Bibliography from ADS File: Chaplin.Bib May 31, 2021 1

Total Page:16

File Type:pdf, Size:1020Kb

Bibliography from ADS File: Chaplin.Bib May 31, 2021 1 Bibliography from ADS file: chaplin.bib Metcalfe, T. S., van Saders, J. L., Basu, S., et al., “The Evolution of Rota- August 16, 2021 tion and Magnetic Activity in 94 Aqr Aa from Asteroseismology with TESS”, 2020ApJ...900..154M ADS Nielsen, M. B., Ball, W. H., Standing, M. R., et al., “TESS asteroseismology of Zinn, J. C., Stello, D., Elsworth, Y., et al., “The K2 Galactic Archaeology the known planet host star λ2 Fornacis”, 2020A&A...641A..25N ADS Program Data Release 3: Age-abundance patterns in C1-C8, C10-C18”, Steinmetz, M., Guiglion, G., McMillan, P. J., et al., “The Sixth Data Release of 2021arXiv210805455Z ADS the Radial Velocity Experiment (RAVE). II. Stellar Atmospheric Parameters, Lyttle, A. J., Davies, G. R., Li, T., et al., “Hierarchically modelling Kepler Chemical Abundances, and Distances”, 2020AJ....160...83S ADS dwarfs and subgiants to improve inference of stellar properties with astero- Steinmetz, M., Matijevic,ˇ G., Enke, H., et al., “The Sixth Data Release of the Ra- seismology”, 2021MNRAS.505.2427L ADS dial Velocity Experiment (RAVE). I. Survey Description, Spectra, and Radial Hill, M. L., Kane, S. R., Campante, T. L., et al., “Asteroseismology of Velocities”, 2020AJ....160...82S ADS iota Draconis and Discovery of an Additional Long-Period Companion”, Ahumada, R., Prieto, C. A., Almeida, A., et al., “The 16th Data Release of 2021arXiv210713583H ADS the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Thomas, A. E. L., Chaplin, W. J., Basu, S., et al., “Impact of magnetic Survey and Full Release of eBOSS Spectra”, 2020ApJS..249....3A ADS activity on inferred stellar properties of main-sequence Sun-like stars”, Jiang, C., Bedding, T. R., Stassun, K. G., et al., “TESS Asteroseismic Analysis 2021MNRAS.502.5808T ADS of the Known Exoplanet Host Star HD 222076”, 2020ApJ...896...65J Ross, E., Chaplin, W. J., Hale, S. J., et al., “Lifetimes and rotation within the ADS solar mean magnetic field”, 2021MNRAS.502.5603R ADS Majewski, S. R., Schiavon, R. P., Frinchaboy, P. M., et al., “VizieR On- Addison, B. C., Wright, D. J., Nicholson, B. A., et al., “TOI-257b line Data Catalog: APOGEE-2 data from DR16 (Majewski+, 2017)”, (HD 19916b): a warm sub-saturn orbiting an evolved F-type star”, 2020yCat.3284....0M ADS 2021MNRAS.502.3704A ADS Majewski, S. R., Schiavon, R. P., Frinchaboy, P. M., et al., “VizieR On- Kunovac Hodžic,´ V., Triaud, A. H. M. J., Cegla, H. M., Chaplin, W. J., & Davies, line Data Catalog: APOGEE-2 data from DR16 (Majewski+, 2017)”, G. R., “Orbital misalignment of the super-Earth π Men c with the spin of its 2020yCat..51540094M ADS star”, 2021MNRAS.502.2893K ADS Bedding, T. R., Murphy, S. J., Hey, D. R., et al., “Very regu- Mackereth, J. T., Miglio, A., Elsworth, Y., et al., “Prospects for Galactic and lar high-frequency pulsation modes in young intermediate-mass stars”, stellar astrophysics with asteroseismology of giant stars in the TESS continu- 2020Natur.581..147B ADS ous viewing zones and beyond”, 2021MNRAS.502.1947M ADS Hale, S. J., Chaplin, W. J., Davies, G. R., et al., “Measurement of Atmospheric Bryson, S., Kunimoto, M., Kopparapu, R. K., et al., “VizieR Online Data Cat- Scintillation