The Desert Sky Observer

Total Page:16

File Type:pdf, Size:1020Kb

The Desert Sky Observer Desert Sky Observer Volume 36 Antelope Valley Astronomy Club Newsletter December 2016 Up-Coming Events December 3: Christmas Party * Monthly meetings are held at the S.A.G.E. Planetarium in Palmdale, the second Friday of each month. The meeting location is at the northeast corner of Avenue R and 20th Street East. Meetings start at 7 p.m. and are open to the public. Please note that food and drink are not allowed in the planetarium President Frank Moore There are strange and mysterious sounds When the winds of winter blow, The long nights are crystal clear and cold, And the fields and meadows are covered with snow. The stars are frosty against the sky, And the wind's whistle is shrill, As the snow blows against the house And drifts against the hill. Yet, I like to see during the winter A white carpet on the ground, To plod aimlessly in the deep snow, where deer tracks abound. I like to feel the stillness Of a crisp winter's night, Watching a full moon rise over the horizon, Exposing a winter wonderland beautiful and bright. Winter Wonderland - Poem by Joseph T. Renaldi Season’s greetings members. This poem by Joseph T. Renaldi has always expressed my feelings towards winter, which is really my favorite time of year. As an amateur astronomer I find it really expresses the dichotomy of how it affects our hobby. On the one hand, “the long nights are crystal clear” which is conducive to wonderful observing, but they’re also COLD. “The stars are frosty against the sky,” but, as all of us in the Antelope Valley and up here in Tehachapi can relate, “the wind’s whistle is shrill.” Thus, while the night sky may be crystal clear, were often forced to take a pause from our observing due to the inclement weather. Such was the case on the weekend of November 26 when I canceled our monthly Dark Sky Star Party when weather shut down all of our regular observing sites. The desert sites were rendered inhospitable by high winds and rain, and the mountain sites were closed due to cold weather and snow. In fact, on the night of what might have been our star party, it was 14 degrees at the Chuchupate 2 Desert Sky Observer observing site and Lockwood Valley Road was closed from Frazier Mountain Park Road to Highway 33. Even if we’d gotten in, we might not have been able to get out till the snow melted. The weekend before that, on Saturday November 19, we had what was among the best viewing conditions I can remember for the Moon Walks at Prime Desert Woodland but it was cold and much of the public, chilled after the walk, left without even stopping at the telescopes. Still, for those that remained, the clear and moonless night made for some a real treat and exceptional views. Members with telescopes included Darrell Bennett, Rod and Donna Girard, Tom Hames and Rose and Frank Moore. On Saturday December 3 we had our annual Christmas Party at Domingo’s Mexican Restaurant in Lancaster. As I mentioned in a separate email, “It was crowded, it was hectic, it was a bit loud but I can’t remember having a better time at our annual holiday gathering.” Our apologies that the seating got a little tight and that the venue ran out of their ever popular “Fried Ice Cream”. We had 47 members at the party which is the most we have ever had since Rose and I began serving on the board. I think the cost to members and to the club, which was less than half of what we spent at prior venues, put the event within the reach of more members and contributed to the great turnout. Each time we try a new venue, we learn about details to which we will have to pay attention if we use that venue again and this was no exception. As is our custom, Rose distributed certificates for participation in various outreach events and we announced the recipients of our annual Keith Lawson and Holland Fountain awards. The Holland Fountain Award, which is awarded for “Infectious enthusiasm in astronomy and related sciences”, was awarded to Ellen Mahler. As I noted at the banquet, Ellen is always anxious to go to any event to which she can arrange a ride. This includes both public outreach events and star parties. She’s always well prepared, in fact certainly more prepared than me, with her planned observing list and information about the objects she hopes to find. Because she does not drive, Ellen has to go to the extra effort of arranging transportation and my thanks go out to those who help her in that regard. Congratulations Ellen and THANK YOU. This year the Keith Lawson Award, which is awarded, “In recognition of outstanding contributions to the Antelope Valley Astronomy Club and the exceptional pursuit of amateur astronomical knowledge”, was awarded to Tom Hames. Tom’s contributions to the club over the last few years have taken many forms. As the owner of High Desert Telescopes, he is constantly promoting the club to customers who come into the store in search of astronomy equipment and information. Tom