Low-Dimensional Homogeneous Einstein Manifolds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1507.08163V2 [Math.DG] 10 Nov 2015 Ainld C´Ordoba)
GEOMETRIC FLOWS AND THEIR SOLITONS ON HOMOGENEOUS SPACES JORGE LAURET Dedicated to Sergio. Abstract. We develop a general approach to study geometric flows on homogeneous spaces. Our main tool will be a dynamical system defined on the variety of Lie algebras called the bracket flow, which coincides with the original geometric flow after a natural change of variables. The advantage of using this method relies on the fact that the possible pointed (or Cheeger-Gromov) limits of solutions, as well as self-similar solutions or soliton structures, can be much better visualized. The approach has already been worked out in the Ricci flow case and for general curvature flows of almost-hermitian structures on Lie groups. This paper is intended as an attempt to motivate the use of the method on homogeneous spaces for any flow of geometric structures under minimal natural assumptions. As a novel application, we find a closed G2-structure on a nilpotent Lie group which is an expanding soliton for the Laplacian flow and is not an eigenvector. Contents 1. Introduction 2 1.1. Geometric flows on homogeneous spaces 2 1.2. Bracket flow 3 1.3. Solitons 4 2. Some linear algebra related to geometric structures 5 3. The space of homogeneous spaces 8 3.1. Varying Lie brackets viewpoint 8 3.2. Invariant geometric structures 9 3.3. Degenerations and pinching conditions 11 3.4. Convergence 12 4. Geometric flows 13 arXiv:1507.08163v2 [math.DG] 10 Nov 2015 4.1. Bracket flow 14 4.2. Evolution of the bracket norm 18 4.3. -
Topics on the Geometry of Homogeneous Spaces
TOPICS ON THE GEOMETRY OF HOMOGENEOUS SPACES LAURENT MANIVEL Abstract. This is a survey paper about a selection of results in complex algebraic geometry that appeared in the recent and less recent litterature, and in which rational homogeneous spaces play a prominent r^ole.This selection is largely arbitrary and mainly reflects the interests of the author. Rational homogeneous varieties are very special projective varieties, which ap- pear in a variety of circumstances as exhibiting extremal behavior. In the quite re- cent years, a series of very interesting examples of pairs (sometimes called Fourier- Mukai partners) of derived equivalent, but not isomorphic, and even non bira- tionally equivalent manifolds have been discovered by several authors, starting from the special geometry of certain homogeneous spaces. We will not discuss derived categories and will not describe these derived equivalences: this would require more sophisticated tools and much ampler discussions. Neither will we say much about Homological Projective Duality, which can be considered as the unifying thread of all these apparently disparate examples. Our much more modest goal will be to describe their geometry, starting from the ambient homogeneous spaces. In order to do so, we will have to explain how one can approach homogeneous spaces just playing with Dynkin diagram, without knowing much about Lie the- ory. In particular we will explain how to describe the VMRT (variety of minimal rational tangents) of a generalized Grassmannian. This will show us how to com- pute the index of these varieties, remind us of their importance in the classification problem of Fano manifolds, in rigidity questions, and also, will explain their close relationships with prehomogeneous vector spaces. -
Homogeneous Spaces Defined by Lie Group Automorphisms. Ii
J. DIFFERENTIAL GEOMETRY 2 (1968) 115-159 HOMOGENEOUS SPACES DEFINED BY LIE GROUP AUTOMORPHISMS. II JOSEPH A. WOLF & ALFRED GRAY 7. Noncompact coset spaces defined by automorphisms of order 3 We will drop the compactness hypothesis on G in the results of §6, doing this in such a way that problems can be reduced to the compact case. This involves the notions of reductive Lie groups and algebras and Cartan involutions. Let © be a Lie algebra. A subalgebra S c © is called a reductive subaU gebra if the representation ad%\® of ίΐ on © is fully reducible. © is called reductive if it is a reductive subalgebra of itself, i.e. if its adjoint represen- tation is fully reducible. It is standard ([11, Theorem 12.1.2, p. 371]) that the following conditions are equivalent: (7.1a) © is reductive, (7.1b) © has a faithful fully reducible linear representation, and (7.1c) © = ©' ©3, where the derived algebra ©' = [©, ©] is a semisimple ideal (called the "semisimple part") and the center 3 of © is an abelian ideal. Let © = ©' Θ 3 be a reductive Lie algebra. An automorphism σ of © is called a Cartan involution if it has the properties (i) σ2 = 1 and (ii) the fixed point set ©" of σ\$r is a maximal compactly embedded subalgebra of ©'. The whole point is the fact ([11, Theorem 12.1.4, p. 372]) that (7.2) Let S be a subalgebra of a reductive Lie algebra ©. Then S is re- ductive in © if and only if there is a Cartan involution σ of © such that σ(ft) = ft. -
Why Do We Do Representation Theory?