during a Period of Saharan Dust (Calima) at Observatorio del alog: 117 exoplanets in habitable zone with Kepler DR25 (Bryson+, 2021)”, Teide, Iz∼ana, Tenerife, and the Impact on Photometric Exposure Times”, 2021yCat..51610036B ADS 2020PASP..132c4501H ADS Hall, O. J., Davies, G. R., van Saders, J., et al., “Haiku CS20.5 Howe, R., Chaplin, W. J., Basu, S., et al., “Solar cycle variation of - Weakened magnetic braking supported by asteroseismic rotation”, ν_max in helioseismic data and its implications for asteroseismology”, 2021csss.confE..70H ADS 2020MNRAS.493L..49H ADS Hall, O. J., Davies, G. R., van Saders, J., et al., “Poster CS20.5 Avelino, P. P., Cunha, M. S., & Chaplin, W. J., “Modelling stochastic signatures - Weakened magnetic braking supported by asteroseismic rotation”, in classical pulsators”, 2020MNRAS.492.4477A ADS 2021csss.confE..69H ADS Hale, S. J., Chaplin, W. J., Davies, G. R., & Elsworth, Y. P., “Modelling Miglio, A., Girardi, L., Grundahl, F., et al., “Haydn”, 2021ExA...tmp...21M the response of potassium vapour in resonance scattering spectroscopy”, ADS 2020arXiv200204546H ADS Zinn, J. C., Stello, D., Elsworth, Y., et al., “VizieR Online Data Catalog: K2 Silva Aguirre, V., Stello, D., Stokholm, A., et al., “Detection and Character- GAP DR2: campaigns 4, 6 & 7 (Zinn+, 2020)”, 2021yCat..22510023Z ization of Oscillating Red Giants: First Results from the TESS Satellite”, ADS 2020ApJ...889L..34S ADS Nielsen, M. B., Davies, G. R., Ball, W. H., et al., “PBjam: A Chaplin, W. J., Serenelli, A. M., Miglio, A., et al., “Age dating of an Python Package for Automating Asteroseismology of Solar-like Oscillators”, early Milky Way merger via asteroseismology of the naked-eye star ν Indi”, 2021AJ....161...62N ADS 2020NatAs...4..382C ADS Hale, S. J., Chaplin, W. J., Davies, G. R., & Elsworth, Y. P., “A next generation Chaplin, W. J., “Michael Thompson’s Legacy in Solar and Stellar Physics”, upgraded observing platform for the automated Birmingham Solar Oscilla- 2020ASSP...57....3C ADS tions Network (BiSON)”, 2021arXiv210110205H ADS Hale, S. J., Chaplin, W. J., Davies, G. R., et al., “Measurement of atmo- Kane, S. R., Bean, J. L., Campante, T. L., et al., “Science Extraction from TESS spheric scintillation during a period of Saharan dust (Calima) at Observato- Observations of Known Exoplanet Hosts”, 2021PASP..133a4402K ADS rio del Teide, Izaña, Tenerife, and the impact on photometric exposure times”, Hall, O. J., Davies, G. R., van Saders, J., et al., “Weakened magnetic 2019arXiv191212237H ADS braking supported by asteroseismic rotation rates of Kepler dwarfs”, Rendle, B. M., Miglio, A., Chiappini, C., et al., “The K2 Galactic Caps 2021NatAs...5..707H ADS Project - going beyond the Kepler field and ageing the Galactic disc”, Montalbán, J., Mackereth, J. T., Miglio, A., et al., “Chronologically dating the 2019MNRAS.490.4465R ADS early assembly of the Milky Way”, 2021NatAs...5..640M ADS Lund, M. N., Knudstrup, E., Silva Aguirre, V., et al., “Asteroseismology of the Bryson, S., Kunimoto, M., Kopparapu, R. K., et al., “The Occurrence of Multiplanet System K2-93”, 2019AJ....158..248L ADS Rocky Habitable-zone Planets around Solar-like Stars from Kepler Data”, Campante, T. L., Corsaro, E., Lund, M. N., et al., “TESS Asteroseismol- 2021AJ....161...36B ADS ogy of the