comes to most of our public outreach events and often brings a telescope, for public viewing, to our monthly meetings at the SAGE Planetarium. Tom has been a speaker at our meetings, has assisted Jeremy Amarant with astronomy related education for youth including lessons in his “space art”, and has offered the same for AVAC members at several meetings. Some of Tom’s work can be seen on his Instruments of Light website. With a long history with the Antelope Valley Astronomy Club, and with astronomy related organizations in southern California, Tom is a veritable treasure trove of astronomical knowledge and especially on the history and development of amateur equipment. Finally, Tom has been more than generous in providing telescopes and other equipment for door prizes and raffles at our events. Congratulations Tom and THANK YOU. As the new year approaches, the board will be looking at the dates of various regional astronomy related events, dates for our own Dark Sky Star Parties, and for our own local outreach and readying our calendar for 2017. May you all have a blessed Christmas and a Happy New Year. www.avastronomyclub.org 3 Desert Sky Observer Secretary Rose Moore Thank you to all the members and their guests that attended the Christmas Party on Dec. 3rd. We had 47 attendees at the party, the largest group that I'm aware of at this time. When we were looking at different venues for the party, we certainly didn't think we would have this many attend! Thank you to all that donated prizes! Special thanks to those that helped out, and a special big thank you to Rod Girard, our new Treasurer, for handling the raffle tickets, auction sheets, and cash during the party! He has now been initiated as our new Treasurer! We were especially thankful to have several members attending who have been ill recently. Don Bryden will be leaving the area to join his family in South Carolina at the end of the month. He is leaving his job as an air traffic controller in just a few weeks and beginning retirement! Don has been the past AVAC president, and a huge asset to the club. His knowledge of astronomy, his expertise, and telescope making skills, will be very missed by the members. We will miss him at our club's star parties and public outreach! Good luck Don, and keep in touch! Our trip to SOFIA will be on Friday, Feb. 3rd. Right now our list is full, but if you would like to go on a standby list, please let me know. I need to know if you are a US citizen or a Resident Alien. **I need your driver's license number if you have not given it to me! I will be contacting those within the next 2 weeks that have not sent me the complete information. I must have your full name as it appears on your driver's license: first name, middle name, last name. They will not accept middle initials or nicknames. Guys, if married, your wife's name as it appears on the license is what they need. If she still uses her maiden name as her legal name, that is what they want. Another email with other trip information will be coming in a week or two. We do not know where we are meeting at this time. I would like to thank all those that have come out this year to participate in AVAC events and our meetings! We need your support! Questions, suggestions, comments? Please email me! Merry Christmas and Happy New Year! Happy Holidays! Space Place Dimming stars, erupting plasma, and beautiful nebulae By Marcus Woo Boasting intricate patterns and translucent colors, planetary nebulae are among the most beautiful sights in the universe. How they got their shapes is complicated, but astronomers think they've solved part of the mystery—with giant blobs of plasma shooting through space at half a million miles per hour. Planetary nebulae are shells of gas and dust blown off from a dying, giant star. Most nebulae aren't spherical, but can have multiple lobes extending from opposite sides—possibly generated by powerful jets erupting from the star. Using the Hubble Space Telescope, astronomers discovered blobs of plasma that could form some of these lobes.
Recommended publications
  • Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions
    The Astrophysical Journal, 744:130 (24pp), 2012 January 10 doi:10.1088/0004-637X/744/2/130 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. WIDE-FIELD INFRARED SURVEY EXPLORER OBSERVATIONS OF THE EVOLUTION OF MASSIVE STAR-FORMING REGIONS X. P. Koenig1,4,D.T.Leisawitz1, D. J. Benford1, L. M. Rebull2, D. L. Padgett1, and R. J. Assef3,4 1 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 2 Spitzer Science Center (SSC), California Institute of Technology, M/S 220-6, 1200 East California Boulevard, Pasadena, CA 91125, USA 3 Jet Propulsion Laboratory, MS 169-530, 4800 Oak Grove Drive, Pasadena, CA 91109, USA Received 2011 July 8; accepted 2011 October 18; published 2011 December 22 ABSTRACT We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the “fireworks hypothesis” since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions.
