids in Callus, Suspension, and Bioreactor Cultures of Verbena officinalis and Biological Properties of Biomass Extracts Paweł Kubica 1 , Agnieszka Szopa 1,* , Adam Kokotkiewicz 2 , Natalizia Miceli 3 , Maria Fernanda Taviano 3 , Alessandro Maugeri 3 , Santa Cirmi 3 , Alicja Synowiec 4 , Małgorzata Gniewosz 4 , Hosam O. Elansary 5,6,7 , Eman A. Mahmoud 8, Diaa O. El-Ansary 9, Omaima Nasif 10, Maria Luczkiewicz 2 and Halina Ekiert 1,* 1 Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Kraków, Poland; [email protected] 2 Chair and Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Gdansk, al. gen. J. Hallera 107, 80-416 Gda´nsk,Poland; [email protected] (A.K.); [email protected] (M.L.) 3 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; [email protected] (N.M.); [email protected] (M.F.T.); [email protected] (A.M.); [email protected] (S.C.) 4 Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, ul. Nowoursynowska 159c, 02-776 Warsaw, Poland; [email protected] (A.S.); [email protected] (M.G.) 5 Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; [email protected] 6 Floriculture, Ornamental Horticulture,
    [Show full text]
  • Phenolic Compounds in Lycopersicon Esculentum L
    Running title: Phenolic compounds in Lycopersicon esculentum L. Characterization and quantification of phenolic compounds in four tomato (Lycopersicon esculentum L.) farmer’ varieties in Northeastern Portugal homegardens Lillian Barros1,2,a, Montserrat Dueñas2,a, José Pinela1, Ana Maria Carvalho1, Celestino Santos Buelga2,*, Isabel C.F.R. Ferreira1,* 1CIMO/Escola Superior Agrária, Instituto Politécnico de Bragança, Campus de Santa Apolónia, Apartado 1172, 5301-855 Bragança, Portugal. 2Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain. * Authors to whom correspondence should be addressed (e-mail: [email protected]; telephone +34 923 294537; fax +34 923 294515; e-mail: [email protected], telephone +351273303219, fax +351273325405). A Both authors contributed equally 1 Abstract Tomato (Lycopersicon esculentum L.) is one of the most widely consumed fresh and processed vegetables in the world, and contains bioactive key components. Phenolic compounds are one of those components and, according to the present study, farmer’ varieties of tomato cultivated in homegardens from the northeastern Portuguese region are a source of phenolic compounds, mainly phenolic acid derivatives. Using HPLC-DAD-ESI/MS, it was concluded that a cis p-coumaric acid derivative was the most abundant compound in yellow (“Amarelo”) and round (“Batateiro”) tomato varieties, while 4-O-caffeolyquinic acid was the most abundant one in long (“Comprido”) and heart (“Coração”) varieties. The most abundant flavonoid was quercetin pentosylrutinoside in the four tomato varieties. Yellow tomato presented the highest levels of phenolic compounds (54.23 µg/g fw), including phenolic acids (43.30 µg/g fw) and flavonoids (10.93 µg/g fw).