Known Red-giant Host Stars HD 212771 and HD 203949”, Miglio, A., Chiappini, C., Mackereth, J. T., et al., “Age dissection of the Milky 2019ApJ...885...31C ADS Way discs: Red giants in the Kepler field”, 2021A&A...645A..85M ADS Chaplin, W. J., Howe, R., Basu, S., et al., “Sensitivity of low-degree solar p Chontos, A., Huber, D., Kjeldsen, H., et al., “TESS Asteroseismology of α modes to active and ephemeral regions: frequency shifts back to the Maunder Mensae: Benchmark Ages for a G7 Dwarf and its M-dwarf Companion”, minimum”, 2019MNRAS.489L..86C ADS 2020arXiv201210797C ADS Mackereth, J. T., Bovy, J., Leung, H. W., et al., “Dynamical heating across the Hale, S. J., Chaplin, W. J., Davies, G. R., & Elsworth, Y. P., “A next generation Milky Way disc using APOGEE and Gaia”, 2019MNRAS.489..176M ADS upgraded observing platform for the automated Birmingham Solar Oscilla- Kuszlewicz, J. S., Chaplin, W. J., North, T. S. H., et al., “Bayesian hierarchi- tions Network (BiSON)”, 2020SPIE11452E..22H ADS cal inference of asteroseismic inclination angles”, 2019MNRAS.488..572K Ball, W. H., Chaplin, W. J., Nielsen, M. B., et al., “Robust asteroseismic prop- ADS erties of the bright planet host HD 38529”, 2020MNRAS.499.6084B ADS Santos, A. R. G., Campante, T. L., Chaplin, W. J., et al., “Signatures of Magnetic Cunha, M. S., Avelino, P. P., & Chaplin, W. J., “From solar-like to mira stars: a Activity: On the Relation between Stellar Properties and p-mode Frequency unifying description of stellar pulsators in the presence of stochastic noise”, Variations”, 2019ApJ...883...65S ADS 2020MNRAS.499.4687C ADS Huber, D., Chaplin, W. J., Chontos, A., et al., “VizieR Online Data Cat- Zinn, J. C., Stello, D., Elsworth, Y., et al., “The K2 Galactic Archaeology Pro- alog: High-precision radial velocities for HD 221416 (Huber+, 2019)”, gram Data Release 2: Asteroseismic Results from Campaigns 4, 6, and 7”, 2019yCat..51570245H ADS 2020ApJS..251...23Z ADS Chontos, A., Huber, D., Latham, D. W., et al., “VizieR Online Data Cat- Elsworth, Y., Themeßl, N., Hekker, S., & Chaplin, W., “A Lay- alog: Radial velocities and transit times for KOI 4 (Chontos+, 2019)”, ered Approach to Robust Determination of Asteroseismic Parameters”, 2019yCat..51570192C ADS 2020RNAAS...4..177E ADS Khan, S., Miglio, A., Mosser, B., et al., “New light on the Gaia DR2 parallax Maxted, P. F. L., Gaulme, P., Graczyk, D., et al., “The TESS light curve of AI zero-point: influence of the asteroseismic approach, in and beyond the Kepler Phoenicis”, 2020MNRAS.498..332M ADS field”, 2019A&A...628A..35K ADS 1 Kuszlewicz, J. S., North, T. S. H., Chaplin, W. J., et al., “KOI-3890: a high-mass- Van Eylen, V., Dai, F., Mathur, S., et al., “HD 89345: a bright oscillat- ratio asteroseismic red giant+M-dwarf eclipsing binary undergoing heart- ing star hosting a transiting warm Saturn-sized planet observed by K2”, beat tidal interactions”, 2019MNRAS.487...14K ADS 2018MNRAS.478.4866V ADS Hall, O. J., Davies, G. R., Elsworth, Y. P., et al., “Testing astero- Moya, A., Zuccarino, F., Chaplin, W. J., & Davies, G. R., “Empiri- seismology with Gaia DR2: hierarchical models of the Red Clump”, cal Relations for the Accurate Estimation of Stellar Masses and Radii”, 2019MNRAS.486.3569H ADS 2018ApJS..237...21M ADS Viani, L. S., Basu, S., Corsaro, E., Ball, W.
