Blind Hyperspectral Unmixing Based on Graph Total Variation
Blind Hyperspectral Unmixing Based on Graph Total Variation Regularization Jing Qin, Harlin Lee, Jocelyn Chi, Lucas Drumetz, Jocelyn Chanussot, Yifei Lou, Andrea Bertozzi To cite this version: Jing Qin, Harlin Lee, Jocelyn Chi, Lucas Drumetz, Jocelyn Chanussot, et al.. Blind Hyperspec- tral Unmixing Based on Graph Total Variation Regularization. IEEE Transactions on Geoscience and Remote Sensing, Institute of Electrical and Electronics Engineers, 2021, 59 (4), pp.3338 - 3351. 10.1109/TGRS.2020.3020810. hal-02947871 HAL Id: hal-02947871 https://hal-imt-atlantique.archives-ouvertes.fr/hal-02947871 Submitted on 24 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Blind Hyperspectral Unmixing Based on Graph Total Variation Regularization Jing Qin, Member, IEEE, Harlin Lee, Student Member, IEEE, Jocelyn T. Chi, Lucas Drumetz, Member, IEEE, Jocelyn Chanussot, Fellow, IEEE, Yifei Lou, Member, IEEE, and Andrea L. Bertozzi, Member, IEEE Abstract—Remote sensing data from hyperspectral cameras view of each pixel. The signature corresponding to one pure suffer from limited spatial resolution, in which a single pixel material is called an endmember in hyperspectral data analysis of a hyperspectral image may contain information from several [1].
[Show full text]