Understanding the Forecast Statistics and Four Moments ROV Technical Papers Series: Volume 3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Use of Proc Iml to Calculate L-Moments for the Univariate Distributional Shape Parameters Skewness and Kurtosis
Statistics 573 USE OF PROC IML TO CALCULATE L-MOMENTS FOR THE UNIVARIATE DISTRIBUTIONAL SHAPE PARAMETERS SKEWNESS AND KURTOSIS Michael A. Walega Berlex Laboratories, Wayne, New Jersey Introduction Exploratory data analysis statistics, such as those Gaussian. Bickel (1988) and Van Oer Laan and generated by the sp,ge procedure PROC Verdooren (1987) discuss the concept of robustness UNIVARIATE (1990), are useful tools to characterize and how it pertains to the assumption of normality. the underlying distribution of data prior to more rigorous statistical analyses. Assessment of the As discussed by Glass et al. (1972), incorrect distributional shape of data is usually accomplished conclusions may be reached when the normality by careful examination of the values of the third and assumption is not valid, especially when one-tail tests fourth central moments, skewness and kurtosis. are employed or the sample size or significance level However, when the sample size is small or the are very small. Hopkins and Weeks (1990) also underlying distribution is non-normal, the information discuss the effects of highly non-normal data on obtained from the sample skewness and kurtosis can hypothesis testing of variances. Thus, it is apparent be misleading. that examination of the skewness (departure from symmetry) and kurtosis (deviation from a normal One alternative to the central moment shape statistics curve) is an important component of exploratory data is the use of linear combinations of order statistics (L analyses. moments) to examine the distributional shape characteristics of data. L-moments have several Various methods to estimate skewness and kurtosis theoretical advantages over the central moment have been proposed (MacGillivray and Salanela, shape statistics: Characterization of a wider range of 1988). -
A Skew Extension of the T-Distribution, with Applications
J. R. Statist. Soc. B (2003) 65, Part 1, pp. 159–174 A skew extension of the t-distribution, with applications M. C. Jones The Open University, Milton Keynes, UK and M. J. Faddy University of Birmingham, UK [Received March 2000. Final revision July 2002] Summary. A tractable skew t-distribution on the real line is proposed.This includes as a special case the symmetric t-distribution, and otherwise provides skew extensions thereof.The distribu- tion is potentially useful both for modelling data and in robustness studies. Properties of the new distribution are presented. Likelihood inference for the parameters of this skew t-distribution is developed. Application is made to two data modelling examples. Keywords: Beta distribution; Likelihood inference; Robustness; Skewness; Student’s t-distribution 1. Introduction Student’s t-distribution occurs frequently in statistics. Its usual derivation and use is as the sam- pling distribution of certain test statistics under normality, but increasingly the t-distribution is being used in both frequentist and Bayesian statistics as a heavy-tailed alternative to the nor- mal distribution when robustness to possible outliers is a concern. See Lange et al. (1989) and Gelman et al. (1995) and references therein. It will often be useful to consider a further alternative to the normal or t-distribution which is both heavy tailed and skew. To this end, we propose a family of distributions which includes the symmetric t-distributions as special cases, and also includes extensions of the t-distribution, still taking values on the whole real line, with non-zero skewness. Let a>0 and b>0be parameters. -
On Moments of Folded and Truncated Multivariate Normal Distributions