Recommended publications
  • Characterizing Two Solar-Type Kepler Subgiants with Asteroseismology: Kic 10920273 and Kic 11395018
    The Astrophysical Journal, 763:49 (10pp), 2013 January 20 doi:10.1088/0004-637X/763/1/49 C 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A. CHARACTERIZING TWO SOLAR-TYPE KEPLER SUBGIANTS WITH ASTEROSEISMOLOGY: KIC 10920273 AND KIC 11395018 G. Doganˇ 1,2,3, T. S. Metcalfe1,3,4, S. Deheuvels3,5,M.P.DiMauro6, P. Eggenberger7, O. L. Creevey8,9,10, M. J. P. F. G. Monteiro11, M. Pinsonneault3,12, A. Frasca13, C. Karoff2, S. Mathur1,S.G.Sousa11,I.M.Brandao˜ 11, T. L. Campante11,14, R. Handberg2, A. O. Thygesen2,15, K. Biazzo16,H.Bruntt2, E. Niemczura17, T. R. Bedding18, W. J. Chaplin3,14, J. Christensen-Dalsgaard2,3,R.A.Garc´ıa3,19, J. Molenda-Zakowicz˙ 17, D. Stello18, J. L. Van Saders3,12, H. Kjeldsen2, M. Still20, S. E. Thompson21, and J. Van Cleve21 1 High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307, USA; [email protected] 2 Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark 3 Kavli Institute for Theoretical Physics, Kohn Hall, University of California, Santa Barbara, CA 93106, USA 4 Space Science Institute, Boulder, CO 80301, USA 5 Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101, USA 6 INAF-IAPS, Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, I-00133 Roma, Italy 7 Geneva Observatory, University of Geneva, Maillettes 51, 1290 Sauverny, Switzerland 8 Universite´ de Nice, Laboratoire Cassiopee,´ CNRS UMR 6202, Observatoire de la Coteˆ d’Azur, BP 4229, F-06304 Nice Cedex 4, France 9 IAC Instituto de Astrof´ısica de Canarias, C/V´ıa Lactea´ s/n, E-38200 Tenerife, Spain 10 Universidad de La Laguna, Avda.
    [Show full text]
  • Arxiv:1909.05961V1 [Astro-Ph.SR] 12 Sep 2019
    Draft version September 16, 2019 Typeset using LATEX twocolumn style in AASTeX62 TESS ASTEROSEISMOLOGY OF THE KNOWN RED-GIANT HOST STARS HD 212771 AND HD 203949 Tiago L. Campante,1, 2, 3 Enrico Corsaro,4 Mikkel N. Lund,5, 3 Beno^ıt Mosser,6 Aldo Serenelli,7, 8, 3 Dimitri Veras,9, 10, 3, ∗ Vardan Adibekyan,1 H. M. Antia,11 Warrick Ball,12, 5 Sarbani Basu,13 Timothy R. Bedding,14, 5, 3 Diego Bossini,1 Guy R. Davies,12, 5 Elisa Delgado Mena,1 Rafael A. Garc´ıa,15, 16 Rasmus Handberg,5 Marc Hon,17 Stephen R. Kane,18 Steven D. Kawaler,19, 3 James S. Kuszlewicz,20, 5 Miles Lucas,19 Savita Mathur,21, 22 Nicolas Nardetto,23 Martin B. Nielsen,12, 5, 24 Marc H. Pinsonneault,25, 3 Sabine Reffert,26 V´ıctor Silva Aguirre,5 Keivan G. Stassun,27, 28 Dennis Stello,17, 14, 5, 3 Stephan Stock,26 Mathieu Vrard,1 Mutlu Yıldız,29 William J. Chaplin,12, 5, 3 Daniel Huber,30, 3 Jacob L. Bean,31 Zeynep C¸elik Orhan,29 Margarida S. Cunha,1, 2 Jørgen Christensen-Dalsgaard,5, 3 Hans Kjeldsen,5, 32 Travis S. Metcalfe,33, 20 Andrea Miglio,12, 5 Mario´ J. P. F. G. Monteiro,1, 2 Benard Nsamba,1 Sibel Ortel¨ ,29 Filipe Pereira,1 Sergio´ G. Sousa,1, 2 Maria Tsantaki,1 and Margaret C. Turnbull34 1Instituto de Astrof´ısica e Ci^enciasdo Espa¸co,Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal 2Departamento de F´ısica e Astronomia, Faculdade de Ci^enciasda Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal 3Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030, USA 4INAF | Osservatorio Astrofisico di Catania, via S.