    [Show full text]
  • Ghost Hunt Challenge 2020
    Virtual Ghost Hunt Challenge 10/21 /2020 (Sorry we can meet in person this year or give out awards but try doing this challenge on your own.) Participant’s Name _________________________ Categories for the competition: Manual Telescope Electronically Aided Telescope Binocular Astrophotography (best photo) (if you expect to compete in more than one category please fill-out a sheet for each) ** There are four objects on this list that may be beyond the reach of beginning astronomers or basic telescopes. Therefore, we have marked these objects with an * and provided alternate replacements for you just below the designated entry. We will use the primary objects to break a tie if that’s needed. Page 1 TAS Ghost Hunt Challenge - Page 2 Time # Designation Type Con. RA Dec. Mag. Size Common Name Observed Facing West – 7:30 8:30 p.m. 1 M17 EN Sgr 18h21’ -16˚11’ 6.0 40’x30’ Omega Nebula 2 M16 EN Ser 18h19’ -13˚47 6.0 17’ by 14’ Ghost Puppet Nebula 3 M10 GC Oph 16h58’ -04˚08’ 6.6 20’ 4 M12 GC Oph 16h48’ -01˚59’ 6.7 16’ 5 M51 Gal CVn 13h30’ 47h05’’ 8.0 13.8’x11.8’ Whirlpool Facing West - 8:30 – 9:00 p.m. 6 M101 GAL UMa 14h03’ 54˚15’ 7.9 24x22.9’ 7 NGC 6572 PN Oph 18h12’ 06˚51’ 7.3 16”x13” Emerald Eye 8 NGC 6426 GC Oph 17h46’ 03˚10’ 11.0 4.2’ 9 NGC 6633 OC Oph 18h28’ 06˚31’ 4.6 20’ Tweedledum 10 IC 4756 OC Ser 18h40’ 05˚28” 4.6 39’ Tweedledee 11 M26 OC Sct 18h46’ -09˚22’ 8.0 7.0’ 12 NGC 6712 GC Sct 18h54’ -08˚41’ 8.1 9.8’ 13 M13 GC Her 16h42’ 36˚25’ 5.8 20’ Great Hercules Cluster 14 NGC 6709 OC Aql 18h52’ 10˚21’ 6.7 14’ Flying Unicorn 15 M71 GC Sge 19h55’ 18˚50’ 8.2 7’ 16 M27 PN Vul 20h00’ 22˚43’ 7.3 8’x6’ Dumbbell Nebula 17 M56 GC Lyr 19h17’ 30˚13 8.3 9’ 18 M57 PN Lyr 18h54’ 33˚03’ 8.8 1.4’x1.1’ Ring Nebula 19 M92 GC Her 17h18’ 43˚07’ 6.44 14’ 20 M72 GC Aqr 20h54’ -12˚32’ 9.2 6’ Facing West - 9 – 10 p.m.
    [Show full text]
  • Astronomy Magazine Special Issue
    γ ι ζ γ δ α κ β κ ε γ β ρ ε ζ υ α φ ψ ω χ α π χ φ γ ω ο ι δ κ α ξ υ λ τ μ β α σ θ ε β σ δ γ ψ λ ω σ η ν θ Aι must-have for all stargazers η δ μ NEW EDITION! ζ λ β ε η κ NGC 6664 NGC 6539 ε τ μ NGC 6712 α υ δ ζ M26 ν NGC 6649 ψ Struve 2325 ζ ξ ATLAS χ α NGC 6604 ξ ο ν ν SCUTUM M16 of the γ SERP β NGC 6605 γ V450 ξ η υ η NGC 6645 M17 φ θ M18 ζ ρ ρ1 π Barnard 92 ο χ σ M25 M24 STARS M23 ν β κ All-in-one introduction ALL NEW MAPS WITH: to the night sky 42,000 more stars (87,000 plotted down to magnitude 8.5) AND 150+ more deep-sky objects (more than 1,200 total) The Eagle Nebula (M16) combines a dark nebula and a star cluster. In 100+ this intense region of star formation, “pillars” form at the boundaries spectacular between hot and cold gas. You’ll find this object on Map 14, a celestial portion of which lies above. photos PLUS: How to observe star clusters, nebulae, and galaxies AS2-CV0610.indd 1 6/10/10 4:17 PM NEW EDITION! AtlAs Tour the night sky of the The staff of Astronomy magazine decided to This atlas presents produce its first star atlas in 2006.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Balog 2016 Apj 832 87.Pdf