On Moments of Folded and Truncated Multivariate Normal Distributions Raymond Kan Rotman School of Management, University of Toronto 105 St. George Street, Toronto, Ontario M5S 3E6, Canada (E-mail: [email protected]) and Cesare Robotti Terry College of Business, University of Georgia 310 Herty Drive, Athens, Georgia 30602, USA (E-mail: [email protected]) April 3, 2017 Abstract Recurrence relations for integrals that involve the density of multivariate normal distributions are developed. These recursions allow fast computation of the moments of folded and truncated multivariate normal distributions. Besides being numerically efficient, the proposed recursions also allow us to obtain explicit expressions of low order moments of folded and truncated multivariate normal distributions. Keywords: Multivariate normal distribution; Folded normal distribution; Truncated normal distribution. 1 Introduction T Suppose X = (X1;:::;Xn) follows a multivariate normal distribution with mean µ and k kn positive definite covariance matrix Σ. We are interested in computing E(jX1j 1 · · · jXnj ) k1 kn and E(X1 ··· Xn j ai < Xi < bi; i = 1; : : : ; n) for nonnegative integer values ki = 0; 1; 2;:::. The first expression is the moment of a folded multivariate normal distribution T jXj = (jX1j;:::; jXnj) . The second expression is the moment of a truncated multivariate normal distribution, with Xi truncated at the lower limit ai and upper limit bi. In the second expression, some of the ai's can be −∞ and some of the bi's can be 1. When all the bi's are 1, the distribution is called the lower truncated multivariate normal, and when all the ai's are −∞, the distribution is called the upper truncated multivariate normal. -
A Study of Non-Central Skew T Distributions and Their Applications in Data Analysis and Change Point Detection
A STUDY OF NON-CENTRAL SKEW T DISTRIBUTIONS AND THEIR APPLICATIONS IN DATA ANALYSIS AND CHANGE POINT DETECTION Abeer M. Hasan A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2013 Committee: Arjun K. Gupta, Co-advisor Wei Ning, Advisor Mark Earley, Graduate Faculty Representative Junfeng Shang. Copyright c August 2013 Abeer M. Hasan All rights reserved iii ABSTRACT Arjun K. Gupta, Co-advisor Wei Ning, Advisor Over the past three decades there has been a growing interest in searching for distribution families that are suitable to analyze skewed data with excess kurtosis. The search started by numerous papers on the skew normal distribution. Multivariate t distributions started to catch attention shortly after the development of the multivariate skew normal distribution. Many researchers proposed alternative methods to generalize the univariate t distribution to the multivariate case. Recently, skew t distribution started to become popular in research. Skew t distributions provide more flexibility and better ability to accommodate long-tailed data than skew normal distributions. In this dissertation, a new non-central skew t distribution is studied and its theoretical properties are explored. Applications of the proposed non-central skew t distribution in data analysis and model comparisons are studied. An extension of our distribution to the multivariate case is presented and properties of the multivariate non-central skew t distri- bution are discussed. We also discuss the distribution of quadratic forms of the non-central skew t distribution. In the last chapter, the change point problem of the non-central skew t distribution is discussed under different settings. -
The Normal Moment Generating Function