    [Show full text]
  • The [Y/Mg] Clock Works for Evolved Solar Metallicity Stars ? D
    Astronomy & Astrophysics manuscript no. clusters_le c ESO 2017 July 28, 2017 The [Y/Mg] clock works for evolved solar metallicity stars ? D. Slumstrup1, F. Grundahl1, K. Brogaard1; 2, A. O. Thygesen3, P. E. Nissen1, J. Jessen-Hansen1, V. Van Eylen4, and M. G. Pedersen5 1 Stellar Astrophysics Centre (SAC). Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus, Denmark e-mail: [email protected] 2 School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK 3 California Institute of Technology, 1200 E. California Blvd, MC 249-17, Pasadena, CA 91125, USA 4 Leiden Observatory, Leiden University, 2333CA Leiden, The Netherlands 5 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium Received 3 July 2017 / Accepted 20 July2017 ABSTRACT Aims. Previously [Y/Mg] has been proven to be an age indicator for solar twins. Here, we investigate if this relation also holds for helium-core-burning stars of solar metallicity. Methods. High resolution and high signal-to-noise ratio (S/N) spectroscopic data of stars in the helium-core-burning phase have been obtained with the FIES spectrograph on the NOT 2:56 m telescope and the HIRES spectrograph on the Keck I 10 m telescope. They have been analyzed to determine the chemical abundances of four open clusters with close to solar metallicity; NGC 6811, NGC 6819, M67 and NGC 188. The abundances are derived from equivalent widths of spectral lines using ATLAS9 model atmospheres with parameters determined from the excitation and ionization balance of Fe lines. Results from asteroseismology and binary studies were used as priors on the atmospheric parameters, where especially the log g is determined to much higher precision than what is possible with spectroscopy.
    [Show full text]
  • The Ubvri and Infrared Colour Indices of the Sun and Sun-Like Stars
    The 19th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun Edited by G. A. Feiden THE UBVRI AND INFRARED COLOUR INDICES OF THE SUN AND SUN-LIKE STARS Mehmet TANRIVER1, Ferhat Fikri ÖZEREN1 1 Erciyes University, Astronomy and Space Sciences Department, 38039, Kayseri, Turkey Abstract The Sun is not a point source, the photometric observational techniques that are utilised for observing other stars cannot be utilised for the Sun, meaning that it is dicult to derive its colours accurately for astronomical work from direct measurements in dierent passbands. The solar twins are the best choices because they are the stars that are ideally the same as the Sun in all parameters, and also, their colours are highly similar to those of the Sun. From the 60 articles on the Sun and Sun-like stars in the literature from 1964 until today, the solar colour indices in the optic and infrared regions have been estimated. 1 INTRODUCTION Table 1: The obtained average colour indices values of the The Sun is an average-low-mass star in the main sequence Sun with standart deviation (±σ)( Tanrıver (2012), Tanrıver of the Hertzsprung-Russell diagram. Moreover, the Sun is (2014a), Tanrıver (2014b) ). not a point source, the photometric observational techniques that are utilised for observing other stars cannot be utilised B-V 0.6457 ± 0.0421 V-J 1.1413 ± 0.1063 for the Sun. Therefore, the colours and colour indices of the H-K 0.0572 ± 0.0351 U-B 0.1463 ± 0.0596 sun-like stars are used in order to determine the sun’s colour V-H 1.4613 ± 0.1183 J-K 0.3777 ± 0.0494 indices.