Why do we do representation theory? V. S. Varadarajan University of California, Los Angeles, CA, USA Bologna, September 2008 Abstract Years ago representation theory was a very specialized field, and very few non-specialists had much interest in it. This situation has changed profoundly in recent times. Due to the efforts of people like Gel’fand, Harish-Chandra, Lang- lands, Witten, and others, it has come to occupy a cen- tral place in contemporary mathematics and theoretical physics. This talk takes a brief look at the myriad ways that rep- resentations of groups enters mathematics and physics. It turns out that the evolution of this subject is tied up with the evolution of the concept of space itself and the classifi- cation of the groups of symmetries of space. Classical projective geometry • The projective group G = PGL(n + 1) operates on complex projective space CPn and hence on algebraic varieties imbedded in CPn. Classical geometry was concerned with the invariants of these varieties under the projective action. Main problems over C • To study the ring of invariants of the action of G on the graded ring of polynomials on Cn+1. The basic question is: • Is the invariant ring finitely generated? • The spectrum of the ring of invariants is a first ap- proximation to a moduli space for the action. Solutions over C • (Hilbert-Weyl) The ring of invariants is finitely gener- ated if G is a complex semi simple group. This is based on • (Weyl) All representations of a complex semi simple grup are completely reducible. • (Nagata) Finite generation of invariants is not always true if G is not semi simple. -
Einstein Manifolds As Yang-Mills Instantons
arXiv:1101.5185 Einstein Manifolds As Yang-Mills Instantons a b John J. Oh ∗ and Hyun Seok Yang † a Division of Computational Sciences in Mathematics, National Institute for Mathematical Sciences, Daejeon 305-340, Korea b Institute for the Early Universe, Ewha Womans University, Seoul 120-750, Korea b Center for Quantum Spacetime, Sogang University, Seoul 121-741, Korea ABSTRACT It is well-known that Einstein gravity can be formulated as a gauge theory of Lorentz group where spin connections play a role of gauge fields and Riemann curvature tensors correspond to their field strengths. One can then pose an interesting question: What is the Einstein equation from the gauge theory point of view? Or equivalently, what is the gauge theory object corresponding to Einstein manifolds? We show that the Einstein equations in four dimensions are precisely self-duality equa- tions in Yang-Mills gauge theory and so Einstein manifolds correspond to Yang-Mills instantons in SO(4) = SU(2) SU(2) gauge theory. Specifically, we prove that any Einstein manifold L × R with or without a cosmological constant always arises as the sum of SU(2)L instantons and SU(2)R anti-instantons. This result explains why an Einstein manifold must be stable because two kinds of arXiv:1101.5185v4 [hep-th] 2 Jul 2013 instantons belong to different gauge groups, instantons in SU(2)L and anti-instantons in SU(2)R, and so they cannot decay into a vacuum. We further illuminate the stability of Einstein manifolds by showing that they carry nontrivial topological invariants. Keywords: Einstein manifold, Yang-Mills instanton, Self-duality May 30, 2018 ∗[email protected] †[email protected] 1 Introduction It seems that the essence of the method of physics is inseparably connected with the problem of interplay between local and global aspects of the world’s structure, as saliently exemplified in the index theorem of Dirac operators. -
Eienstein Field Equations and Heisenberg's Principle Of
International Journal of Scientific and Research Publications, Volume 2, Issue 9, September 2012 1 ISSN 2250-3153 EIENSTEIN FIELD EQUATIONS AND HEISENBERG’S PRINCIPLE OF UNCERTAINLY THE CONSUMMATION OF GTR AND UNCERTAINTY PRINCIPLE 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI AND 3PROF C S BAGEWADI ABSTRACT: The Einstein field equations (EFE) or Einstein's equations are a set of 10 equations in Albert Einstein's general theory of relativity which describe the fundamental interaction (e&eb) of gravitation as a result of space time being curved by matter and energy. First published by Einstein in 1915 as a tensor equation, the EFE equate spacetime curvature (expressed by the Einstein tensor) with (=) the energy and momentum tensor within that spacetime (expressed by the stress–energy tensor).Both space time curvature tensor and energy and momentum tensor is classified in to various groups based on which objects they are attributed to. It is to be noted that the total amount of energy and mass in the Universe is zero. But as is said in different context, it is like the Bank Credits and Debits, with the individual debits and Credits being conserved, holistically, the conservation and preservation of Debits and Credits occur, and manifest in the form of General Ledger. Transformations of energy also take place individually in the same form and if all such transformations are classified and written as a Transfer Scroll, it should tally with the total, universalistic transformation. This is a very important factor to be borne in mind. Like accounts are classifiable based on rate of interest, balance standing or the age, we can classify the factors and parameters in the Universe, be it age, interaction ability, mass, energy content. -
18.782 Arithmetic Geometry Lecture Note 26
18.782 Introduction to Arithmetic Geometry Fall 2013 Lecture #26 12/10/2013 26.1 Genus 1 curves with no rational points Let C=k be a (smooth, projective, geometrically irreducible) curve of genus 1 over a perfect field k. Let n be the least positive integer for which Divk C contains an effective divisor D of degree n (such divisors exist; take the pole divisor of any non-constant function in k(C), for example). If C has a k-rational point, then n = 1 and C is an elliptic curve. We now consider the case where C does not have a rational point, so n > 1. We have deg(D) = n > 2g−2 = 0, so the Riemann-Roch theorem implies `(D) = deg(D) + 1 − g = n; and for any positive integer m we have `(mD) = deg(mD) + 1 − g = mn: We now analyze the situation for some specific values of n. 26.1.1 The case n = 2 We have `(D) = 2, so let f1; xg be a basis for L(D). Then `(2D) = 4, so in addition to f1; x; x2g, the Riemann-Roch space L(2D) contains a fourth linearly independent function y. We then have f1; x; x2; y; xy; x3g as a basis for L(3D), but L(4D) is an 8-dimensional vector space containing the 9 functions f1; x; x2; y; xy; x3; x2y; x4; y2g, so there is a linear relation among them, and this linear relation must have nonzero coefficient on both y2 and x4. Assuming we are not in characteristic 2, we can complete the square in y to obtain an equation of the form y2 = f(x) where f is a quartic polynomial over k. -