MSc. Econ: MATHEMATICAL STATISTICS, 1996 The Moment Generating Function of the Normal Distribution Recall that the probability density function of a normally distributed random variable x with a mean of E(x)=and a variance of V (x)=2 is 2 1 1 (x)2/2 (1) N(x; , )=p e 2 . (22) Our object is to nd the moment generating function which corresponds to this distribution. To begin, let us consider the case where = 0 and 2 =1. Then we have a standard normal, denoted by N(z;0,1), and the corresponding moment generating function is dened by Z zt zt 1 1 z2 Mz(t)=E(e )= e √ e 2 dz (2) 2 1 t2 = e 2 . To demonstate this result, the exponential terms may be gathered and rear- ranged to give exp zt exp 1 z2 = exp 1 z2 + zt (3) 2 2 1 2 1 2 = exp 2 (z t) exp 2 t . Then Z 1t2 1 1(zt)2 Mz(t)=e2 √ e 2 dz (4) 2 1 t2 = e 2 , where the nal equality follows from the fact that the expression under the integral is the N(z; = t, 2 = 1) probability density function which integrates to unity. Now consider the moment generating function of the Normal N(x; , 2) distribution when and 2 have arbitrary values. This is given by Z xt xt 1 1 (x)2/2 (5) Mx(t)=E(e )= e p e 2 dx (22) Dene x (6) z = , which implies x = z + . 1 MSc. Econ: MATHEMATICAL STATISTICS: BRIEF NOTES, 1996 Then, using the change-of-variable technique, we get Z 1 1 2 dx t zt p 2 z Mx(t)=e e e dz 2 dz Z (2 ) (7) t zt 1 1 z2 = e e √ e 2 dz 2 t 1 2t2 = e e 2 , Here, to establish the rst equality, we have used dx/dz = . -
A Family of Skew-Normal Distributions for Modeling Proportions and Rates with Zeros/Ones Excess
S S symmetry Article A Family of Skew-Normal Distributions for Modeling Proportions and Rates with Zeros/Ones Excess Guillermo Martínez-Flórez 1, Víctor Leiva 2,* , Emilio Gómez-Déniz 3 and Carolina Marchant 4 1 Departamento de Matemáticas y Estadística, Facultad de Ciencias Básicas, Universidad de Córdoba, Montería 14014, Colombia; [email protected] 2 Escuela de Ingeniería Industrial, Pontificia Universidad Católica de Valparaíso, 2362807 Valparaíso, Chile 3 Facultad de Economía, Empresa y Turismo, Universidad de Las Palmas de Gran Canaria and TIDES Institute, 35001 Canarias, Spain; [email protected] 4 Facultad de Ciencias Básicas, Universidad Católica del Maule, 3466706 Talca, Chile; [email protected] * Correspondence: [email protected] or [email protected] Received: 30 June 2020; Accepted: 19 August 2020; Published: 1 September 2020 Abstract: In this paper, we consider skew-normal distributions for constructing new a distribution which allows us to model proportions and rates with zero/one inflation as an alternative to the inflated beta distributions. The new distribution is a mixture between a Bernoulli distribution for explaining the zero/one excess and a censored skew-normal distribution for the continuous variable. The maximum likelihood method is used for parameter estimation. Observed and expected Fisher information matrices are derived to conduct likelihood-based inference in this new type skew-normal distribution. Given the flexibility of the new distributions, we are able to show, in real data scenarios, the good performance of our proposal. Keywords: beta distribution; centered skew-normal distribution; maximum-likelihood methods; Monte Carlo simulations; proportions; R software; rates; zero/one inflated data 1. -
Volatility Modeling Using the Student's T Distribution
Volatility Modeling Using the Student’s t Distribution Maria S. Heracleous Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Economics Aris Spanos, Chair Richard Ashley Raman Kumar Anya McGuirk Dennis Yang August 29, 2003 Blacksburg, Virginia Keywords: Student’s t Distribution, Multivariate GARCH, VAR, Exchange Rates Copyright 2003, Maria S. Heracleous Volatility Modeling Using the Student’s t Distribution Maria S. Heracleous (ABSTRACT) Over the last twenty years or so the Dynamic Volatility literature has produced a wealth of uni- variateandmultivariateGARCHtypemodels.Whiletheunivariatemodelshavebeenrelatively successful in empirical studies, they suffer from a number of weaknesses, such as unverifiable param- eter restrictions, existence of moment conditions and the retention of Normality. These problems are naturally more acute in the multivariate GARCH type models, which in addition have the problem of overparameterization. This dissertation uses the Student’s t distribution and follows the Probabilistic Reduction (PR) methodology to modify and extend the univariate and multivariate volatility models viewed as alternative to the GARCH models. Its most important advantage is that it gives rise to internally consistent statistical models that do not require ad hoc parameter restrictions unlike the GARCH formulations. Chapters 1 and 2 provide an overview of my dissertation and recent developments in the volatil- ity literature. In Chapter 3 we provide an empirical illustration of the PR approach for modeling univariate volatility. Estimation results suggest that the Student’s t AR model is a parsimonious and statistically adequate representation of exchange rate returns and Dow Jones returns data. -