    [Show full text]
  • Magnetism, Dynamo Action and the Solar-Stellar Connection
    Living Rev. Sol. Phys. (2017) 14:4 DOI 10.1007/s41116-017-0007-8 REVIEW ARTICLE Magnetism, dynamo action and the solar-stellar connection Allan Sacha Brun1 · Matthew K. Browning2 Received: 23 August 2016 / Accepted: 28 July 2017 © The Author(s) 2017. This article is an open access publication Abstract The Sun and other stars are magnetic: magnetism pervades their interiors and affects their evolution in a variety of ways. In the Sun, both the fields themselves and their influence on other phenomena can be uncovered in exquisite detail, but these observations sample only a moment in a single star’s life. By turning to observa- tions of other stars, and to theory and simulation, we may infer other aspects of the magnetism—e.g., its dependence on stellar age, mass, or rotation rate—that would be invisible from close study of the Sun alone. Here, we review observations and theory of magnetism in the Sun and other stars, with a partial focus on the “Solar-stellar connec- tion”: i.e., ways in which studies of other stars have influenced our understanding of the Sun and vice versa. We briefly review techniques by which magnetic fields can be measured (or their presence otherwise inferred) in stars, and then highlight some key observational findings uncovered by such measurements, focusing (in many cases) on those that offer particularly direct constraints on theories of how the fields are built and maintained. We turn then to a discussion of how the fields arise in different objects: first, we summarize some essential elements of convection and dynamo theory, includ- ing a very brief discussion of mean-field theory and related concepts.
    [Show full text]
  • Habitability on Local, Galactic and Cosmological Scales
    Habitability on local, Galactic and cosmological scales Luigi Secco1 • Marco Fecchio1 • Francesco Marzari1 Abstract The aim of this paper is to underline con- detectable studying our site. The Climatic Astronom- ditions necessary for the emergence and development ical Theory is introduced in sect.5 in order to define of life. They are placed at local planetary scale, at the circumsolar habitable zone (HZ) (sect.6) while the Galactic scale and within the cosmological evolution, translation from Solar to extra-Solar systems leads to a as pointed out by the Anthropic Cosmological Princi- generalized circumstellar habitable zone (CHZ) defined ple. We will consider the circumstellar habitable zone in sect.7 with some exemplifications to the Gliese-667C (CHZ) for planetary systems and a Galactic Habitable and the TRAPPIST-1 systems; some general remarks Zone (GHZ) including also a set of strong cosmologi- follow (sect.8). A first conclusion related to CHZ is cal constraints to allow life (cosmological habitability done moving toward GHZ and COSH (sect.9). The (COSH)). Some requirements are specific of a single conditions for the development of life are indeed only scale and its related physical phenomena, while others partially connected to the local scale in which a planet are due to the conspired effects occurring at more than is located. A strong interplay between different scales one scale. The scenario emerging from this analysis is exists and each single contribution to life from individ- that all the habitability conditions here detailed must ual scales is difficult to be isolated. However we will at least be met.