    [Show full text]
  • Evaluation of Cinnamic Acid and Six Analogues Against Eggs and Larvae of ⋆ Haemonchus Contortus T
    Veterinary Parasitology 270 (2019) 25–30 Contents lists available at ScienceDirect Veterinary Parasitology journal homepage: www.elsevier.com/locate/vetpar Research paper Evaluation of cinnamic acid and six analogues against eggs and larvae of ⋆ Haemonchus contortus T Gabriela Mancilla-Montelongoa, Gloria Sarahi Castañeda-Ramírezb, ⁎ Juan Felipe de Jesús Torres-Acostab, Carlos Alfredo Sandoval-Castrob, , Rocío Borges-Argáezc a CONACYT – Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km 15.5 Carretera Mérida-Xmatkuil, CP 97100, Mérida, Yucatán, Mexico b Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km 15.5 Carretera Mérida-Xmatkuil, CP 97100, Mérida, Yucatán, Mexico c Centro de Investigación Científica de Yucatán, Calle 43 No. 130 × 32 Colonia Chuburná de Hidalgo, CP 97205, Mérida, Yucatán, Mexico ARTICLE INFO ABSTRACT Keywords: This study evaluated the in vitro anthelmintic (AH) activity of cinnamic acid and six analogues against eggs and Haemonchus contortus larvae of Haemonchus contortus. Stock solutions of each compound (trans-cinnamic acid, p-coumaric acid, caffeic Nematode acid, trans-ferulic acid, trans-sinapic acid, 3,4-dimethoxycinnamic acid, and chlorogenic acid) were prepared in Egg hatch test PBS:Tween-20 (1%) for use in the egg hatch test (EHT) and larval exsheathment inhibition test (LEIT) at different Larval exsheathment inhibition test concentrations (25–400 μg/mL). The respective effective concentration 50% (EC ) values with 95% confidence Cinnamic acid analogues 50 intervals were estimated. Mixtures made of all cinnamic acid and its analogues as well as some selected in- Chemical standards dividual compounds were also tested in the EHT. Only ferulic and chlorogenic acids showed AH activity in the EHT (EC50: 245.2 μg/mL (1.26 mM) and 520.8 μg/mL (1.47 mM), respectively) (P < 0.05).
    [Show full text]
  • Consumption of Chlorogenic Acids Through Coffee and Health Implications
    beverages Review Consumption of Chlorogenic Acids through Coffee and Health Implications Adriana Farah * and Juliana dePaula Lima Laboratório de Química e Bioatividade de Alimentos e Núcleo de Pesquisa em Café (NUPECAFÉ), Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-21-39386449 Received: 11 December 2018; Accepted: 15 January 2019; Published: 1 February 2019 Abstract: Chlorogenic acids (CGA) are the main antioxidant compounds in the Western diet, due to their high concentrations in coffee associated with the high consumption of the beverage. Until about 10 years ago, like many other phenolic compounds, CGA were thought to be poorly absorbed in the human digestive system. Along the years, large amounts of information on the absorption and metabolism of these compounds have been unveiled, and today, it is known that, on average, about one third of the consumed CGA from coffee is absorbed in the human gastrointestinal tract, although large inter-individual variation exists. Considering results from in vitro animal and human studies, it is possible to conclude that the antioxidant and anti-inflammatory effects of coffee CGA are responsible for, at least to a certain extent, the association between coffee consumption and lower incidence of various degenerative and non-degenerative diseases, in addition to higher longevity. Keywords: chlorogenic acids; coffee beverages; consumption; health effects 1. Introduction Chlorogenic acids (CGA), esters of trans-hydroxycinnamic acids and quinic acid (Figure1), were discovered in 1837 [1]. They were first thought to be caffetannic acid [2], which was in fact a mixture of different acids.
    [Show full text]
  • Chlorogenic Acid and Its Relationship with Lignin Biosynthesis
    UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA Nathalia Volpi e Silva CHLOROGENIC ACID AND ITS RELATIONSHIP WITH LIGNIN BIOSYNTHESIS ÁCIDO CLOROGÊNICO E SUA RELAÇÃO COM A BIOSSÍNTESE DE LIGNINA CAMPINAS - SP 2019 NATHALIA VOLPI E SILVA CHLOROGENIC ACID AND ITS RELATIONSHIP WITH LIGNIN BIOSYNTHESIS ÁCIDO CLOROGÊNICO E SUA RELAÇÃO COM A BIOSSÍNTESE DE LIGNINA Thesis presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of Doctor in Genetic and Molecular Biology in the area of Plant Genetics and Breeding. Tese apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para obtenção do Título de Doutor em Genética e Biologia Molecular, na área de Genética Vegetal e Melhoramento. Supervisor / Orientador: Prof. Dr. Paulo Mazzafera Co-supervisor / Co-Orientador: Prof. Dr. Igor Cesarino ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA TESE DEFENDIDA PELA ALUNA NATHALIA VOLPI E SILVA, ORIENTADA PELO PROF. DR. PAULO MAZZAFERA. CAMPINAS - SP 2019 Agência de fomento: FAPESP Agência de fomento: Capes N° Processo: 2014/17831-5, 2016/15834-2 N° Processo: 001 Nº processo:0 Nº processo:0 Campinas, 31de julho de 2019 EXAMINATION COMMITTEE Banca examinadora Dr. Paulo Mazzafera (Supervisor/Orientador) Dr. Paula Macêdo Nobile Dra. Sara Adrian Lopez de Andrade Dr. Douglas Silva Domingues Dr. Michael dos Santos Brito Os membros da Comissão Examinadora acima assinaram a Ata de Defesa, que se encontra no processo de vida acadêmica do aluno. ACKNOWLEDGMENT I would like to thank the São Paulo Research Foundation (Fundação de Amparo à Pesquisa do Estado de São Paulo) Grant (Processo) nº 2014/17831-5, FAPESP and n° 2016/15834-2, FAPESP for the grant/fellowship and all financial support to develop this thesis.