The Multivariate Normal Distribution=1See Last Slide For
Moment-generating Functions Definition Properties χ2 and t distributions The Multivariate Normal Distribution1 STA 302 Fall 2017 1See last slide for copyright information. 1 / 40 Moment-generating Functions Definition Properties χ2 and t distributions Overview 1 Moment-generating Functions 2 Definition 3 Properties 4 χ2 and t distributions 2 / 40 Moment-generating Functions Definition Properties χ2 and t distributions Joint moment-generating function Of a p-dimensional random vector x t0x Mx(t) = E e x t +x t +x t For example, M (t1; t2; t3) = E e 1 1 2 2 3 3 (x1;x2;x3) Just write M(t) if there is no ambiguity. Section 4.3 of Linear models in statistics has some material on moment-generating functions (optional). 3 / 40 Moment-generating Functions Definition Properties χ2 and t distributions Uniqueness Proof omitted Joint moment-generating functions correspond uniquely to joint probability distributions. M(t) is a function of F (x). Step One: f(x) = @ ··· @ F (x). @x1 @xp @ @ R x2 R x1 For example, f(y1; y2) dy1dy2 @x1 @x2 −∞ −∞ 0 Step Two: M(t) = R ··· R et xf(x) dx Could write M(t) = g (F (x)). Uniqueness says the function g is one-to-one, so that F (x) = g−1 (M(t)). 4 / 40 Moment-generating Functions Definition Properties χ2 and t distributions g−1 (M(t)) = F (x) A two-variable example g−1 (M(t)) = F (x) −1 R 1 R 1 x1t1+x2t2 R x2 R x1 g −∞ −∞ e f(x1; x2) dx1dx2 = −∞ −∞ f(y1; y2) dy1dy2 5 / 40 Moment-generating Functions Definition Properties χ2 and t distributions Theorem Two random vectors x1 and x2 are independent if and only if the moment-generating function of their joint distribution is the product of their moment-generating functions. -
Approximating the Distribution of the Product of Two Normally Distributed Random Variables
S S symmetry Article Approximating the Distribution of the Product of Two Normally Distributed Random Variables Antonio Seijas-Macías 1,2 , Amílcar Oliveira 2,3 , Teresa A. Oliveira 2,3 and Víctor Leiva 4,* 1 Departamento de Economía, Universidade da Coruña, 15071 A Coruña, Spain; [email protected] 2 CEAUL, Faculdade de Ciências, Universidade de Lisboa, 1649-014 Lisboa, Portugal; [email protected] (A.O.); [email protected] (T.A.O.) 3 Departamento de Ciências e Tecnologia, Universidade Aberta, 1269-001 Lisboa, Portugal 4 Escuela de Ingeniería Industrial, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile * Correspondence: [email protected] or [email protected] Received: 21 June 2020; Accepted: 18 July 2020; Published: 22 July 2020 Abstract: The distribution of the product of two normally distributed random variables has been an open problem from the early years in the XXth century. First approaches tried to determinate the mathematical and statistical properties of the distribution of such a product using different types of functions. Recently, an improvement in computational techniques has performed new approaches for calculating related integrals by using numerical integration. Another approach is to adopt any other distribution to approximate the probability density function of this product. The skew-normal distribution is a generalization of the normal distribution which considers skewness making it flexible. In this work, we approximate the distribution of the product of two normally distributed random variables using a type of skew-normal distribution. The influence of the parameters of the two normal distributions on the approximation is explored. When one of the normally distributed variables has an inverse coefficient of variation greater than one, our approximation performs better than when both normally distributed variables have inverse coefficients of variation less than one. -