    [Show full text]
  • Arxiv:1001.0139V1 [Astro-Ph.SR] 31 Dec 2009 Oadl Gilliland, L
    Publications of the Astronomical Society of the Pacific Kepler Asteroseismology Program: Introduction and First Results Ronald L. Gilliland,1 Timothy M. Brown,2 Jørgen Christensen-Dalsgaard,3 Hans Kjeldsen,3 Conny Aerts,4 Thierry Appourchaux,5 Sarbani Basu,6 Timothy R. Bedding,7 William J. Chaplin,8 Margarida S. Cunha,9 Peter De Cat,10 Joris De Ridder,4 Joyce A. Guzik,11 Gerald Handler,12 Steven Kawaler,13 L´aszl´oKiss,7,14 Katrien Kolenberg,12 Donald W. Kurtz,15 Travis S. Metcalfe,16 Mario J.P.F.G. Monteiro,9 Robert Szab´o,14 Torben Arentoft,3 Luis Balona,17 Jonas Debosscher,4 Yvonne P. Elsworth,8 Pierre-Olivier Quirion,3,18 Dennis Stello,7 Juan Carlos Su´arez,19 William J. Borucki,20 Jon M. Jenkins,21 David Koch,20 Yoji Kondo,22 David W. Latham,23 Jason F. Rowe,20 and Jason H. Steffen24 arXiv:1001.0139v1 [astro-ph.SR] 31 Dec 2009 –2– ABSTRACT Asteroseismology involves probing the interiors of stars and quantifying their global properties, such as radius and age, through observations of normal modes of oscillation. The technical requirements for conducting asteroseismology in- clude ultra-high precision measured in photometry in parts per million, as well as nearly continuous time series over weeks to years, and cadences rapid enough 1Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA; [email protected] 2Las Cumbres Observatory Global Telescope, Goleta, CA 93117, USA 3Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark 4Instituut voor Sterrenkunde, K.U.Leuven, Celestijnenlaan 200 D, 3001, Leuven, Belgium 5Institut d’Astrophysique Spatiale, Universit´eParis XI, Bˆatiment 121, 91405 Orsay Cedex, France 6Astronomy Department, Yale University, P.O.
    [Show full text]
  • Asteroseismology Notes
    2 observed pulsations • operate on the dynamical time scale Asteroseismology • accessible on convenient time scale • probe global and local structure Steve Kawaler • periods change on ‘evolutionary’ time scale Iowa State University (thermal or nuclear) - depend on global properties • amplitudes change on ~ ‘local’ thermal time scale 3 4 dynamical stability a more complex example: a star • “stable” configuration represents a stable mean configuration • multiple oscillation modes • on short time scale, oscillations occur, but the • radial modes - enumerated by number of mean value is fixed on longer time scales nodes between center and surface • simple example: a pendulum (single mode) • most likely position - extrema • non-radial modes - nodes also across • mean position is at zero displacement surface of constant radius with no damping would oscillate forever • • modes frequencies determined by solution of • more complex example: a vibrating string the appropriate wave equation • multiple modes with different frequencies • enumerated by number of nodes 5 6 stability, damping, and driving Okay, start your engines... • PG 1159: light curve • zero energy change: what kind of star might this be? constant amplitude oscillation • • what kind of star can this not possibly be? • energy loss via pulsation: • what about the amplitude over the run? oscillation amplitude drops with time • PG 1336 light curve • if net energy input: • huh? what time scale(s) are involved amplitude increases with time • what kind of star (or stars)? (if properly phased)
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Exoplanet Community Report
    JPL Publication 09‐3 Exoplanet Community Report Edited by: P. R. Lawson, W. A. Traub and S. C. Unwin National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California March 2009 The work described in this publication was performed at a number of organizations, including the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Publication was provided by the Jet Propulsion Laboratory. Compiling and publication support was provided by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government, or the Jet Propulsion Laboratory, California Institute of Technology. © 2009. All rights reserved. The exoplanet community’s top priority is that a line of probe­class missions for exoplanets be established, leading to a flagship mission at the earliest opportunity. iii Contents 1 EXECUTIVE SUMMARY.................................................................................................................. 1 1.1 INTRODUCTION...............................................................................................................................................1 1.2 EXOPLANET FORUM 2008: THE PROCESS OF CONSENSUS BEGINS.....................................................2