    [Show full text]
  • Production of Native Plants for Seed, Biomass, and Natural Products A
    Production of native plants for seed, biomass, and natural products A Dissertation SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Katrina Franziska Freund Saxhaug IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Craig C. Sheaffer, advisor March 2020 © Katrina Franziska Freund Saxhaug 2019 Acknowledgements The research presented in this document would not have been possible without the love and support of countless mentors, colleague, friends and family. Foremost, I am forever grateful to my advisor, Dr. Craig Sheaffer, whose direction, support, understanding, and unending generosity made it possible for me to complete my doctorate. I am also eternally thankful for my unofficial co-advisor, Dr. Adrian Hegeman, for his kindness, intellectual brilliance, and support throughout my degree program. I am also incredibly grateful to Dr. Susan Galatowitsch and Dr. Clay Carter for their guidance, wisdom, and constructive and insightful commentaries. Though not on my committee, Dr. Jacob Jungers was incredibly generous with his time, advice, and support in all aspects of this research. While a doctoral student, I was supported by grants from the Minnesota Department of Agriculture through the AGRI Crop Research Grant Program and the Specialty Crop Block Grant Program. Additional support came through the Minnesota Institute for Sustainable Agriculture gift fund, graciously provided by Leanna Forcier. Further support was provided by the University of Minnesota, including the Hueg-Harrison Graduate Fellowship, the Mark and Jean Schroepfer Fellowship, the Nancy Jo Ehlke Fellowship, and Annie’s Sustainable Agriculture Scholarship. The Sustainable Cropping Systems Lab, under the direction of Dr Craig Sheaffer, and the Plant Metabolomics Lab, under the direction of Dr.
    [Show full text]
  • AOAC SMPR® 2017.015 Standard Method Performance Requirements
    AOAC SMPR® 2017.015 Raw materials.—Fresh, dried, or cut plant material. Recovery.—The fraction or percentage of spiked analyte that is recovered when the test sample is analyzed using the entire method. Standard Method Performance Requirements Repeatability.—Variation arising when all efforts are made (SMPRs®) for Determination of Phenolic Compounds in Dietary Supplements and Dietary Ingredients to keep conditions constant by using the same instrument and Containing Echinacea operator and repeating during a short time period. Expressed as the repeatability standard deviation (SDr); or % repeatability relative standard deviation (%RSD ). Intended Use: Quality Assurance and Compliance to r Reproducibility.—The standard deviation or relative standard Current Good Manufacturing Practices (CGMPs) deviation calculated from among-laboratory data. Expressed as 1 Purpose the reproducibility standard deviation (SDR); or % reproducibility AOAC SMPRs describe the minimum recommended relative standard deviation (%RSDR). performance characteristics to be used during the evaluation of a 5 Method Performance Requirements method. The evaluation may be an on-site verification, a single- laboratory validation, or a multi-site collaborative study. SMPRs See Tables 4 and 5. are written and adopted by AOAC stakeholder panels composed of representatives from industry, regulatory organizations, contract 6 System Suitability Tests and/or Analytical Quality Control laboratories, test kit manufacturers, and academic institutions. Suitable methods will include blank check samples, and check AOAC SMPRs are used by AOAC expert review panels in their standards at the lowest point and midrange point of the analytical evaluation of validation study data for method being considered for Performance Tested MethodsSM or AOAC Official Methods of range. A control sample must be included.