    PROTOPLANETARY AND TRANSITIONAL DISKS IN THE OPEN STELLAR CLUSTER IC 2395 Item Type Article Authors Balog, Zoltan; Siegler, Nick; Rieke, George H.; Kiss, L. L.; Muzerolle, James; Gutermuth, Robert A.; Bell, Cameron P. M.; Vinkó, J.; Su, Kate Y. L.; Young, E. T.; Gáspár, András Citation PROTOPLANETARY AND TRANSITIONAL DISKS IN THE OPEN STELLAR CLUSTER IC 2395 2016, 832 (1):87 The Astrophysical Journal DOI 10.3847/0004-637X/832/1/87 Publisher IOP PUBLISHING LTD Journal The Astrophysical Journal Rights © 2016. The American Astronomical Society. All rights reserved. Download date 29/09/2021 21:43:54 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/622451 The Astrophysical Journal, 832:87 (17pp), 2016 November 20 doi:10.3847/0004-637X/832/1/87 © 2016. The American Astronomical Society. All rights reserved. PROTOPLANETARY AND TRANSITIONAL DISKS IN THE OPEN STELLAR CLUSTER IC 2395 Zoltan Balog1, Nick Siegler2, G. H. Rieke3, L. L. Kiss4, James Muzerolle5, R. A. Gutermuth6, Cameron P. M. Bell7, J. VinkÓ8,K.Y.L.Su3, E. T. Young9, and András Gáspár3 1 Max Planck Institute for Astronomy, Heidelberg, D-69117, Germany; [email protected] 2 NASA Exoplanet Exploration Program, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA 3 Steward Observatory, 933 N. Cherry Ave, University of Arizona, Tucson, AZ 85721, USA 4 Konkoly Observatory, Research Center for Astronomy and Earth Sciences, P.O. Box 67, H-1525 Budapest, Hungary 5 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 6 Department of Astronomy, University of Massachusetts, Amherst, MA, USA 7 Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093, Zürich, Switzerland 8 Dept.
    [Show full text]
  • 2014 Observers Challenge List
    2014 TMSP Observer's Challenge Atlas page #s # Object Object Type Common Name RA, DEC Const Mag Mag.2 Size Sep. U2000 PSA 18h31m25s 1 IC 1287 Bright Nebula Scutum 20'.0 295 67 -10°47'45" 18h31m25s SAO 161569 Double Star 5.77 9.31 12.3” -10°47'45" Near center of IC 1287 18h33m28s NGC 6649 Open Cluster 8.9m Integrated 5' -10°24'10" Can be seen in 3/4d FOV with above. Brightest star is 13.2m. Approx 50 stars visible in Binos 18h28m 2 NGC 6633 Open Cluster Ophiuchus 4.6m integrated 27' 205 65 Visible in Binos and is about the size of a full Moon, brightest star is 7.6m +06°34' 17h46m18s 2x diameter of a full Moon. Try to view this cluster with your naked eye, binos, and a small scope. 3 IC 4665 Open Cluster Ophiuchus 4.2m Integrated 60' 203 65 +05º 43' Also check out “Tweedle-dee and Tweedle-dum to the east (IC 4756 and NGC 6633) A loose open cluster with a faint concentration of stars in a rich field, contains about 15-20 stars. 19h53m27s Brightest star is 9.8m, 5 stars 9-11m, remainder about 12-13m. This is a challenge obJect to 4 Harvard 20 Open Cluster Sagitta 7.7m integrated 6' 162 64 +18°19'12" improve your observation skills. Can you locate the miniature coathanger close by at 19h 37m 27s +19d? Constellation star Corona 5 Corona Borealis 55 Trace the 7 stars making up this constellation, observe and list the colors of each star asterism Borealis 15H 32' 55” Theta Corona Borealis Double Star 4.2m 6.6m .97” 55 Theta requires about 200x +31° 21' 32” The direction our Sun travels in our galaxy.