    [Show full text]
  • Planet Hunters1 (Fischer Et Al
    draft version May 31, 2012 Planet Hunters: Assessing the Kepler Inventory of Short Period Planets Megan E. Schwamb1,2,3,Chris J. Lintott4,5, Debra A. Fischer6, Matthew J. Giguere6, Stuart Lynn5,4, Arfon M. Smith5,4, John M. Brewer6, Michael Parrish5, Kevin Schawinski2,3,7, and Robert J. Simpson4 [email protected] ABSTRACT We present the results from a search of data from the first 33.5 days of the Kepler science mission (Quarter 1) for exoplanet transits by the Planet Hunters citizen science project. Planet Hunters enlists members of the general public to visually identify tran- sits in the publicly released Kepler light curves via the World Wide Web. Over 24,000 volunteers reviewed the Kepler Quarter 1 data set. We examine the abundance of ≥ 2 R⊕ planets on short period (< 15 days) orbits based on Planet Hunters detections. We present these results along with an analysis of the detection efficiency of human classifiers to identify planetary transits including a comparison to the Kepler inventory of planet candidates. Although performance drops rapidly for smaller radii, ≥ 4 R⊕ Planet Hunters ≥ 85% efficient at identifying transit signals for planets with periods less than 15 days for the Kepler sample of target stars. Our high efficiency rate for simulated transits along with recovery of the majority of Kepler ≥4R⊕ planets suggest suggests the Kepler inventory of ≥4 R⊕ short period planets is nearly complete. Subject headings: Planets and satellites: detection-Planets and satellites: general 1. Introduction In the past nearly two decades, there has been an explosion in the number of known planets arXiv:1205.6769v1 [astro-ph.EP] 30 May 2012 orbiting stars beyond our own solar system, with over 700 extrasolar planets (exoplanets) known 1Yale Center for Astronomy and Astrophysics, Yale University,P.O.
    [Show full text]
  • Asteroseismic Inferences on Red Giants in Open Clusters NGC 6791, NGC 6819, and NGC 6811 Using Kepler
    A&A 530, A100 (2011) Astronomy DOI: 10.1051/0004-6361/201016303 & c ESO 2011 Astrophysics Asteroseismic inferences on red giants in open clusters NGC 6791, NGC 6819, and NGC 6811 using Kepler S. Hekker1,2, S. Basu3, D. Stello4, T. Kallinger5, F. Grundahl6,S.Mathur7,R.A.García8, B. Mosser9,D.Huber4, T. R. Bedding4,R.Szabó10, J. De Ridder11,W.J.Chaplin2, Y. Elsworth2,S.J.Hale2, J. Christensen-Dalsgaard6 , R. L. Gilliland12, M. Still13, S. McCauliff14, and E. V. Quintana15 1 Astronomical Institute “Anton Pannekoek”, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands e-mail: [email protected] 2 School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK 3 Department of Astronomy, Yale University, PO Box 208101, New Haven CT 06520-8101, USA 4 Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006, Australia 5 Department of Physics and Astronomy, University of British Colombia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada 6 Department of Physics and Astronomy, Building 1520, Aarhus University, 8000 Aarhus C, Denmark 7 High Altitude Observatory, NCAR, PO Box 3000, Boulder, CO 80307, USA 8 Laboratoire AIM, CEA/DSM-CNRS, Université Paris 7 Diderot, IRFU/SAp, Centre de Saclay, 91191 Gif-sur-Yvette, France 9 LESIA, UMR8109, Université Pierre et Marie Curie, Université Denis Diderot, Observatoire de Paris, 92195 Meudon Cedex, France 10 Konkoly Observatory of the Hungarian Academy of Sciences, Konkoly Thege Miklós út 15-17, 1121 Budapest, Hungary 11 Instituut voor Sterrenkunde, K.U. Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 12 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 13 Bay Area Environmental Research Institute/Nasa Ames Research Center, Moffett Field, CA 94035, USA 14 Orbital Sciences Corporation/Nasa Ames Research Center, Moffett Field, CA 94035, USA 15 SETI Institute/Nasa Ames Research Center, Moffett Field, CA 94035, USA Received 13 December 2010 / Accepted 19 April 2011 ABSTRACT Context.
    [Show full text]