Convergence in Distribution Central Limit Theorem
Convergence in Distribution Central Limit Theorem Statistics 110 Summer 2006 Copyright °c 2006 by Mark E. Irwin Convergence in Distribution Theorem. Let X » Bin(n; p) and let ¸ = np, Then µ ¶ n e¡¸¸x lim P [X = x] = lim px(1 ¡ p)n¡x = n!1 n!1 x x! So when n gets large, we can approximate binomial probabilities with Poisson probabilities. Proof. µ ¶ µ ¶ µ ¶ µ ¶ n n ¸ x ¸ n¡x lim px(1 ¡ p)n¡x = lim 1 ¡ n!1 x n!1 x n n µ ¶ µ ¶ µ ¶ n! 1 ¸ ¡x ¸ n = ¸x 1 ¡ 1 ¡ x!(n ¡ x)! nx n n Convergence in Distribution 1 µ ¶ µ ¶ µ ¶ n! 1 ¸ ¡x ¸ n = ¸x 1 ¡ 1 ¡ x!(n ¡ x)! nx n n µ ¶ ¸x n! 1 ¸ n = lim 1 ¡ x! n!1 (n ¡ x)!(n ¡ ¸)x n | {z } | {z } !1 !e¡¸ e¡¸¸x = x! 2 Note that approximation works better when n is large and p is small as can been seen in the following plot. If p is relatively large, a di®erent approximation should be used. This is coming later. (Note in the plot, bars correspond to the true binomial probabilities and the red circles correspond to the Poisson approximation.) Convergence in Distribution 2 lambda = 1 n = 10 p = 0.1 lambda = 1 n = 50 p = 0.02 lambda = 1 n = 200 p = 0.005 p(x) p(x) p(x) 0.0 0.1 0.2 0.3 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 x x x lambda = 5 n = 10 p = 0.5 lambda = 5 n = 50 p = 0.1 lambda = 5 n = 200 p = 0.025 p(x) p(x) p(x) 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15 0 1 2 3 4 5 6 7 8 9 0 2 4 6 8 10 12 0 2 4 6 8 10 12 x x x Convergence in Distribution 3 Example: Let Y1;Y2;::: be iid Exp(1). -
Strategic Information Transmission and Stochastic Orders
A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Szalay, Dezsö Working Paper Strategic information transmission and stochastic orders SFB/TR 15 Discussion Paper, No. 386 Provided in Cooperation with: Free University of Berlin, Humboldt University of Berlin, University of Bonn, University of Mannheim, University of Munich, Collaborative Research Center Transregio 15: Governance and the Efficiency of Economic Systems Suggested Citation: Szalay, Dezsö (2012) : Strategic information transmission and stochastic orders, SFB/TR 15 Discussion Paper, No. 386, Sonderforschungsbereich/Transregio 15 - Governance and the Efficiency of Economic Systems (GESY), München, http://nbn-resolving.de/urn:nbn:de:bvb:19-epub-14011-6 This Version is available at: http://hdl.handle.net/10419/93951 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. -
The Rth Moment About the Origin of a Random Variable X, Denoted By
SAMPLE MOMENTS 1. POPULATION MOMENTS 1.1. Moments about the origin (raw moments). The rth moment about the origin of a random 0 r variable X, denoted by µr, is the expected value of X ; symbolically, 0 r µr =E(X ) (1) = X xr f(x) (2) x for r = 0, 1, 2, . when X is discrete and 0 r µr =E(X ) v (3) when X is continuous. The rth moment about the origin is only defined if E[ Xr ] exists. A mo- 0 ment about the origin is sometimes called a raw moment. Note that µ1 = E(X)=µX , the mean of the distribution of X, or simply the mean of X. The rth moment is sometimes written as function of θ where θ is a vector of parameters that characterize the distribution of X. If there is a sequence of random variables, X1,X2,...Xn, we will call the rth population moment 0 of the ith random variable µi, r and define it as 0 r µ i,r = E (X i) (4) 1.2. Central moments. The rth moment about the mean of a random variable X, denoted by µr,is r the expected value of ( X − µX ) symbolically, r µr =E[(X − µX ) ] r (5) = X ( x − µX ) f(x) x for r = 0, 1, 2, . when X is discrete and r µr =E[(X − µX ) ] ∞ r (6) =R−∞ (x − µX ) f(x) dx r when X is continuous. The rth moment about the mean is only defined if E[ (X - µX) ] exists. The rth moment about the mean of a random variable X is sometimes called the rth central moment of r X.