    [Show full text]
  • Arxiv:Astro-Ph/9906240V1 14 Jun 1999 Nteeouinr Ttso Estars Be Fabregat Juan of Status Evolutionary the on Orsodneto De- Correspondence to Is Issue Main the Question
    A&A manuscript no. ASTRONOMY (will be inserted by hand later) AND Your thesaurus codes are: 05 (08.05.2; 08.05.3; 10.15.1) ASTROPHYSICS On the evolutionary status of Be stars Juan Fabregat1 and J. Miguel Torrej´on2 1 Departamento de Astronom´ıa, Universidad de Valencia, 46100 Burjassot, Valencia, Spain 2 Departamento de F´ısica, Ingenier´ıa de Sistemas y Teor´ıa de la Se˜nal, Universidad de Alicante, Spain Received date; accepted date Abstract. We present a study of the abundance of Be termine whether the Be phenomenon appears at a given stars in open clusters as a function of the cluster age, us- stage in the evolutionary track of every B star, or it orig- ing whenever possible ages determined through Str¨omgren inates in the conditions of formation of some stars, which uvby photometry. For the first time in studies of this kind include fast rotation and probably other facts. A funda- we have considered separately classical and Herbig Be mental element in this discussion is the study of Be stars stars. in open clusters, in two different ways: i./ the determina- The main results can be summarized as follows: tion of the Be star positions in the cluster photometric diagrams; and, ii./ the study of the abundance of Be stars – Clusters associated to emitting nebulosities and un- as a function of the cluster age. dergoing stellar formation are rich in emission line ob- It is well known that Be stars usually occupy anoma- jects, which most likely are all pre main-sequence stars.
    [Show full text]
  • SAC's 110 Best of the NGC
    SAC's 110 Best of the NGC by Paul Dickson Version: 1.4 | March 26, 1997 Copyright °c 1996, by Paul Dickson. All rights reserved If you purchased this book from Paul Dickson directly, please ignore this form. I already have most of this information. Why Should You Register This Book? Please register your copy of this book. I have done two book, SAC's 110 Best of the NGC and the Messier Logbook. In the works for late 1997 is a four volume set for the Herschel 400. q I am a beginner and I bought this book to get start with deep-sky observing. q I am an intermediate observer. I bought this book to observe these objects again. q I am an advance observer. I bought this book to add to my collect and/or re-observe these objects again. The book I'm registering is: q SAC's 110 Best of the NGC q Messier Logbook q I would like to purchase a copy of Herschel 400 book when it becomes available. Club Name: __________________________________________ Your Name: __________________________________________ Address: ____________________________________________ City: __________________ State: ____ Zip Code: _________ Mail this to: or E-mail it to: Paul Dickson 7714 N 36th Ave [email protected] Phoenix, AZ 85051-6401 After Observing the Messier Catalog, Try this Observing List: SAC's 110 Best of the NGC [email protected] http://www.seds.org/pub/info/newsletters/sacnews/html/sac.110.best.ngc.html SAC's 110 Best of the NGC is an observing list of some of the best objects after those in the Messier Catalog.
    [Show full text]
  • Star Formation Associated with H II Regions
    Bull. Astr. Soc. India (2006) 34, 111{117 Star formation associated with H II regions Katsuo Ogura¤ Kokugakuin University, Higashi, Shibuya-ku, Tokyo 150-8440, Japan Abstract. Star formation associated with H II regions is briefly reviewed. Special emphasis is laid on our series of observational studies on bright-rimmed clouds (BRCs), in which we found a phenomenon called \small-scale sequential star formation." In addition a new hypothesis is advocated on the two modes of star formation associated with H II regions, i.e., the cluster and dispersed modes. The former gives birth to a rich cluster and in the associated H II region BRCs are formed only at a later stage of its evolution in the peripheries. In the latter mode no clusters or only loose ones are formed, but BRCs can appear at earlier stages in inner part of the H II region. Presumably these modes depend on the initial density distribution of the natal molecular cloud. Keywords : H II regions { ISM: globules { stars: formation { OB associations 1. Introduction { Bright-rimmed clouds Bright-rimmed clouds (BRCs), or cometary globules, are small molecular clouds found in and around H II regions (H IIRs) and surrounded often on three sides by ionized gas. They are a sort of remnants of star formation activity associated with H IIRs, because they correspond to relatively dense clumps in the giant molecular cloud left unionized in the course of the expansion of the H IIR. But, at the same time, they are current sites of star formation. Theoretically, triggered star formation caused by the compression of the gas due to shock is expected to take place in such a con¯guration of the ionization front.