    [Show full text]
  • Lamiaceae) from the Monti Sibillini National Park: a Potential Source of Bioactive Compounds
    Journal of Intercultural Ethnopharmacology www.jicep.com Original Research DOI: 10.5455/jice.20170327073801 Reassessment of the polar fraction of Stachys alopecuros (L.) Benth. subsp. divulsa (Ten.) Grande (Lamiaceae) from the Monti Sibillini National Park: A potential source of bioactive compounds Alessandro Venditti1, Claudio Frezza2, Lorenzo M. Lorenzetti1, Filippo Maggi3, Mauro Serafini2, Armandodoriano Bianco1 1Department of ABSTRACT Chemistry, Sapienza Background: The phytochemical analysis of Stachys alopecuros subsp. divulsa, an endemic Italian species, has University of Rome, been recently reported and has showed the presence of 8-O-acetylharpagide (2), harpagide (3), allobetonicoside (4), Rome, Italy, 2Department of Environmental Biology, and 4′-O-galactopyranosyl-teuhircoside (5). In this paper, an in deep study of its glycosidic fraction with the aim to Sapienza University widen the knowledge on its secondary metabolites content is reported. Materials and Methods: Chromatographic of Rome, Rome, Italy, techniques were used for the isolation of constituents while spectroscopic and spectrometric techniques were 3School of Pharmacy, applied for the structures elucidation. Results: Besides the known constituents, all of them reconfirmed, Università di Camerino, ajugoside (1), reptoside (6) and 6-O-acetyl-ajugol (7) were also identified among the iridoids while the phenolic Camerino, Italy components resulted to be chlorogenic acid (8), β-arbutin (9), verbascoside (10), and stachysoside A (11), instead. Conclusion: The iridoid pattern of S. alopecuros subsp. divulsa has been expanded with the identification of not Address for correspondence: Alessandro Venditti, previously reported compounds as well as for the phenolic fraction. Except for the reconfirmed verbascoside (10), Dipartimento di Chimica, the other phenolic compounds were recognized for the first time in the studied species.
    [Show full text]
  • Phenolic Compounds Profile and Antioxidant Capacity of Pitahaya
    foods Article Phenolic Compounds Profile and Antioxidant Capacity of Pitahaya Fruit Peel from Two Red-Skinned Species (Hylocereus polyrhizus and Hylocereus undatus) Wanpei Tang 1,†, Wu Li 1,† , Yuzhe Yang 2, Xue Lin 1,* , Lu Wang 1, Congfa Li 1 and Ruili Yang 2,* 1 Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; [email protected] (W.T.); [email protected] (W.L.); [email protected] (L.W.); [email protected] (C.L.) 2 College of Food Science, South China Agricultural University, Guangzhou 510642, China; [email protected] * Correspondence: [email protected] (X.L.); [email protected] (R.Y.); Tel.: +86-898-6619-8861 (X.L.); +86-20-8528-3448 (R.Y.) † These authors contributed equally to this article. Abstract: Pitahaya peel is a good source of bioactive polyphenols. However, the bound phenolics and their antioxidant activity remain unclear. The bound phenolics of pitahaya peel from two red-skinned species with red pulp (RP) and white pulp (WP) were released with different methods (acid, base, and composite enzymes hydrolysis). The results revealed that base hydrolysis was the most efficient method for releasing the bound phenolics from RP (11.6 mg GAE/g DW) and WP (10.5 mg GAE/g DW), which was 13.04-fold and 8.18-fold for RP and 75.07-fold and 10.94-fold for WP compared with acid hydrolysis and enzymatic hydrolysis, respectively. A total of 37 phenolic compounds were identified by UPLC-TOF/MS with most chlorogenic acid, caffeic acid, ferulic acid and p-coumaric Citation: Tang, W.; Li, W.; Yang, Y.; Lin, X.; Wang, L.; Li, C.; Yang, R.
    [Show full text]