    [Show full text]
  • Atlas Menor Was Objects to Slowly Change Over Time
    C h a r t Atlas Charts s O b by j Objects e c t Constellation s Objects by Number 64 Objects by Type 71 Objects by Name 76 Messier Objects 78 Caldwell Objects 81 Orion & Stars by Name 84 Lepus, circa , Brightest Stars 86 1720 , Closest Stars 87 Mythology 88 Bimonthly Sky Charts 92 Meteor Showers 105 Sun, Moon and Planets 106 Observing Considerations 113 Expanded Glossary 115 Th e 88 Constellations, plus 126 Chart Reference BACK PAGE Introduction he night sky was charted by western civilization a few thou - N 1,370 deep sky objects and 360 double stars (two stars—one sands years ago to bring order to the random splatter of stars, often orbits the other) plotted with observing information for T and in the hopes, as a piece of the puzzle, to help “understand” every object. the forces of nature. The stars and their constellations were imbued with N Inclusion of many “famous” celestial objects, even though the beliefs of those times, which have become mythology. they are beyond the reach of a 6 to 8-inch diameter telescope. The oldest known celestial atlas is in the book, Almagest , by N Expanded glossary to define and/or explain terms and Claudius Ptolemy, a Greco-Egyptian with Roman citizenship who lived concepts. in Alexandria from 90 to 160 AD. The Almagest is the earliest surviving astronomical treatise—a 600-page tome. The star charts are in tabular N Black stars on a white background, a preferred format for star form, by constellation, and the locations of the stars are described by charts.
    [Show full text]
  • The Desert Sky Observer
    Desert Sky Observer Volume 35 Antelope Valley Astronomy Club Newsletter February 2015 Up-Coming Events February 7: Prime Desert Moon Walk February 13: Club Meeting* February 21: Dark Sky Star Party @ TBA * Monthly meetings are held at the S.A.G.E. Planetarium on the Cactus School campus in Palmdale, the second Friday of each month. The meeting location is at the northeast corner of Avenue R and 20th Street East. Meetings start at 7 p.m. and are open to the public. Please note that food and drink are not allowed in the planetarium President Frank Moore Headline January 26, 2015. Giant asteroid makes close pass of earth. Visible to amateur astronomers with modest sized telescopes. Clouds move in to cover the view in Southern California….of course. President of Antelope Valley Astronomy Club fields questions from people asking if the asteroid is causing the “historic blizzard” on the East Coast. President says, in a word, “NO!!” though many callers are still skeptical. There you have it fellow AVAC members, today’s current events in a nutshell. In other recent news of astronomical interest, on January 23 we had three moons of Jupiter transit across the face of the giant planet. Weather permitting, this should have been visible to amateur astronomers with mid-sized telescopes. I set up our C-11 in the afternoon and got ready for what, we expected, would be a great night of observing not just Jupiter, but also other celestial wonders. Once it got dark enough I did a polar alignment, a three star alignment, and threw in a few calibration stars to boot.
    [Show full text]
  • Embedded Star Clusters As Sources of High-Energy Cosmic Rays: Modelling and Constraints
    Astronomy & Astrophysics manuscript no. ESC c ESO 2018 October 16, 2018 Embedded star clusters as sources of high-energy cosmic rays Modelling and constraints G. Maurin1, A. Marcowith2, N. Komin3, F. Krayzel1, and G. Lamanna1 1Laboratoire d’Annecy-le-Vieux de Physique des Particules, Université Savoie Mont-Blanc, CNRS/IN2P3, F-74941 Annecy-le- Vieux, France 2Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS/IN2P3, CC 72, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France 3School of Physics, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, 2050 South Africa Received DAY MONTH 2016; accepted DAY MONTH 2016 ABSTRACT Context. Massive stars are mainly found in stellar associations. These massive star clusters occur in the heart of giant molecular clouds. The strong stellar wind activity in these objects generates large bubbles and induces collective effects that could accelerate particles up to high energy and produce γ-rays. The best way to input an acceleration origin to the stellar wind interaction in massive stellar cluster is to observe young massive star clusters in which no supernova explosion has occurred yet. Aims. This work aims to constrain the part of stellar wind mechanical energy that is converted into energetic particles using the sensitivity of the ongoing Fermi-LAT instrument. This work further provides detailed predictions of expected γ-ray fluxes in the view of the on-set of the next generation of imaging atmospheric Cherenkov telescopes. Methods. A one-zone model where energetic particles are accelerated by repeated interactions with strong supersonic shocks occur- ring in massive star clusters was developed.
    [Show full text]